

Lecture Notes in Computer Science 3329
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pil Joong Lee (Ed.)

Advances in Cryptology –
ASIACRYPT 2004

10th International Conference on the Theory
and Application of Cryptology and Information Security
Jeju Island, Korea, December 5-9, 2004
Proceedings

13

Volume Editor

Pil Joong Lee
Pohang University of Science and Technology
San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk 790-784, Korea
On leave at KT Research Center, Seoul 137-792, Korea
E-mail: pjl@postech.ac.kr

Library of Congress Control Number: 2004115992

CR Subject Classification (1998): E.3, D.4.6, F.2.1-2, K.6.5, C.2, J.1, G.2.2

ISSN 0302-9743
ISBN 3-540-23975-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© International Association for Cryptologic Research 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11363248 06/3142 5 4 3 2 1 0

Preface

The 10th Annual ASIACRYPT 2004 was held in Jeju Island, Korea, dur-
ing December 5–9, 2004. This conference was organized by the International
Association for Cryptologic Research (IACR) in cooperation with KIISC (Ko-
rean Institute of Information Security and Cryptology) and IRIS (International
Research center for Information Security) at ICU (Information and Communica-
tions University), and was financially supported by MIC (Ministry of Information
and Communication) in Korea.

The conference received, from 30 countries, 208 submissions that represent
the current state of work in the cryptographic community worldwide, covering
all areas of cryptologic research. Each paper, without the authors’ information,
was reviewed by at least three members of the program committee, and the
papers (co-)authored by members of the program committee were reviewed by
at least six members. We also blinded the reviewers’ names among the reviewers
until the final decision, by using pseudonyms. The reviews were then followed
by deep discussions on the papers, which greatly contributed to the quality of
the final selection. In most cases, extensive comments were sent to the authors.

Among 208 submissions, the program committee selected 36 papers. Two
submissions were merged into a single paper, yielding the total of 35 papers
accepted for presentation in the technical program of the conference. Many high-
quality works could not be accepted because of the competitive nature of the
conference and the challenging task of selecting a program. These proceedings
contain revised versions of the accepted papers. These revisions have not been
checked for correctness, and the authors bear full responsibility for the contents
of their papers.

This was the first year in which the program committee selected a recipient
for the Best Paper Award for the ASIACRYPT conference after lengthy dis-
cussion on its procedure and voting among program committee members. The
winner of the prize for the Best Paper was Claus Diem from the University of
Essen for his paper “The XL-algorithm and a Conjecture from Commutative
Algebra.”

The conference program included two invited lectures. Adi Shamir, from
the Weizmann Institute of Science, Israel, talked on “Stream Ciphers: Dead or
Alive?,” and Ho-Ick Suk, the Deputy Minister for Informatization Planning at
MIC of Korea, talked on “Information Security in Korea IT839 Strategy.” In
addition, the conference also included one rump session, chaired by Moti Yung,
which featured short informal talks.

I wish to thank the program committee, whose members worked very hard
over several months. I am also very grateful to the external referees who con-
tributed with their special expertise to the selection process. Their work is highly
appreciated.

The submission of all papers was received electronically using Web-based
submission software which was provided by Chanathip Namprempre with modi-

VI Preface

fications by Andre Adelsbach. During the review process, the program committee
was mainly communicated using the Web-based review software developed by
Bart Preneel, Wim Moreau, and Joris Claessens.

It is my pleasure to thank the General Chair, Prof. Kwangjo Kim, for all his
work in organizing the conference, and for the pleasant collaboration and various
pieces of advice. In addition, I would like to extend my gratitude to the members
of the local organizing committee. For financial support of the conference, the
organizing committee and I gratefully acknowledge the Ministry of Information
and Communication (MIC) of Korea.

I am also grateful to the secretariat of the program committee. Special
thanks to Sung Ho Yoo and Young Tae Youn for maintaining both the submis-
sion server and the review server, and to Yong Ho Hwang and Yeon Hyeong
Yang who served as technical assistants to the chairs and helped me with the
various technical aspects of running the committee and preparing the conference
proceedings, and to others for miscellaneous jobs.

Finally, we would like to thank all the other people who provided any as-
sistance, and all the authors who submitted their papers to ASIACRYPT 2004,
as well as all the participants from all over the world.

December 2004 Pil Joong Lee

ASIACRYPT 2004

December 5–9, 2004, Jeju Island, Korea
Sponsored by

International Association for Cryptologic Research (IACR)
in cooperation with

Korean Institute of Information Security and Cryptology (KIISC)
International Research Center for Information Security (IRIS) at

Information and Communications University (ICU)
financially supported by

Ministry of Information and Communication (MIC) in Korea.

General Chair
Kwangjo Kim, Information and Communications University, Korea

Program Chair
Pil Joong Lee, Pohang University of Science and Technology, Korea

(on leave at KT Research Center, Korea)

Organizing Committee

Program Committee

Jee Hea An .SoftMax, USA
Michael Backes . IBM Zurich Research Lab., Switzerland
Feng Bao . Institute for Infocomm Research, Singapore
Colin Boyd .Queensland University of Tech., Australia
Liqun Chen . Hewlett-Packard Labs, UK
Don Coppersmith IBM T.J. Watson Research Center, USA
Marc Joye .Gemplus, France
Jonathan Katz .University of Maryland, USA
Yongdae Kim . University of Minnesota, USA
Dong Hoon Lee .Korea University, Korea
Jaeil Lee . KISA, Korea
Arjen K. Lenstra Lucent Technologies, USA and TU Eindhoven

The Netherlands
Atsuko Miyaji .JAIST, Japan
Jesper Buus Nielsen .ETH Zurich, Switzerland
Choonsik Park . NSRI, Korea
Dingyi Pei .Chinese Academy of Sciences, China
Erez Petrank . Technion, Israel
David Pointcheval .CNRS-ENS, Paris, France
Bart Preneel .Katholieke Universiteit Leuven, Belgium
Vincent Rijmen . Graz University of Technology, Austria
Bimal Roy . Indian Statistical Institute, India
Rei Safavi-Naini .University of Wollongong, Australia
Kazue Sako . NEC Corporation, Japan
Kouichi Sakurai . Kyushu University, Japan
Nigel Smart .University of Bristol, UK
Serge Vaudenay . EPFL, Switzerland
Sung-Ming Yen . National Central University, Taiwan
Yiqun Lisa Yin . Princeton University, USA
Moti Yung .Columbia University, USA
Yuliang ZhengUniversity of North Carolina at Charlotte, USA

Organizing Committee

Khi-Jung Ahn . Cheju National University, Korea
Jae Choon Cha . ICU, Korea
Byoungcheon Lee . Joongbu University, Korea
Im-Yeong Lee . Soonchunhyang University, Korea
Kyung-Hyune Rhee . Pukyong National University, Korea
Dae-Hyun Ryu . Hansei University, Korea

X Organizing Committee

External Reviewers

Michel Abdalla
Roberto Maria Avanzi
Gildas Avoine
Joonsang Baek
Thomas Baignères
Endre Bangerter
Rana Barua
Lejla Batina
Amos Beimel
Yolanta Beres
John Black
Emmanuel Bresson
Jin Wook Byun
Christian Cachin
Qingjun Cai
Chris M. Calabro
Jan Camenisch
Ran Canetti
Christophe De Cannière
Claude Carlet
Dario Catalano
Donghoon Chang
Sanjit Chatterjee
Chien-Ning Chen
Lily Chen
Yongxi Cheng
Donghyeon Cheon
Jung Hee Cheon
Eun Young Choi
Kyu Young Choi
Kilsoo Chun
Scott Contini
Jean-Sébastien Coron
Ivan Damg̊ard
Alex Dent
Anand Desai
Orr Dunkelman
Glenn Durfee
Matthieu Finiasz
Marc Fischlin
Caroline Fontaine
Pierre-Alain Fouque
Eiichiro Fujisaki
Jun Furukawa

Yuichi Futa
Pierrick Gaudry
Henri Gilbert
Juan González
Louis Granboulan
Robert Granger
Kishan Chand Gupta
Kil-Chan Ha
Stuart Haber
Shai Halevi
Dong-Guk Han
Helena Handschuh
Keith Harrison
Florian Hess
Yvonne Hitchcock
Christina Hoelzer
Dennis Hofheinz
Jung Yeon Hwang
Kenji Imamoto
Yuval Ishai
Ik Rae Jeong
Antoine Joux
Seok Won Jung
Pascal Junod
Markus Kaiser
Masayuki Kanda
Sungwoo Kang
Joe Kilian
Jeeyeon Kim
Jinhae Kim
Jongsung Kim
Seungjoo Kim
Yong Ho Kim
Lars Knudsen
Chiu-Yuen Koo
Jaehyung Koo
Caroline Kudla
Eyal Kushilevitz
Hidenori Kuwakado
Soonhak Kwon
Taekyoung Kwon
Mario Lamberger
Tanja Lange
Joseph Lano

Byoungcheon Lee
Changhoon Lee
Eonkyung Lee
Hoonjae Lee
Su Mi Lee
Wonil Lee
Minming Li
Yong Li
Benôıt Libert
Seongan Lim
Hsi-Chung Lin
Yehuda Lindell
Yi Lu
Subhamoy Maitra
John Malone-Lee
Wenbo Mao
Keith Martin
Mitsuru Matsui
Willi Meier
Nele Mentens
Kazuhiko Minematsu
Pradeep Kumar Mishra
Chris Mitchell
Brian Monahan
Jean Monnerat
Shiho Moriai
Yi Mu
Joern Mueller-Quade
Sourav Mukhopadhyay
Hirofumi Muratani
Toru Nakanishi
Mridul Nandi
Lan Nguyen
Phong Nguyen
Masao Nonaka
Daehun Nyang
Luke O’Connor
Satoshi Obana
Wakaha Ogata
Kazuo Ohta
Takeshi Okamoto
Ivan Osipkov
Elisabeth Oswald
Dan Page

Organizing Committee XI

Adriana Palacio
Haeryong Park
Rafael Pass
Kenny Paterson
Olivier Pereira
Hieu Duong Phan
Benny Pinkas
Bartosz Przydatek
Michaël Quisquater
François Recher
Renato Renner
Martin Roetteler
Alon Rosen
Palash Sarkar
Katja Schmidt-Samoa
Berry Schoenmakers
Jaechul Sung
Hovav Shacham
Nicholas Sheppard
Haixia Shi
Junji Shikata
Atsushi Shimbo
Alice Silverberg

Johan Sjödin
Jung Hwan Song
Masakazu Soshi
Hirose Souichi
Martijn Stam
Ron Steinfeld
Rainer Steinwandt
Reto Strobl
Makoto Sugita
Hung-Min Sun
Soo Hak Sung
Willy Susilo
Tsuyoshi Takagi
Gelareh Taban
Mitsuru Tada
Yuko Tamura
Isamu Teranishi
Emmanuel Thomé
Eran Tromer
Shiang-Feng Tzeng
Frederik Vercauteren
Eric Verheul
Ivan Visconti

Guilin Wang
Huaxiong Wang
Shawn Wang
Bogdan Warinschi
Larry Washington
Benne de Weger
William Whyte
Christopher Wolf
Duncan Wong
Chi-Dian Wu
Hongjun Wu
Yongdong Wu
Guohua Xiong
Bo-Yin Yang
Akihiro Yamamura
Youngjin Yeom
Takuya Yoshida
Chong Zhang
Yunlei Zhao
Feng Zhu
Huafei Zhu

Table of Contents

Block Ciphers

On Feistel Ciphers Using Optimal Diffusion Mappings Across
Multiple Rounds

Taizo Shirai, Bart Preneel . 1

Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC

Phillip Rogaway . 16

Eliminating Random Permutation Oracles in the Even-Mansour Cipher
Craig Gentry, Zulfikar Ramzan . 32

Public Key Encryption

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles
Mihir Bellare, Adriana Palacio . 48

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding
Duong Hieu Phan, David Pointcheval . 63

Invited Talk I

Stream Ciphers: Dead or Alive?
Adi Shamir . 78

Number Theory and Algebra

On the Generalized Linear Equivalence of Functions over Finite Fields
Luca Breveglieri, Alessandra Cherubini, Marco Macchetti 79

Sieving Using Bucket Sort
Kazumaro Aoki, Hiroki Ueda . 92

Right-Invariance: A Property for Probabilistic Analysis of Cryptography
Based on Infinite Groups

Eonkyung Lee . 103

XIV Table of Contents

Secure Computation

Practical Two-Party Computation Based on the Conditional Gate
Berry Schoenmakers, Pim Tuyls . 119

Privacy in Non-private Environments
Markus Bläser, Andreas Jakoby, Maciej Lískiewicz, Bodo Manthey 137

Asynchronous Proactive Cryptosystems Without Agreement
Bartosz Przydatek, Reto Strobl .152

Lattice-Based Threshold-Changeability
for Standard Shamir Secret-Sharing Schemes

Ron Steinfeld, Huaxiong Wang, Josef Pieprzyk . 170

Hash Functions

Masking Based Domain Extenders for UOWHFs:
Bounds and Constructions

Palash Sarkar . 187

Higher Order Universal One-Way Hash Functions
Deukjo Hong, Bart Preneel, Sangjin Lee . 201

The MD2 Hash Function Is Not One-Way
Frédéric Muller . 214

Key Management

New Approaches to Password Authenticated Key Exchange
Based on RSA

Muxiang Zhang . 230

Constant-Round Authenticated Group Key Exchange
for Dynamic Groups

Hyun-Jeong Kim, Su-Mi Lee, Dong Hoon Lee . 245

A Public-Key Black-Box Traitor Tracing Scheme with Sublinear
Ciphertext Size Against Self-Defensive Pirates

Tatsuyuki Matsushita, Hideki Imai .260

Table of Contents XV

Identification

Batching Schnorr Identification Scheme with Applications to Privacy-
Preserving Authorization and Low-Bandwidth Communication Devices

Rosario Gennaro, Darren Leigh, Ravi Sundaram, William Yerazunis 276

Secret Handshakes from CA-Oblivious Encryption
Claude Castelluccia, Stanis�law Jarecki, Gene Tsudik . 293

k-Times Anonymous Authentication
Isamu Teranishi, Jun Furukawa, Kazue Sako . 308

XL-Algorithms

The XL-Algorithm and a Conjecture from Commutative Algebra
Claus Diem . 323

Comparison Between XL and Gröbner Basis Algorithms
Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe,
Makoto Sugita . 338

Digital Signatures

Generic Homomorphic Undeniable Signatures
Jean Monnerat, Serge Vaudenay . 354

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes
from Bilinear Pairings

Lan Nguyen and Rei Safavi-Naini . 372

Public Key Cryptanalysis

On the Security of MOR Public Key Cryptosystem
In-Sok Lee, Woo-Hwan Kim, Daesung Kwon, Sangil Nahm,
Nam-Seok Kwak, Yoo-Jin Baek . 387

Cryptanalyzing the Polynomial-Reconstruction Based Public-Key System
Under Optimal Parameter Choice

Aggelos Kiayias, Moti Yung . 401

XVI Table of Contents

Colluding Attacks to a Payment Protocol and
Two Signature Exchange Schemes

Feng Bao .417

Invited Talk II

Information Security in Korea IT839 Strategy
Ho-Ick Suk . 430

Symmetric Key Cryptanalysis

How Far Can We Go Beyond Linear Cryptanalysis?
Thomas Baignères, Pascal Junod, Serge Vaudenay . 432

The Davies-Murphy Power Attack
Sébastien Kunz-Jacques, Frédéric Muller, Frédéric Valette 451

Time-Memory Trade-Off Attacks on Multiplications and T -Functions
Joydip Mitra, Palash Sarkar . 468

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0
Yi Lu, Serge Vaudenay . 483

Protocols

On Provably Secure Time-Stamping Schemes
Ahto Buldas, Märt Saarepera . 500

Strong Conditional Oblivious Transfer and Computing on Intervals
Ian F. Blake, Vladimir Kolesnikov . 515

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge
Giovanni Di Crescenzo, Giuseppe Persiano, Ivan Visconti 530

Author Index . 545

On Feistel Ciphers Using Optimal Diffusion
Mappings Across Multiple Rounds

Taizo Shirai1,� and Bart Preneel2

1 Sony Corporation, Tokyo, Japan
taizo.shirai@jp.sony.com

2 ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Belgium
bart.preneel@esat.kuleuven.ac.be

Abstract. We study a recently proposed design approach of Feistel ci-
phers which employs optimal diffusion mappings across multiple rounds.
This idea was proposed by Shirai and Shibutani at FSE2004, and the
technique enables to improve the immunity against either differential
or linear cryptanalysis (but not both). In this paper, we present a the-
oretical explanation why the new design using three different matrices
achieves the better immunity. In addition, we are able to prove conditions
to improve the immunity against both differential and linear cryptanal-
ysis. As a result, we show that this design approach guarantees at least
R(m+1) active S-boxes in 3R consecutive rounds (R ≥ 2) where m is the
number of S-boxes in a round. By using the guaranteed number of active
S-boxes, we compare this design approach to other well-known designs
employed in SHARK, Rijndael, and MDS-Feistel ciphers. Moreover, we
show interesting additional properties of the new design approach.

Keywords: optimal diffusion mapping, Feistel cipher, active S-boxes,
MDS.

1 Introduction

A Feistel structure is one of the most widely used and best studied structures
for the design of block ciphers. It was first proposed by H. Feistel in 1973;
subsequently the structure was adopted in the well-known block cipher DES [5,6].
The main advantage of the Feistel structure is its involution property, which
provides flexible designs of the underlying F-functions. During the 30 year history
of modern block ciphers, extensive studies have been made on Feistel structure [8,
11, 14]. Currently, many well-known block ciphers, e.g. Camellia [1], Misty [10],
RC6 [13], Twofish [15], employed the design of Feistel structures.

Recently, Shirai and Shibutani proposed a novel design approach of Feistel
ciphers based on the concept of optimal diffusion mappings [18]. An optimal dif-
fusion is a linear function with maximum branch number; the concept of optimal
diffusion is used in the design of AES and many other cryptographic primitives [2,

� A guest researcher at ESAT/SCD-COSIC, K.U.Leuven from 2003 to 2004.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 1–15, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 T. Shirai and B. Preneel

15,12,4]. From their empirical analytic results, the immunity against either dif-
ferential and linear cryptanalysis (but not both) would be strengthened signifi-
cantly if the linear diffusion layer of the Feistel structure satisfies special optimal
diffusion conditions across multiple rounds. In this way difference cancellation in
the Feistel structure caused by a small number of active S-boxes will not occur.
This result opened a new line of research on the Feistel structure. A theoretical
proof of the effectiveness of the proposed design and a solution to improve the
immunity against both differential and linear cryptanalysis remained unsolved.

In this paper, we will call the “Optimal Diffusion Mappings across Multi-
ple Rounds” design approach of Feistel ciphers the ODM-MR design. Our con-
tribution is that we first give a theoretical explanation of the effectiveness of
the ODM-MR design implied by Shirai and Shibutani. Second, we found new
conditions and proofs to improve the immunity of both differential and linear
cryptanalysis. Let m be the number of S-boxes in an F-function. As a result,
by combining previous and novel conditions, we finally show that Feistel ciphers
with the ODM-MR design guarantees R(m+1) active S-boxes in 3R consecutive
rounds for R ≥ 2.

In order to further investigate the properties of the ODM-MR design, we
compare the ratio of guaranteed active S-boxes to all employed S-boxes of the
ODM-MR design to other design approaches employed in MDS-Feistel, SHARK
and AES/Rijndael. All of them use optimal diffusion mappings in their linear
diffusion. Consequently, in 128-bit block and 8-bit S-box settings, we obtain a
limit of 0.371 for the active S-box ratio of ODM-MR design when the number
r of rounds goes to infinity, which means that we can guarantee 37.1% active
S-boxes with this design strategy. This result is apparently better than MDS-
Feistel’s ratio of 0.313. Moreover we show that for the number of S-boxes in an
F-function and the round number go to infinity, the converged ratio of ODM-
MR is 0.333. This is better than Rijndael-type diffusion layer’s ratio 0.250. From
these limit values, we can conclude that ODM-MR performs better than the other
approaches in certain settings.

This paper is organized as follows: in Sect. 2, we introduce some definitions
used in this paper. Previous works including ODM-MR design approach are
shown in Sect. 3. We prove in Sect. 4 the theorems regarding ODM-MR as our
main contribution. In Sect. 5, we discuss the new design by presenting some
numerical values. Finally Sect. 6 concludes the paper. The method to construct
the concrete Feistel ciphers with ODM-MR design is proposed in Appendix A.

2 Preliminaries

In this paper, we treat the typical Feistel structure, which is called a balanced
Feistel structure. It is defined as follows [14].

Definition 1. (Balanced Feistel Structure)
Let E : {0, 1}b×{0, 1}k → {0, 1}b be a b-bit block cipher (for b even) with a k-bit
key. Let r be the number of rounds, ki ∈ {0, 1}k

′
be the k′-bit round key provided

On Feistel Ciphers Using Optimal Diffusion Mappings 3

by a key scheduling algorithm and xi ∈ {0, 1}b/2 be intermediate data, and let
Fi : {0, 1}k′ × {0, 1}b/2 → {0, 1}b/2 be the F-function of the i-th round. The
encryption and decryption algorithm of a balanced Feistel Cipher E are defined
as follows

Algorithm Feistel.EncryptK(P) Algorithm Feistel.DecryptK(C)
input P ∈ {0, 1}b, K ∈ {0, 1}k input C ∈ {0, 1}b, K ∈ {0, 1}k
x0 ← msbb/2(P), x1 ← lsbb/2(P) x0 ← msbb/2(C), x1 ← lsbb/2(C)
for i = 1 to r do for i = 1 to r do

xi+1 = Fi(ki, xi)⊕ xi−1 xi+1 = Fi(kr−i+1, xi)⊕ xi−1
msbb/2(C)← xr+1, lsbb/2(C)← xr msbb/2(P)← xr+1, lsbb/2(P)← xr

return C ∈ {0, 1}b return P ∈ {0, 1}b

where msbx(y) (lsbx(y)) represents the most (least) significant x-bit of y.

Then we define SP-type F-functions which are a special type of F-function
constructions [17,7].

Definition 2. (SP-Type F-Function)
Let the length of round key k′ = b/2. Let m be the number of S-boxes in a round,
and n be the size of the S-boxes, with mn = b/2. Let si,j : {0, 1}n → {0, 1}n be
the j-th S-box in the i-th round, and let Si : {0, 1}b/2 → {0, 1}b/2 be the function
generated by concatenating m S-boxes in the i-th round. Let Pi : {0, 1}b/2 →
{0, 1}b/2 be the linear Boolean function.

Then SP-type F-functions are defined as Fi(xi, ki) = Pi(Si(xi ⊕ ki)). Note
that we define the intermediate variables zi = Si(xi ⊕ ki).

Definition 3. ((m,n,r)-SPMFC)
An (m,n, r)-SPMFC is defined as an r-round Feistel cipher with SP-type round
function using m n-bit S-boxes, and for which all si,j, Pi are bijective. An mn×
mn matrix Mi (1 ≤ i ≤ r) over GF (2) denotes a matrix representation of a
linear Boolean function Pi of (m,n, r)-SPMFC.

We also give definitions of bundle weight and branch number [4].

Definition 4. (Bundle Weight)
Let x ∈ {0, 1}kn, where x is represented as a concatenation of n-bit values as
x = [x0x1 . . . xk−1], xi ∈ {0, 1}n, then the bundle weight wn(x) of x is defined as

wn(x) = �{xi|xi �= 0} .

Definition 5. (Branch Number)
Let θ : {0, 1}kn → {0, 1}ln. The branch number of θ is defined as

B(θ) = min
a�=0
{wn(a) + wn(θ(a))} .

4 T. Shirai and B. Preneel

Remark 1. The maximum branch number is B(θ) = l+1. If a linear function has
a maximum branch number, it is called an optimal diffusion mapping [2].
It is known that an optimal diffusion mapping can be obtained from maximum
distance separable codes known as MDS codes [4].

3 Previous Work

The precise estimation of the lower bound of the number of active S-boxes of
block ciphers has been known as one of the practical means to evaluate ci-
phers, because this lower bound can be used to calculate the upper bound of
the differential characteristic probability or the linear characteristic probabil-
ity [9,3,1,17,7,4]. Shimizu has shown a conjectured lower bound of the number
of differentially and linearly active S-boxes for certain (m,n, r)-SPMFC block
ciphers, in which a unique optimal diffusion mapping is repeatedly used in all
F-functions [16]. Since such optimal diffusion mappings can be obtained from a
generation matrix of an MDS code, we call the design MDS-Feistel [4, 2, 18].

Shimizu showed the following formula.

Conjecture 1. Let A be an mn×mn matrix over GF (2) of an optimal diffusion
mapping with maximum branch number m + 1. Let E be an (m,n, r)-SPMFC
block cipher and all matrices of diffusion layers are represented by the unique
matrix Mi = A (1 ≤ i ≤ r). Then a lower bound of the differentially and linearly
active S-boxes of E is conjectured as

L(r) = 	r/4
(m + 2) + (r mod 4)− 1 . (1)

In Table 1, the columns indicated by ‘M1’ show the conjectured lower bounds
of number of active S-boxes, and the data of the conjectured values are plotted
on the left side of Fig. 3. This simple relation between the round number and the
guaranteed number of active S-boxes is considered as a useful tool for evaluating
similar kinds of block cipher designs. While this conjecture has not been proved,
empirically, it has been partially confirmed [18].

Recently, at FSE 2004, Shirai and Shibutani proposed a novel design approach
to improve the minimum number of active S-boxes of Feistel ciphers by employ-
ing optimal diffusion mappings across multiple round functions, the ODM-MR
design approach [18]. By carefully analyzing the difference cancellations, they
found the following properties:

Property 1. Let E be an (m,n, r)-SPMFC block cipher.
– For matrices Mi (1 ≤ i ≤ r), if every concatenation of two matrices Mj

and Mj+2 for all possible j, denoted by [Mj |Mj+2], is an optimal diffusion
mapping, the minimum number of differentially active S-boxes is increased
from an MDS-Feistel cipher.

– Additionally, if each concatenation of three matrices Mj ,Mj+2 and Mj+4 for
all possible j, denoted by [Mj |Mj+2|Mj+4], is an optimal diffusion mapping,
the minimum number of differentially active S-boxes is increased further
than when only satisfying the above conditions on two matrices.

On Feistel Ciphers Using Optimal Diffusion Mappings 5

– Even if the number of concatenated matrices is larger than 3, no explicit
gain of the number of active S-boxes has been observed in their simulations.

These results imply that by avoiding a linear correlation between F-functions
in round (i, i+2) or rounds (i, i+2, i+4), the ODM-MR construction guarantees
more active S-boxes.

In Table 1, the columns indicated by ‘D’ show the result of the improved min-
imum number of differentially active S-boxes when every concatenated matrix
of three matrices [Mi|Mi+2|Mi+4] is an optimal diffusion mapping. The graph
of the corresponding values are shown on the left side of Fig. 2.

This result opened a new line of research on developing more efficient Feistel
ciphers. On the other hand a theoretical justification of the gain of the proposed
construction and an explicit method to improve the immunity against both dif-
ferential and linear cryptanalysis remained unsolved.

4 Proofs of Effectiveness of the ODM-MR Design

In this section, we provide the first proofs for the effectiveness of the ODM-
MR design using three different matrices. We also show an additional condition
and some proofs in order to improve the lower bound of linearly active S-boxes
by using two different matrices. Our main contribution is to show the following
corollary which presents a simple relation between the number of rounds and the
guaranteed numbers of active S-boxes in the ODM-MR design. In the corollary,
note that tM denotes the transpose matrix of a matrix M .

Corollary 1. Let E be a (m,n,r)-SPMFC block cipher where r ≥ 6.
If [Mi|Mi+2|Mi+4] and [tM−1

j |tM−1
j+2] are optimal diffusion mappings for any i, j

(1 ≤ i ≤ r − 4, 1 ≤ j ≤ r − 2), respectively, any 3R consecutive rounds (R ≥ 2)
in E guarantee at least R(m + 1) differentially and linearly active S-boxes.

Fig. 1 illustrates the statement of the corollary. By using the Corollary 1,
we can guarantee theoretically arbitrary number of active S-boxes by increasing
the number of rounds. Since the corollary can be immediately obtained from
two theorems, i.e. Theorem 1 and Theorem 2, the following two subsections are
devoted to the proofs of these theorems. To ease the proofs, we first introduce
an additional definition.

Definition 6. Consider a differential characteristic or linear approximation.
Let Di and Li denote the number of differentially and linearly active S-boxes
in the i-th round, respectively. These values are determined by the difference
Δxi, Δzi or by the linear mask Γxi, Γ zi as follows.

Di = wn(Δxi) = wn(Δzi) , Li = wn(Γxi) = wn(Γzi) ,

where wn(·) is the bundle weight as defined in Definition 4.

6 T. Shirai and B. Preneel

6-round: 2(m + 1) active S-boxes are guaranteed

6-round: 2(m + 1) active S-boxes are guaranteed

9-round: 3(m + 1) active S-boxes are guaranteed

12-round: 4(m + 1) active S-boxes are guaranteed

round
func.

round
func.

round
func.

round
func.

round
func.

round
func.

round
func.

round
func.

round
func.

round
func.

round
func.

round
func.

Fig. 1. Guaranteed Active S-boxes by ODM-MR design

Remark 2. Note that a given difference characteristic always contains a nonzero
input difference, since any (m,n, r)-SPMFC’s F-functions are bijective. Hence
we obtain the following conditions:

(d0) Di = 0⇒ Di−2 �= 0, Di−1 �= 0, Di+1 �= 0, Di+2 �= 0 ,
(d1) Di = 0⇒ Di−1 = Di+1 .

Since a linear approximation always contains a nonzero input mask, we obtain

(l0) Li = 0⇒ Li−2 �= 0, Li−1 �= 0, Li+1 �= 0, Li+2 �= 0 ,
(l1) Li = 0⇒ Li−1 = Li+1 .

4.1 Proofs for the Lower Bound of Differentially Active S-Boxes

In this section we prove Theorem 1; the proof is based on five lemmata.
Lemma 1 shows relations between Di of (m,n, r)-SPMFC when every Mi is

an optimal diffusion mapping.

Lemma 1. Let E be an (m,n, r)-SPMFC block cipher. If every Mi has maxi-
mum branch number m + 1, then E satisfies the following condition (d2).

(d2) Di+1 �= 0⇒ Di + Di+1 + Di+2 ≥ m + 1 .

Proof. From the relation between the differences Δzi+1,Δxi and Δxi+2 in a 3
consecutive rounds, we obtain the following equation.

Mi+1Δzi+1 = Δxi ⊕Δxi+2 .

Since Mi has maximum branch number m + 1 we have

wn(Δzi+1) �= 0⇒ wn(Δzi+1) + wn(Δxi ⊕Δxi+2) ≥ m + 1 . (2)

Eq. (2) and the inequality wn(Δxi) + wn(Δxi+2) ≥ wn(Δxi ⊕Δxi+2) yield
(d2). �

On Feistel Ciphers Using Optimal Diffusion Mappings 7

Remark 3. By combining Remark 2 and (d2), we can obtain additional under-
lying conditions (d3) and (d4).

(d3) Di = 0,⇒ Di+1 + Di+2 ≥ m + 1 ,
(d4) Di+2 = 0,⇒ Di + Di+1 ≥ m + 1 .

Equations (d3) and (d4) mean that if round k has no active S-boxes, any
2 consecutive rounds next to round k always contain more than m + 1 active
S-boxes.

Next, we show the property of (m,n, r)-SPMFC in which every [Mi|Mi+2] is
an optimal diffusion mapping. This is true for the ODM-MR.

Lemma 2. Let E be a (m,n,r)-SPMFC block cipher. If every [Mi|Mi+2] has
maximum branch number m + 1, E satisfies the following conditions (d5), (d6).

(d5) Di+4 = 0⇒ Di + Di+1 + Di+3 ≥ m + 1 ,
(d6) Di = 0⇒ Di+1 + Di+3 + Di+4 ≥ m + 1 .

Proof. From the relation between 5-round differences,

Mi+1Δzi+1 ⊕Mi+3Δzi+3 = Δxi ⊕Δxi+4 .

Then,

[Mi+1|Mi+3]
(
Δzi+1
Δzi+3

)
= Δxi ⊕Δxi+4 .

Since [Mi+1|Mi+3] has maximum branch number m+1, and from Remark 2,
we see that wn(Δzi+1) = 0 and wn(Δzi+3) = 0 will never occur simultaneously,
we obtain

wn(Δzi+1) + wn(Δzi+3) + wn(Δxi ⊕Δxi+4) ≥ m + 1 .

By assuming the cases Δxi = 0 or Δxi+4 = 0, we directly obtain (d5) and
(d6). �

By using the previously obtained conditions (d0)−(d6), we show the following
lemma for the guaranteed number of differentially active S-boxes of (m,n, r)-
SPMFC.

Lemma 3. Let E be a (m,n,r)-SPMFC block cipher where r ≥ 6. If every
[Mi|Mi+2] is an optimal diffusion mapping, then any 6 consecutive rounds in
E guarantee at least 2(m + 1) differentially active S-boxes.

Proof. Consider the total number of active S-boxes in 6 consecutive rounds from
the i-th round,

i+5∑
k=i

Dk = Di + Di+1 + Di+2 + Di+3 + Di+4 + Di+5 .

8 T. Shirai and B. Preneel

If Di+1 �= 0 and Di+4 �= 0, the condition (d2) guarantees that Di + Di+1 +
Di+2 ≥ m+1 and Di+3 +Di+4 +Di+5 ≥ m+1. Therefore we obtain

∑i+5
k=i Dk ≥

2(m + 1).
If Di+1 = 0,

i+5∑
k=i

Dk = Di + Di+2 + Di+3 + Di+4 + Di+5 .

From (d1),
i+5∑
k=i

Dk = 2 ·Di+2 + Di+3 + Di+4 + Di+5

= (Di+2 + Di+3) + (Di+2 + Di+4 + Di+5) .

From (d3) and (d6),

i+5∑
k=i

Dk ≥ (m + 1) + (m + 1) = 2(m + 1) .

The case of Di+4 = 0 is proven similarly from (d1), (d4) and (d5). �

Next, we show the property of an (m,n, r)-SPMFC in which every
[Mi|Mi+2|Mi+4] has maximum branch number. This coincides with one of the
ODM-MR design.

Lemma 4. Let E be a (m,n,r)-SPMFC block cipher. If every [Mi|Mi+2|Mi+4]
is an optimal diffusion mapping, then E satisfies the following condition (d7).

(d7) Di = Di+6 = 0⇒ Di+1 + Di+3 + Di+5 ≥ m + 1 .

Proof. First, from the difference relation in 7 consecutive rounds, we obtain

Mi+1Δzi+1 ⊕Mi+3Δzi+3 ⊕Mi+5Δzi+5 = Δxi ⊕Δxi+6 .

Then,

[Mi+1|Mi+3|Mi+5]

⎛⎝Δzi+1
Δzi+3
Δzi+5

⎞⎠ = Δxi ⊕Δxi+6 .

Since [Mi+1|Mi+3|Mi+5] has maximum branch number, and from Remark 2,
wn(Δzi+1), wn(Δzi+3), and wn(Δzi+5) cannot be simultaneously 0, we get that

wn(Δzi+1) + wn(Δzi+3) + wn(Δzi+5) + wn(Δxi ⊕Δxi+6) ≥ m + 1 .

By assuming Δxi = 0 and Δxi+6 = 0, we derive the condition (d7). �

From the additional condition (d7), we derive the following lemma.

Lemma 5. Let E be a (m,n,r)-SPMFC block cipher where r ≥ 9. If every
[Mi|Mi+2|Mi+4] is an optimal diffusion mapping, then any 9 consecutive rounds
in E guarantee at least 3(m + 1) differentially active S-boxes.

On Feistel Ciphers Using Optimal Diffusion Mappings 9

Proof. Consider the total number of active S-boxes in 9 consecutive rounds,

i+8∑
k=i

Dk = Di + Di+1 + Di+2 + Di+3 + Di+4 + Di+5 + Di+6 + Di+7 + Di+8 .

If Di+1 �= 0 then Di +Di+1 +Di+2 ≥ m+1 from (d2), and Lemma 3 guaran-
tees that the sum of the remaining 6 consecutive rounds is equal to

∑i+8
k=i+3 Dk ≥

2(m + 1). Consequently
∑i+8

k=i Dk ≥ 3(m + 1). Similarly, if Di+7 �= 0, at least
3(m + 1) active S-boxes are guaranteed.

If Di+1 = Di+7 = 0, we obtain

i+8∑
k=i

Dk = Di + Di+2 + Di+3 + Di+4 + Di+5 + Di+6 + Di+8 .

From (d1),

i+8∑
k=i

Dk = 2 ·Di+2 + Di+3 + Di+4 + Di+5 + 2 ·Di+6

= (Di+2 + Di+3) + (Di+2 + Di+4 + Di+6) + (Di+5 + Di+6) .

From (d3), (d7) and (d4),

i+8∑
k=i

Dk ≥ (m + 1) + (m + 1) + (m + 1) = 3(m + 1) .

As a consequence, we have shown that any 9 consecutive rounds of E guar-
antee at least 3(m + 1) differentially active S-boxes. �

We conclude this section with

Theorem 1. Let E be an (m,n, r)-SPMFC block cipher where r ≥ 6. If every
[Mi|Mi+2|Mi+4] is an optimal diffusion mapping, any 3R consecutive rounds in
E guarantees at least R(m + 1) differentially active S-boxes.

Proof. Any integer 3R (R ≥ 2) can be written as 3R = 6k + 9j (k + j ≥ 1, 2k +
3j = R). From lemmata 3 and 5, 6 and 9 consecutive rounds of E guarantee
2(m + 1) and 3(m + 1) differentially active S-boxes, respectively. Therefore, E
guarantees k∗2(m+1)+j ∗3(m+1) = (2k+3j)(m+1) = R(m+1) differentially
active S-boxes. �

4.2 Proofs for the Lower Bound of Linearly Active S-Boxes

In this subsection, we will show the proof of the guaranteed number of linearly
active S-boxes of (m,n, r)-SPMFC with ODM-MR design.

Theorem 2. Let E be an (m,n, r)-SPMFC block cipher. If every [tM−1
i |tM−1

i+2]
is an optimal diffusion mapping for any i, any 3R consecutive rounds in E has
at least R(m + 1) linearly active S-boxes.

10 T. Shirai and B. Preneel

Proof. From the 3-round linear mask relation,

Γxi+1 = tM−1
i Γzi ⊕ tM−1

i+2Γzi+2 .

Then,

Γxi+1 = [tM−1
i

tM−1
i+2]

(
Γzi

Γzi+2

)
.

Since [tM−1
i |tM−1

i+2] has maximum branch number m + 1, and from Remark
2, wn(Γzi) and wn(Γzi+2) cannot be simultaneously 0, we obtain

wn(Γzi) + wn(Γxi+1) + wn(Γzi+2) ≥ m + 1 .

By using the notion of Li, this implies,

(l1) Li + Li+1 + Li+2 ≥ m + 1 .

This shows that every 3 consecutive rounds guarantees at least m + 1 lin-
early active S-boxes. Consequently, any 3R consecutive rounds in E guarantees∑i+3R−1

k=i Lk ≥ R(m + 1). �

Finally, by simply combining Theorems 1 and 2, the claimed Corollary 1
follows directly. Appendix A contains example matrices that satisfy the ODM-
MR design.

5 Discussion

5.1 Comparison of ODM-MR and MDS-Feistel

To discuss the implications of this new design approach, we show empirical search
results for the cases r = 12,m = 4, .., 8. To obtain these results we employed a
weight based search method. This approach has been used by Shirai and Shibu-
tani before [18]. Our results are shown in Table 1. In the table, the values for
more than 13-rounds are interpolated by the corollary and Shimizu’s conjec-
ture. Note that the simulation results completely match the lower bound values
predicted by the corollary, which are denoted by the underlined values. These
results show the superiority of ODM-MR design over MDS-Feistel explicitly.

Fig. 2 shows graphs of the results in Table 1, and five auxiliary lines y =
(m + 1)x/3 are added where m = 4, .., 8. These lines connect the lower bounds
values of every 3R-round.

The left side of Fig. 3 shows an estimated lower bound of MDS-Feistel and
approximate lines y = (m+2)x/4−1. To see the effect of the ODM-MR approach
graphically, the right side of Fig. 3 includes the approximated lines for ODM-MR
and MDS-Feistel for m = 4 and m = 8. The differences of the gradients show
explicitly the advantage of the ODM-MR approach.

On Feistel Ciphers Using Optimal Diffusion Mappings 11

Table 1. Lower Bounds of MDS-Feistel and ODM-MR design

m = 4 m = 5 m = 6 m = 7 m = 8
Round M1 D L M1 D L M1 D L M1 D L M1 D L

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 5 2 2 6 2 2 7 2 2 8 2 2 9
4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9
5 6 6 6 7 7 7 8 8 8 9 9 9 10 10 10
6 7 10 10 8 12 12 9 14 14 10 16 16 11 18 18
7 8 10 10 9 12 12 10 14 14 11 16 16 12 18 18
8 11 12 11 13 14 13 15 16 15 17 18 17 19 20 19
9 12 15 15 14 18 18 16 21 21 18 24 24 20 27 27
10 13 16 15 15 18 18 17 22 21 19 24 24 21 28 27
11 14 17 16 16 20 19 18 23 22 20 26 25 22 29 28
12 17 20 20 20 24 24 23 28 28 26 32 32 29 36 36
: : : : : : : : : : : : : : : :

15 20 25 25 23 30 30 26 35 35 29 40 40 32 45 45
: : : : : : : : : : : : : : : :

18 25 30 30 29 36 36 33 42 42 37 48 48 41 54 54

M1: numbers of active S-boxes of MDS-Feistel
D: numbers of differentially active S-boxes of ODM-MR
L: numbers of linearly active S-boxes of ODM-MR

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

Lo
w

er
bo

un
ds

 o
f a

ct
iv

e
S

-b
ox

es

Round Number

m = 4
m = 5
m = 6
m = 7
m = 8

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

Lo
w

er
bo

un
ds

 o
f a

ct
iv

e
S

-b
ox

es

Round Number

m = 4
m = 5
m = 6
m = 7
m = 8

Fig. 2. Lower bounds of the ODM-MR design (m = 8)

5.2 Active S-Box Ratio

In this subsection, we compare the ODM-MR approach to other design ap-
proaches using the new type of approach. Since we obtained a formal bound
for the lower bound of the ODM-MR design approach, we can compare it to
other well known design approaches based on the concept of active S-box ratio
introduced by Shirai and Shibutani [18].

Let active(r,m) be the number of guaranteed active S-boxes for an r-round
cipher which employs m × m diffusion matrices over GF (2n) in its diffusion
layer.For example, active(r,m) of the MDS-Feistel design can be written as

12 T. Shirai and B. Preneel

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

Lo
w

er
bo

un
ds

 o
f a

ct
iv

e
S

-b
ox

es

Round Number

m = 4
m = 5
m = 6
m = 7
m = 8

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

Lo
w

er
bo

un
ds

 o
f a

ct
iv

e
S

-b
ox

es

Round Number

Old: m = 4
New: m = 4
Old: m = 8

New: m = 8

Fig. 3. Comparison of MDS-Feistel and ODM-MR design

active(r,m) = (m + 2)	r/4
+ αr,m ,

where αr,m = (r mod 4) − 1. Generally, αr,m is a function which maximum
absolute value is proportional to m and limr→∞αr,m/r = 0.

Next, let total(r,m) be the total number of S-boxes in an r-round cipher. The
ratio of the number of active S-boxes to the total number of S-boxes becomes

ratio(r,m) =
active(r,m)
total(r,m)

=
(m + 2)	r/4
+ αr,m

rm
.

By using the definition of active S-box ratio, we can study the characteristic of
the MDS-Feistel design. For example, consider a 128-bit block cipher employing
8-bit S-boxes. For m = 8, ratio(r, 8) will converge to a specific value when r goes
to infinity,

lim
r→∞

ratio(r, 8) = lim
r→∞

10	r/4
+ αr,8

8r
=

10
32

= 0.3125 .

This implies that about 31% of all S-boxes will be active for a very large
number of rounds. This limit can be considered as a potentially guaranteed
ratio of active S-boxes corresponding to the chosen m.

Also, we can take the limit of ratio(r,m) when both r and m tend to infinity,

lim
r,m→∞

ratio(r,m) =
(m + 2)	r/4
+ αr,m

rm
=

1
4

= 0.25 .

Even though huge r and m are not practical in the real world, the value can
be understood as an indicator of the potential efficiency of a particular design
strategy.

We propose these limits as a reference to evaluate the efficiency of the linear
diffusion layer of the cipher and use them to compare ciphers employing different
design strategies. The following table contains the convergence values of the
“MDS-Feistel” and the“ODM-MR” design. Additionally, the following “Rijndael
type” and ”SHARK type” design approaches are also evaluated for reference.

Rijndael Type: A nm2-bit SPN block cipher design whose round function
consists of key-addition, m×m parallel n-bit S-boxes, a MixColumn employing
m m×m matrices over GF (2n) and a ShiftRow operation [4].

On Feistel Ciphers Using Optimal Diffusion Mappings 13

Table 2. Comparison of the Active S-box Ratio

Type active(r, m) total(r, m) 128bit blk. limr→∞ limm,r→∞
MDS-Feistel (m + 2)�r/4� + αr,m rm m = 8 0.313 0.25
ODM-MR (m + 1)�r/3� + βr,m rm m = 8 0.371 0.33

Rijndael type (m + 1)2�r/4� + γr,m rm2 m = 4 0.391 0.25
SHARK type (m + 1)�r/2� + θr,m rm m = 16 0.531 0.5

SHARK Type: A nm-bit SPN block cipher design where m parallel n-bit
S-boxes, an m×m matrix over GF (2n) are employed [12].

Note that all four designs employ optimal diffusion mappings in their diffusion
layers; they have block length of 128 bits with 8-bit S-boxes. The result shows
that the ODM-MR approach has the better limit than MDS-Feistel in the 128-
bit block setting which is also confirmed by the empirical results in the previous
section. We also know that ODM-MR’s limit is closer to that of the Rijndael
design approach than MDS-Feistel.

Moreover, the limit value of the ODM-MR approach, when both r and m tend
to infinity, exceeds that of the Rijndael type construction. This is due to the fact
that the ODM-MR approach guarantees a certain number of active S-boxes for
3 consecutive rounds, while the Rijndael-type approach has such a property for
4 consecutive rounds.

The values of SHARK are still the highest, because the design strategy has a
2-round property. However, there seems to be a tradeoff for the implementation
cost, as SHARK-type design requires matrices which are twice as large as the
matrices in the MDS-Feistel and ODM-MR and four times as large as in the
Rijndael approach.

6 Conclusion

We provide a theoretical motivation for the ODM-MR design. We first give a
theoretical reason of ODM-MR, and found additional conditions and proofs to
improve the immunity against differential and linear cryptanalysis. As a result,
we showed that the ODM-MR design approach guarantees at least R(m + 1)
active S-boxes in 3R consecutive rounds (R ≥ 2) where m is the number of S-
boxes in a round. This guaranteed number of active S-boxes was compared with
the design approach of other well-known designs namely SHARK, Rijndael, and
MDS-Feistel ciphers. We were able to show that our design approach outperforms
some of the other designs.

Acknowledgments. We thank An Braeken and Christopher Wolf for carefully
reading the earlier version of the paper. We thank the anonymous referees for
helpful comments.

14 T. Shirai and B. Preneel

References

1. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,
“Camellia: A 128-bit block cipher suitable for multiple platforms.” in Proceedings
of Selected Areas in Cryptography – SAC 2000 (D. R. Stinson and S. E. Tavares,
eds.), no. 2012 in LNCS, pp. 41–54, Springer-Verlag, 2001.

2. P. S. L. M. Barreto and V. Rijmen, “The Whirlpool hashing function.” Primitive
submitted to NESSIE, Sept. 2000. Available at http://www.cryptonessie.org/.

3. E. Biham and A. Shamir, “Differential cryptanalysis of des-like cryptosystems.”
Journal of Cryptology , vol. 4, pp. 3–72, 1991.

4. J. Daemen and V. Rijmen, The Design of Rijndael: AES - The Advanced Encryp-
tion Standard (Information Security and Cryptography). Springer, 2002.

5. H. Feistel, “Cryptography and computer privacy.” Scientific American, vol. 228,
pp. 15–23, May 1973.

6. Data Encryption Standard, “Federal Information Processing Standard (FIPS).”
National Bureau of Standards, U.S. Department of Commerce, Washington D.C.,
Jan. 1977.

7. M. Kanda, “Practical security evaluation against differential and linear cryptanal-
yses for Feistel ciphers with SPN round function.” in Proceedings of Selected Areas
in Cryptography – SAC’00 (D. R. Stinson and S. E. Tavares, eds.), no. 2012 in
LNCS, pp. 324–338, Springer-Verlag, 2001.

8. M. Luby and C. Rackoff, “How to construct pseudorandom permutations from
pseudorandom functions.” SIAM Journal on Computing, vol. 17, pp. 373–386,
1988.

9. M. Matsui, “Linear cryptanalysis of the data encryption standard.” in Proceedings
of Eurocrypt’93 (T. Helleseth, ed.), no. 765 in LNCS, pp. 386–397, Springer-Verlag,
1994.

10. M. Matsui, “New structure of block ciphers with provable security against differen-
tial and linear cryptanalysis.” in Proceedings of Fast Software Encryption – FSE’96
(D. Gollmann, ed.), no. 1039 in LNCS, pp. 205–218, Springer-Verlag, 1996.

11. K. Nyberg and L. R. Knudsen, “Provable security against a differential cryptanaly-
sis.” in Proceedings of Crypto’92 (E. F. Brickell, ed.), no. 740 in LNCS, pp. 566–574,
Springer-Verlag, 1993.

12. V. Rijmen, J. Daemen, B. Preneel, A. Bossalaers, and E. D. Win, “The cipher
SHARK.” in Proceedings of Fast Software Encryption – FSE’96 (D. Gollmann,
ed.), no. 1039 in LNCS, pp. 99–111, Springer-Verlag, 1996.

13. R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The RC6 block cipher.”
Primitive submitted to AES, 1998. Available at http://www.rsasecurity.com/.

14. B. Schneier and J. Kelsey, “Unbalanced Feistel networks and block cipher design.”
in Proceedings of Fast Software Encryption – FSE’96 (D. Gollmann, ed.), no. 1039
in LNCS, pp. 121–144, Springer-Verlag, 1996.

15. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,
“Twofish: A 128-bit block cipher.” Primitive submitted to AES, 1998. Available
at http://www.schneier.com/.

16. H. Shimizu, “On the security of Feistel cipher with SP-type F function.” in Pro-
ceedings of SCIS – SCIS 2001 , 2001.

17. T. Shirai, S. Kanamaru, and G. Abe, “Improved upper bounds of differential and
linear characteristic probability for Camellia.” in Proceedings of Fast Software En-
cryption – FSE’02 (J. Daemen and V. Rijmen, eds.), no. 2365 in LNCS, pp. 128–
142, Springer-Verlag, 2002.

On Feistel Ciphers Using Optimal Diffusion Mappings 15

18. T. Shirai and K. Shibutani, “Improving immunity of Feistel ciphers against dif-
ferential cryptanalysis by using multiple MDS matrices.” in Proceedings of Fast
Software Encryption – FSE’04 (B. Roy and W. Meier, eds.), no. 3017 in LNCS,
pp. 260–278, Springer-Verlag, 2004.

Appendix A

We show one of methods to construct a Feistel cipher satisfying the ODM-MR
design. To construct a concrete cipher, at least three m×m matrices over GF (2n)
are required to satisfy all the ODM-MR conditions. The construction steps are:

1. Choose m×m matrices A0, A1, A2 over GF (2n) such that,
(a) Every square submatrix of [A0|A1|A2] is nonsingular,
(b) Every square submatrix of

[
A−1

0
A−1

1

]
,

[
A−1

1
A−1

2

]
and

[
A−1

2
A−1

0

]
is nonsingular.

2. Set these three matrices as M2i+1 = M2r−2i = A i mod 3, for (0 ≤ i < r) in
a Feistel cipher with 2r rounds.

Note that all operations in Step 1 are over GF (2n) although the optimal
diffusion conditions for [MiMi+2Mi+4] and [tM−1

j
tM−1

j+2] are given over GF (2).
Here we show an example of three matrices A0, A1, A2 for the case m = 4.

Example 1. The following matrices A0, A1, A2 satisfy the ODM-MR conditions.

A0 =

⎛⎜⎜⎝
9d b4 d3 5d

29 34 39 60

67 6a d2 e3

8e d7 e6 1b

⎞⎟⎟⎠ , A1 =

⎛⎜⎜⎝
ae ec b9 3e

81 25 13 d4

db 9d 4 1b

9e 3a 91 39

⎞⎟⎟⎠ , A2 =

⎛⎜⎜⎝
b8 f1 65 ef

3a f6 2d 6a

4a 97 a3 b9

82 5f a2 c1

⎞⎟⎟⎠ .

Each element is expressed as hexadecimal value corresponding to a binary
representation of elements in GF (28) with a primitive polynomial p(x) = x8 +
x4 + x3 + x2 + 1. From the corollary, a (4, 8, 12)-SPNFC employing the above
matrices A0, A1, A2 as outlined in Fig. 4 guarantees 10, 15 and 20 differentially
and linearly active S-boxes in 6, 9 and 12 consecutive rounds, respectively.

A0 A2 A1 A1 A2 A0 A0 A2 A1 A1 A2 A0

Fig. 4. Example Allocation of Matrices A0, A1, A2

Efficient Instantiations of Tweakable
Blockciphers and Refinements to Modes OCB

and PMAC

Phillip Rogaway

Dept. of Computer Science, University of California,
Davis CA 95616 USA

Dept. of Computer Science, Chiang Mai University,
Chiang Mai 50200 Thailand
rogaway@cs.ucdavis.edu

www.cs.ucdavis.edu/∼rogaway

Abstract. We describe highly efficient constructions, XE and XEX,
that turn a blockcipher E: K×{0, 1}n → {0, 1}n into a tweakable block-
cipher Ẽ: K ×T ×{0, 1}n → {0, 1}n having tweak space T = {0, 1}n × I

where I is a set of tuples of integers such as I = [1 .. 2n/2]× [0 .. 10]. When
tweak T is obtained from tweak S by incrementing one if its numerical
components, the cost to compute ẼT

K(M) having already computed some
ẼS

K(M ′) is one blockcipher call plus a small and constant number of el-
ementary machine operations. Our constructions work by associating
to the ith coordinate of I an element αi ∈ F

∗
2n and multiplying by αi

when one increments that component of the tweak. We illustrate the use
of this approach by refining the authenticated-encryption scheme OCB
and the message authentication code PMAC, yielding variants of these
algorithms that are simpler and faster than the original schemes, and yet
have simpler proofs. Our results bolster the thesis of Liskov, Rivest, and
Wagner [10] that a desirable approach for designing modes of operation
is to start from a tweakable blockcipher. We elaborate on their idea, sug-
gesting the kind of tweak space, usage-discipline, and blockcipher-based
instantiations that give rise to simple and efficient modes.

1 Introduction

Liskov, Rivest and Wagner [10] defined the notion of a tweakable blockcipher and
put forward the thesis that these objects make a good starting point for doing
blockcipher-based cryptographic design. In this paper we describe a good way
to build a tweakable blockcipher Ẽ out of an ordinary blockcipher E. Used as
intended, our constructions, XE and XEX, add just a few machine instructions
to the cost of computing E. We illustrate the use of these constructions by
improving on the authenticated-encryption scheme OCB [15] and the message
authentication code PMAC [4].

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 16–31, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Instantiations of Tweakable Blockciphers and Refinements 17

Tweakable blockciphers. Schroeppel [16] designed a blockcipher, Hasty
Pudding, wherein the user supplies a non-secret spice and changing this spice
produces a completely different permutation. Liskov, Rivest, and Wagner [10]
formally defined the syntax and security measures for such a tweakable blockci-
pher, and they suggested that this abstraction makes a desirable starting point
to design modes of operation and prove them secure. They suggested ways to
build a tweakable blockcipher Ẽ out of a standard blockcipher E, as well as
ways to modify existing blockcipher designs to incorporate a tweak. They il-
lustrated the use of these objects. Formally, a tweakable blockcipher is a map
Ẽ: K × T × {0, 1}n → {0, 1}n where each ẼT

K(·) = Ẽ(K, T, ·) is a permutation
and T is the set of tweaks.

Our contributions. We propose efficient ways to turn a blockcipher E: K ×
{0, 1}n → {0, 1}n into a tweakable blockcipher Ẽ: K × T × {0, 1}n → {0, 1}n.
(See Appendix A for the best constructions formerly known.) Our powering-up
constructions, XE and XEX, preserve the key space and blocksize of E but
endow Ẽ with a tweak space T = {0, 1}n × I where I is a set of tuples of
integers, like I = [1 .. 2n/2] × [0 .. 10]. The XE construction turns a CPA-secure
blockcipher into a CPA-secure tweakable blockcipher, while XEX turns a CCA-
secure blockcipher into a CCA-secure tweakable blockcipher. (CPA stands for
chosen-plaintext attack and CCA for chosen-ciphertext attack.) The methods
are highly efficient when tweaks arise in sequence, with most tweaks (N, i) being
identical to the prior tweak (N, i′) except for incrementing a component of i.

As an illustrative and useful example, consider turning a conventional blockci-
pher E: K×{0, 1}n → {0, 1}n into a tweakable blockcipher Ẽ: K×T ×{0, 1}n →
{0, 1}n by defining ẼN i j

K (M) = EK(M ⊕Δ) ⊕Δ where offset Δ = 2i3j N and
N = EK(N). Arithmetic is done in the finite field F2n . For concreteness, assume
n = 128 and a tweak space of T = {0, 1}n× [1 .. 264]× [0 .. 10]. We show that Ẽ is
secure (as a strong, tweakable PRP) as long as E is secure (as a strong, untweak-
able PRP). Computing Ẽ N i j

K (X) will usually cost about 1 shift, 1 conditional,
and 3–4 xors more than computing EK(X).

We illustrate how the use of tweakable blockciphers during mode design, fol-
lowed by the instantiation of the tweakable blockcipher with an ordinary block-
cipher using one of our constructions, can give rise to modes that are simpler,
faster, and easier to prove correct than what designing directly from a blockcipher
has delivered. We do this by refining two already-optimized modes, OCB [15]
and PMAC [4], yielding new modes, OCB1 and PMAC1, that are are easier
to understand, easier to implement, and faster. Computing offsets in the new
modes does not involve Gray-code sequence or counting the number of trailing
zero bits in successive integers. OCB1 eliminates the utility of preprocessing,
saving a blockcipher call.

Intuition. The idea behind the powering-up constructions can be explained
like this. Apart from Gray-code reordering, PMAC authenticates an m-block
message using a sequence of offsets L, 2L, 3L, . . . , (m − 1)L, where multiplica-
tion is in the finite field F2n and L = EK(0n) is a variant of the underlying

18 P. Rogaway

key K. When a special kind of offset is needed, a value huge ·L is added (xored)
into the current offset, where huge is so large that it could never be among
{1, 2, . . . ,m − 1}. What we now do instead is to use the easier-to-compute se-
quence of offsets 21L, 22L, . . . , 2m−1L. We insist that our field be represented
using a primitive polynomial instead of merely an irreducible one, which ensures
that 21, 22, 23, . . . , 22n−1 will all be distinct. When a special offset is needed we
can no longer add to the current offset some huge constant times L and expect
this never to land on a point in 21L, 22L, . . . , 2m−1L. Instead, we multiply the
current offset by 3 instead of 2. If the index of 3 (in F∗

2n) is enormous relative
to the base 2 then multiplying by 3 is equivalent to multiplying by 2huge and
2i3L won’t be among of 21L, 22L, . . . , 2m−1L for any reasonable value of m. The
current paper will make all of the ideas of this paragraph precise.

Further related work. Halevi and Rogaway [7] used the sequence of off-
sets 2L, 22L, 23L, . . . , in their EME mode. They give no general results about
this construction, and EME did not use tweakable blockciphers, yet this offset
ordering was our starting point.

2 Preliminaries

The field with 2n points. Let F2n denote the field with 2n points and let F∗
2n

be its multiplicative subgroup. We interchangeably think of a point a ∈ F2n as
an n-bit string, a formal polynomial of degree n−1, or as an integer in [0 .. 2n−1].
To represent points select a primitive polynomial, say the lexicographically first
one among the degree n polynomials having a minimum number of nonzero
coefficients. For n = 128 the indicated polynomial is p128(x) = x128 + x7 +
x2 + x + 1. Saying that pn(x) is primitive means that it is irreducible over F2
and 2 (i.e., x) generates all of F∗

2n . It is computationally simple to multiply
a ∈ {0, 1}n by 2. To illustrate for n = 128, 2a = a<<1 if firstbit(a) = 0 and
2a = (a<<1)⊕012010413 if firstbit(a) = 1. One can easily multiply by other small
constants, as 3a = 2a⊕ a and 5a = 2(2a)⊕ a and so forth.

Blockciphers and tweakable blockciphers. We review the standard defi-
nitions for blockciphers and their security [2] and the extension of these notions to
tweakable blockciphers [10]. A blockcipher is a function E: K×{0, 1}n → {0, 1}n
where n ≥ 1 is a number and K is a finite nonempty set and E(K, ·) =
EK(·) is a permutation for all K ∈ K. A tweakable blockcipher is a function
Ẽ: K×T ×{0, 1}n → {0, 1}n where n and K are as above and T is a nonempty
set and Ẽ(K, T, ·) = ẼT

K(·) is a permutation for all K ∈ K and T ∈ T . For
blockciphers and tweakable blockciphers we call n the blocksize and K the key
space. For tweakable blockciphers we call T the tweak space.

Let Perm(n) be the set of all permutations on n bits. Let Perm(T , n) be the
set of all mappings from T to permutations on n bits. In writing π

$← Perm(n) we
are choosing a random permutation π(·) on {0, 1}n. In writing π

$← Perm(T , n)
we are choosing a random permutation π(T, ·) = πT (·) on {0, 1}n for each T ∈ T .

Efficient Instantiations of Tweakable Blockciphers and Refinements 19

If E: K × {0, 1}n → {0, 1}n is a blockcipher then its inverse is the blockcipher
D = E−1 where D: K×{0, 1}n → {0, 1}n is defined by D(K,Y) = DK(Y) being
the unique point X such that EK(X) = Y . If Ẽ: K × T × {0, 1}n → {0, 1}n is
a tweakable blockcipher then its inverse is the tweakable blockcipher D̃ = Ẽ−1

where D̃: K × T × {0, 1}n → {0, 1}n is defined by D̃(K, T,Y) = D̃T
K(Y) being

the unique point X such that ẼT
K(X) = Y .

An adversary is a probabilistic algorithm with access to zero or more oracles.
Without loss of generality, adversaries never ask a query for which the answer
is trivially known: an adversary does not repeat a query, does not ask DK(Y)
after receiving Y in response to a query EK(X), and so forth. Oracles will have
an implicit domain of valid queries and, for convenience, we assume that all
adversarial queries lie within that domain. This is not a significant restriction
because membership can be easily tested for all domains of interest to us.

Definition 1 (Blockcipher/Tweakable-Blockcipher Security). Let E: K×
{0, 1}n → {0, 1}n be a blockcipher and let Ẽ: K × T × {0, 1}n → {0, 1}n be a
tweakable blockcipher. Let A be an adversary. Then Advprp

E (A), Adv±prp
E (A),

Advp̃rp
Ẽ

(A), and Adv±p̃rp
Ẽ

(A) are defined by:

Pr[K $←K : AEK(·) ⇒ 1]− Pr[π $← Perm(n) : Aπ(·) ⇒ 1]

Pr[K $←K : AEK(·) DK(·) ⇒ 1]− Pr[π $← Perm(n) : Aπ(·) π−1(·) ⇒ 1]

Pr[K $←K : AẼK(·,·) ⇒ 1]− Pr[π $← Perm(T , n) : Aπ(·,·) ⇒ 1]

Pr[K $←K : AẼK(·,·) D̃K(·,·) ⇒ 1]− Pr[π $← Perm(T , n) : Aπ(·,·) π−1(·,·) ⇒ 1] �

Of course D and D̃ denote the inverses of blockciphers E and Ẽ. In writing
A ⇒ 1 we are referring to the event that the adversary A outputs the bit 1.

In the usual way we lift advantage measures that depend on an adver-
sary to advantage measures that depend on named resources: Advxxx

Π (R) =
maxA{Advxxx

Π (A)} over all adversaries A that use resources at most R. The
resources of interest to us are the total number of oracle queries q and the total
length of those queries σ and the running time t. For convenience, the total length
of queries will be measured in n-bit blocks, for some understood value of n, so a
query X contributes |X|n to the total, where |X|n means max{|X|/n, 1}. Run-
ning time, by convention, includes the description size of the algorithm relative
to some standard encoding. When we speak of authenticity, the block length of
the adversary’s output is included in σ.

3 The XE and XEX Constructions

Goals. We want to support tweak sets that look like T = {0, 1}n × I where I

is a set of tuples of integers. In particular, we want to be able to make I the
cross product of a large subrange of integers, like [1 .. 2n/2], by the cross prod-
uct of small ranges of integers, like [0 .. 10] × [0 .. 10]. Thus an example tweak

20 P. Rogaway

space is T = {0, 1}n × [1 .. 2n/2] × [0 .. 10] × [0 .. 10]. Tweaks arise in some se-
quence T1, T2, . . . and we will obtain impressive efficiency only to the extent that
most tweaks are an increment of the immediately prior one. When we say that
tweak T = (N, i1, . . . , ik) is an increment of another tweak we mean that one
of i1, . . . , ik got incremented and everything else stayed the same. The second
component of tweak (N, i1, . . . , ik), meaning i1, is the component that we ex-
pect to get incremented most often. We want there to be a simple, constant-time
procedure to increment a tweak at any given component of I. To increment a
tweak it shouldn’t be necessary to go to memory, consult a table, or examine
which number tweak this in in sequence. Incrementing tweaks should be endian-
independent and avoid extended-precision arithmetic. Efficiently incrementing
tweaks shouldn’t require precomputation. Tweaks that are not the increment
of a prior tweak will also arise, and they will typically look like (N, 1, 0 . . . , 0).
Constructions should be reasonably efficient in dealing with such tweaks.

We emphasize that the efficiency measure we are focusing on is not the cost
of computing ẼT

K(X) from scratch—by that measure our constructions will not
be particularly good. Instead, we are interested in the cost of computing ẼT

K(X)
given that one has just computed ẼS

K(X ′) and T is obtained by increment-
ing S at some component. Most often that component will have been the second
component of S. It is a thesis underlying our work, supported by the design of
OCB1 and PMAC1, that one will often be able to arrange that most tweaks are
an increment to the prior one.

Tweaking with Δ = 2i N. Recall that we have chosen to represent points
in F2n using a primitive polynomial, not just an irreducible one. This means
that the point 2 is a generator of F2n : the points 1, 2, 22, 23, . . . , 22n−2 are all
distinct. This property turns out to be the crucial one that lets us construct
from a blockcipher E: K × {0, 1}n → {0, 1}n a tweakable blockcipher Ẽ: K ×
({0, 1}n × [1 .. 2n − 2])× {0, 1}n → {0, 1}n by way of

ẼN i
K (M) = EK(M ⊕Δ)⊕Δ where Δ = 2i N and N = EK(N).

The tweak set is T = {0, 1}n × I where I = [1 .. 2n − 2] and the tweakable
blockcipher just described is denoted Ẽ = XEX[E, 2I] . When computing the
sequence of values ẼN 1

K (M1), . . . , ẼN m−1
K (Mm−1) each ẼN i

K (Mi) computation
but the first uses one blockcipher call and one doubling operation. Doubling
takes a shift followed by a conditional xor. We call the construction above, and
all the subsequent constructions of this section, powering-up constructions.

Tweaking by Δ = 2i3j N. To facilitate mode design we may want tweaks that
look like (N, i, j) where N ∈ {0, 1}n and i is an integer from a large set I, like
I = [1 .. 2n/2], and j is an integer from some small set J, like J = {0, 1}. To get the
“diversity” associated to the various j-values we just multiply by 3 instead of 2.
That is, we construct from a blockcipher E: K × {0, 1}n → {0, 1}n a tweakable
blockcipher Ẽ: K × ({0, 1}n × I× J)× {0, 1}n → {0, 1}n by way of

ẼN i j
K (M) = EK(M ⊕Δ)⊕Δ where Δ = 2i3j N and N = EK(N).

Efficient Instantiations of Tweakable Blockciphers and Refinements 21

The tweakable blockcipher just described is denoted Ẽ = XEX[E, 2I3J]. In-
crementing the tweak at component i is done by doubling, while incrementing
the tweak at component j is done by tripling.

The XEX construction. Generalizing the two examples above, we have the
following definition.

Definition 2 (XEX). Let E: K × {0, 1}n → {0, 1}n be a blockcipher, let

α1, . . . , αk ∈ F∗
2n , and let I1, . . . , Ik ⊆ Z. Then Ẽ = XEX[E,αI1

1 · · ·αIk

k] is the

tweakable blockcipher Ẽ: K× ({0, 1}n× I1×· · ·× Ik)×{0, 1}n → {0, 1}n defined

by ẼNi1...ik

K (M) = EK(M⊕Δ)⊕Δ where Δ = αi1
1 αi2

2 · · ·αik

k N and N = EK(N).

The XE construction. As made clear in the work of Liskov, Rivest, and
Wagner [10], constructions of the form ẼT

K(M) = EK(M⊕Δ)⊕Δ aim for chosen-
ciphertext attack (CCA) security, while for chosen-plaintext attack (CPA) secu-
rity one can omit the outer xor. Thus we consider the construction EK(M ⊕Δ).
This is slightly more efficient than XEX, saving one xor.

Definition 3 (XE). Let E: K×{0, 1}n → {0, 1}n be a blockcipher, α1, . . . , αk ∈
F∗

2n , and I1, . . . , Ik ⊆ Z. Then Ẽ = XE[E,αI1
1 · · ·αIk

k] is the tweakable blockcipher

Ẽ: K × ({0, 1}n × I1 × · · · × Ik) × {0, 1}n → {0, 1}n defined by ẼNi1...ik

K (M) =
EK(M ⊕Δ) where Δ = αi1

1 αi2
2 · · ·αik

k N and N = EK(N). �

4 Parameter Sets Yielding Unique Representations

It is easy to see that the XE and XEX constructions can only “work” if αi1
1 · · ·αik

k

are distinct throughout (i1, . . . , ik) ∈ I1 × · · · × Ik. This motivates the following
definition.

Definition 4 (Unique Representations). Fix a group G. A choice of pa-
rameters is a list α1, . . . , αk ∈ G of bases and a set I1 × · · · × Ik ⊆ Zk of
allowed indices. We say that the choice of parameters provides unique rep-
resentations if for every (i1, . . . , ik), (j1, . . . , jk) ∈ I1 × · · · × Ik we have that
αi1

1 · · ·αik

k = αj1
1 · · ·α

jk

k implies (i1, . . . , ik) = (j1, . . . , jk). �

In other words, representable points are uniquely representable: any group
element αi1

1 · · ·αik

k that can be represented using allowed indices can be repre-
sented in only one way (using allowed indices).

For tweak spaces of practical interest, discrete-log calculations within F∗
2n

can be used to help choose and verify that a given choice of parameters provides
unique representations. The following result gives examples for F∗

2128 .

Proposition 1. [Can Use 2, 3, 7 When n = 128] In the group F∗
2128 the

following choices for parameters provide unique representations:
(1) α1 = 2 and I1 = [−2126 .. 2126].
(2) α1, α2 = 2, 3 and I1 × I2 = [−2115 .. 2115]× [−210 .. 210].
(3) α1, α2, α3 = 2, 3, 7 and I1× It× I3 = [−2108 .. 2108]× [−27 .. 27]× [−27 .. 27].

22 P. Rogaway

Proof. For statement (1) recall that 2 is a generator of the group (by our choice
of irreducible polynomial) and the order of the group F∗

2128 is 2128 − 1 and so
2i = 2j iff i = j (mod 2128− 1) and so any contiguous range of 2128− 1 or fewer
integers will provide unique representations with respect to base 2.

To prove statement (2) we need to compute log2 3 in the group F∗
2128 :

log2 3 = 338793687469689340204974836150077311399 (decimal)

This andsubsequentdiscrete logswere computedusingaMaple-implementation
combining the Pohlig-Hellman [11] and Pollard-rho [12] algorithms. (A naive im-
plementation computes discrete logs in F∗

2128 in a few hours.) Now note that 2a3b =
2a′

3b′
iff 2a2b log2 3 = 2a′

2b′ log2 3 iff 2a+b log2 3 = 2a′+b′ log2 3 iff a + b log2 3 =
a′ + b′ log2 3 (mod 2128 − 1) because 2 is a generator of the group F∗

2128 . Thus
2a3b = 2a′

3b′
iff a − a′ = (b′ − b) log2 3 (mod 2128 − 1). If b, b′ ∈ [−210 .. 210]

then Δb = b′− b ∈ [−211 .. 211] and computer-assisted calculation then shows that
the smallest value of Δb log2 3 (mod 2128 − 1) for Δb ∈ [−211..211] and Δb �= 0
is 1600 log2 3 = 00113a0ce508326c006763c0b80c59f9 (in hexadecimal) which is
about 2116.1. (By “smallest”we refer to the distance from 0,modulo 2128−1, so 2100

and (2128 − 1)− 2100 are equally small, for example.) Thus if a, a′ are restricted to
[−2115 .. 2115] and b, b′ are restricted to [−210 .. 210] then Δa = a − a′ ≤ 2116 can
never equal Δb log2 3 (mod 2128 − 1) > 2116 unless Δb = 0. This means that the
only solution to 2a3b = 2a′

3b′
within the specified range is a = a′ and b = b′.

To prove statement (3) is similar. First we need the value

log2 7 = 305046802472688182329780655685899195396 (decimal)

Now 2a3b7c = 2a′
3b′

7c′
iff a−a′ = (b′−b) log2 3+(c′−c) log2 7 (mod 2128−1).

The smallest value for Δb log2 3 + Δc log2 7 (mod 2128 − 1) when Δb, Δc ∈
[−28 .. 28] and at least one of these is non-zero is−48 log2 3+31 log2 7 (mod 2128−
1) = 00003bfabac91e02b278b7e69a379d18 (hexadecimal) which is about 2109.9.
So restricting the index for base-2 to [−2108 .. 2108] ensures that a − a′ ≤ 2109

while (b′− b) log2 3 + (c′− c) log2 7 > 2109 unless b = b′ and c = c′ and a = a′. �

We emphasize that not just any list of bases will work. Notice, for example,
that 32 = 5 in F∗

2n so the list of bases 2, 3, 5 does not give unique representations,
even for a tiny list of allowed indices like I1 × I2 × I3 = {0, 1, 2}3.

Similar calculations can be done in other groups; here we state the analogous
result for F∗

264 .

Proposition 2. [Can Use 2, 3, 11 When n = 64] In the group F∗
264 the

following choices for parameters provide unique representations:

(1) α1 = 2 and [−262 .. 262].
(2) α1, α2 = 2, 3 and [−251 .. 251]× [−210 .. 210].
(3) α1, α2, α3 = 2, 3, 11 and [−244 .. 244]× [−27 .. 27]× [−27 .. 27]. �

This time 2, 3, 7 does not work as a list of bases, even with a small set of
allowed indices like [1 .. 64]×{0, 1, 2}×{0, 1, 2}, due to the fact that 264 = 32 · 7

Efficient Instantiations of Tweakable Blockciphers and Refinements 23

in this group. Machine-assisted verification seems essential here; a relation like
that just given is found immediately when computing the possible values for
Δb log2 3 + Δc log2 7 (mod 264 − 1) but it might not otherwise be anticipated.

5 Security of XE

The following result quantifies the security of the XE construction.

Theorem 1. [Security of XE] Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base

elements and let I1 × · · · × Ik be allowed indices such that these parameters
provide unique representations. Fix a blockcipher E: K × {0, 1}n → {0, 1}n and
let Ẽ = XE[E,αI1

1 · · ·αIk

k]. Then Advp̃rp
Ẽ

(t, q) ≤ Advprp
E (t′, 2q) + 4.5 q2

2n where
t′ = t + ckn(q + 1) for some absolute constant c. �

In English, the XE construction promotes a CPA-secure blockcipher to a
CPA-secure tweakable blockcipher, assuming that the chosen base elements and
range of allowed indices provide unique representations. The proof is in [14].

6 Security of XEX

Some added care is needed to address the security of XEX. Suppose, to be
concrete, that we are looking at XEX[E, 2I] and I = [0 .. 2n−2]. Let the ad-
versary ask a deciphering query with ciphertext C = 0n and tweak (0n, 0).
If the adversary has a construction-based deciphering oracle then it will get a
response of M = D̃0n 0

K (0n) = DK(Δ) ⊕ Δ = DK(N) ⊕ N = 0n ⊕ N = N,
where N = EK(0n) = Δ. This allows the adversary to defeat the CCA-security.
For example, enciphering 2M = 2N with a tweak of (0n, 1) and enciphering
4M = 4N with a tweak of (0n, 2) will give identical results (if the adversary has
the construction-based enciphering oracle). Corresponding to this attack we ex-
clude any tweak (N, i1, . . . , ik) for which (i1, . . . , ik) is a representative of 1—that
is, any tweak (N, i1, . . . , ik) for which αi1

1 . . .αik

k = 1. In particular, this condi-
tion excludes any tweak (N, 0, . . . , 0). The proof of the following is omitted, as
Theorem 3 will be more general.

Theorem 2 (Security of XEX). Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base

elements and let I1×· · ·×Ik be allowed indices such that these parameters provide
unique representations. Assume αi1

1 · · ·αik

k �= 1 for all (i1, . . . , ik) ∈ I1×· · ·× Ik.
Fix a blockcipher E: K × {0, 1}n → {0, 1}n and let Ẽ = XEX[E,αI1

1 · · ·αIk

k].
Then Adv±p̃rp

Ẽ
(t, q) ≤ Adv±prp

E (t′, 2q) + 9.5 q2

2n where t′ = t + ckn(q + 1) for
some absolute constant c. �

7 An Almost-Free Alternative to Key Separation

When combining two blockcipher-based cryptographic mechanisms into a com-
posite mechanism, it is, in general, essential to use two different keys. Either

24 P. Rogaway

these two keys together comprise the key for the joint mechanism, or else each
key is obtained from an underlying one by a key-derivation technique. The first
possibility increases the key length in the composite mechanism while the second
involves extra computation at key setup. Both possibilities incur the inefficiency
of blockcipher re-keying when the combined mode runs. For all of these reasons,
some new “composite” modes of operation have gone to considerable trouble in
order to make do (for their particular context) with a single blockcipher key. Ex-
amples include EAX, CCM, and OĊB [3, 13, 17]. Using a single key complicates
proofs—when the mechanism works at all—because one can no longer reason
about generically combining lower-level mechanisms.

Tweakable blockciphers open up a different possibility: the same underlying
key is used across the different mechanisms that are being combined, but one
arranges that the tweaks are disjoint across different mechanisms. In this way
one retains the modularity of design and analysis associated to using separate
keys—one reasons in terms of generic composition—yet one can instantiate in
a way that avoids having extra key material or doing extra key setups. Because
the tweak space for XE and XEX is a Cartesian product of ranges of integers,
it is easy, for these constructions, to separate the different tweaks.

8 Combining XE and XEX

Some blockcipher-based constructions need CCA-security in some places and
CPA-security in other places. One could assume CCA-security throughout, later
instantiating all blockcipher calls with a CCA-secure construction, but it might
be better to use a CPA-secure construction where sufficient and a CCA-secure
one where necessary. Regardless of subsequent instantiation, it is good to be able
to talk, formally, about where in a construction one needs what assumption.

To formalize where in a construction one is demanding what, we tag each
blockcipher call with an extra bit. We say that a tweakable blockcipher Ẽ: K×
T × {0, 1}n → {0, 1}n is tagged if T = {0, 1} × T ∗ for some nonempty set T ∗.
Think of T ∗, the effective tweak space, as the tweak space actually used by the
mode. The extra bit indicates what is demanded for each tweak. A first bit of 0
indicates a demand of CPA security, and 1 indicates a demand for CCA security.
For a given T ∈ T one should be asking for one or the other.

An adversary A launching an attack on a tagged blockcipher is given two
oracles, e(·, ·) and d(·, ·), where the second oracle computes the inverse of the
first (meaning d(T,Y) is the unique X such that e(T,X) = Y). The adversary
must respect the semantics of the tags, meaning that the adversary may not
make any query d(T, Y) where the first component of T is 0, and if the adversary
makes an oracle query with a tweak (b, T ∗) then it may make no subsequent
query with a tweak (1 − b, T ∗). As always, we insist that there be no pointless
queries: an adversary may not repeat an e(T,X) query or a d(T,Y) query, and
it may not ask d(T,Y) after having learned Y = e(T,X), nor ask e(T,X) after
having learned X = d(T,Y). The definition for security is now as follows.

Efficient Instantiations of Tweakable Blockciphers and Refinements 25

Definition 5 (Security of a Tagged, Tweakable Blockcipher). Let Ẽ: K×
T × {0, 1}n → {0, 1}n be a tagged, tweakable blockcipher and let A be an

adversary. Then Adv[±]p̃rp
Ẽ

(A) is defined as Pr[K $←K : AẼK(·,·) D̃K(·,·) ⇒ 1] −
Pr[π $← Perm(T , n) : Aπ(·,·) π−1(·,·) ⇒ 1] �

Naturally D̃, above, is the inverse of Ẽ. Security in the p̃rp-sense and security
in the ±p̃rp-sense are special cases of security in the [±]p̃rp sense (but for the
enlarged tweak space).

If we combine XE and XEX using our tagging convention we get the tagged,
tweakable blockcipher XEX∗.

Definition 6 (XEX∗). Let E: K × {0, 1}n → {0, 1}n be a blockcipher, let

α1, . . . , αk ∈ F∗
2n , and let I1, . . . , Ik ⊆ Z. Then Ẽ = XEX∗[E, αI1

1 · · ·αIk

k] is the

tweakable blockcipher Ẽ: K× ({0, 1}× {0, 1}n × I1 · · · × Ik)×{0, 1}n → {0, 1}n

defined by Ẽ0 N i1...ik

K (M) = EK(M ⊕Δ) and Ẽ1 N i1...ik

K (M) = EK(M ⊕Δ)⊕Δ

where Δ = αi1
1 αi2

2 · · ·αik

k N and N = EK(N). �

9 Security of the Combined Construction

We now specify the security of the XEX∗ construction. The result encompasses
that XE is p̃rp-secure and XEX is ±p̃rp-secure. The proof is in [14].

Theorem 3 (Security of XEX∗). Fix n ≥ 1 and let α1, . . . , αk ∈ F∗
2n be base

elements and let I1×· · ·×Ik be allowed indices such that these parameters provide
unique representations and such that αi1

1 · · ·αik

k �= 1 for all (i1, . . . , ik) ∈ I1×· · ·×
Ik. Fix a blockcipher E: K×{0, 1}n → {0, 1}n and let Ẽ = XEX∗[E,αI1

1 · · ·αIk

k].
Then Adv[±]p̃rp

Ẽ
(t, q) ≤ Adv±prp

E (t′, 2q) + 9.5 q2

2n where t′ = t + ckn(q + 1) for
some absolute constant c. �

10 The OCB1 Authenticated-Encryption Scheme

We recast OCB [15] to use a tweakable blockcipher instead of a conventional
blockcipher. Liskov, Rivest, and Wagner first did this [10], but our formulation
is different from theirs. First, guided by what we have done so far, we choose
a tweak space of T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1}. The first bit of the
tweak is the tag; the effective tweak space is T ∗ = {0, 1}n × [1 .. 2n/2] × {0, 1}.
Second, we want tweaks to increase monotonically, and so we switch the “special”
processing done in OCB from the penultimate block to the final block. The
resulting algorithm is shown in Fig. 1. Algorithm OCB1 is parameterized by a
tweakable blockcipher Ẽ: K × T × {0, 1}n → {0, 1}n and a number τ ∈ [0 ..n].
For clarity, we write πN

i for Ẽ 1 N i 0
K and πN

i for Ẽ 0 N i 0
K and π̄N

i for Ẽ 0 N i 1
K .

The security of OCB1[Perm(T , n)] is much simpler to prove than the secu-
rity of OCB[Perm(n)]. (Liskov, Rivest, and Wagner [10] had made the same
point for their tweakable-blockcipher variant of OCB.) To state the result we

26 P. Rogaway

M1

πN
3πN

2πN
1

ΣM2 M3

C1 C2 C3 Tag

len

πN
4 π̄N

4

Pad

C4

M4

Algorithm OCB1.EncryptN
K (M)

Partition M into M [1] · · · M [m]
for i ∈ [1 .. m − 1] do C[i] ← πN

i (M [i])
Pad ← πN

m(len(M [m]))
C[m] ← M [m] ⊕ Pad
C ← C[1] · · · C[m]
Σ ← M [1] ⊕ · · · ⊕ M [m − 1]⊕

C[m]0∗ ⊕ Pad
Tag ← π̄N

m(Σ)
T ← Tag [first τ bits]
return C ← C ‖ T

Algorithm OCB1.DecryptN
K (C)

Partition C into C[1] · · · C[m] T

for i ∈ [1 .. m − 1] do M [i] ←
(
πN

i

)−1 (C[i])
Pad ← πN

m(len(C[m]))
M [m] ← C[m] ⊕ Pad
M ← M [1] · · · M [m]
Σ ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m]0∗ ⊕ Pad
Tag ← πN

m(Σ)
T ′ ← Tag [first τ bits]
if T = T ′ then return M

else return Invalid

Fig. 1. OCB1[Ẽ, τ] with a tweakable blockcipher Ẽ: K × T × {0, 1}n → {0, 1}n and
tweak space T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1} and tag length τ ∈ [0 .. n]. We
write πN

i and πN
i and π̄N

i for Ẽ1 N i 0
K and Ẽ0 N i 0

K and Ẽ0 N i 1
K

give a couple of definitions from [15]. For privacy of a nonce-based encryption
scheme Π = (K, E ,D) we use the notion of indistinguishability-from-random-
strings, which defines Advpriv

Π (A) as Pr[K $←K : AEK(·,·) ⇒ 1]−Pr[A$(·,·) ⇒ 1].
Here $(·, ·) is an oracle that, on input (N, M), returns |M | random bits. The ad-
versary is not allowed to repeat a nonce N . For authenticity we use the nonce-
based notion of integrity of ciphertexts: the adversary is given an encryption
oracle EK(·, ·) and is said to forge if it outputs an (N,C) that is valid and C

was not the result of any prior (N, M) query. The adversary is not allowed to
repeat a nonce N while it queries its encryption oracle. We write Advauth

Π (A) for
Pr[K $←K : AEK(·,·) forges]. We have the following theorem for the information-
theoretic security of OCB1. The proof is in [14].

Theorem 4 (OCB1 with an Ideal Tweakable Blockcipher). Fix n ≥ 1,
τ ∈ [0 ..n], and T = {0, 1} × {0, 1}n × [1 .. 2n/2] × {0, 1}. Let A be an adver-

Efficient Instantiations of Tweakable Blockciphers and Refinements 27

Algorithm OCB1.EncryptN
K (M)

Partition M into M [1] · · · M [m]
Δ ← 2 EK(N)
Σ ← 0n

for i ∈ [1 .. m − 1] do
C[i] ← EK(M [i] ⊕ Δ) ⊕ Δ
Δ ← 2Δ
Σ ← Σ ⊕ M [i]

Pad ← EK(len(M [m]) ⊕ Δ)
C[m] ← M [m] ⊕ Pad
C ← C[1] · · · C[m]
Σ ← Σ ⊕ C[m]0∗ ⊕ Pad
Δ ← 3Δ
Tag ← EK(Σ ⊕ Δ)
T ← Tag [first τ bits]
return C ← C ‖ T

Algorithm OCB1.DecryptN
K (C)

Partition C into C[1] · · · C[m] T
Δ ← 2 EK(N)
Σ ← 0n

for i ∈ [1 .. m − 1] do
M [i] ← E−1

K (C[i] ⊕ Δ) ⊕ Δ
Δ ← 2Δ
Σ ← Σ ⊕ M [i]

Pad ← EK(len(C[m]) ⊕ Δ)
M [m] ← C[m] ⊕ Pad
M ← M [1] · · · M [m]
Σ ← Σ ⊕ C[m]0∗ ⊕ Pad
Δ ← 3Δ
Tag ← EK(Σ ⊕ Δ)
T ′ ← Tag [first τ bits]
if T = T ′ then return M

else return Invalid

Fig. 2. OCB1[E, τ] with a conventional blockcipher E: K × {0, 1}n → {0, 1}n

and a tag length τ ∈ [0 .. n]. This coincides with OCB1[Ẽ, τ] where Ẽ =
XEX[E, 2[1 .. 2n/2]3{0,1}]

sary. Then Advpriv
OCB1[Perm(T ,n),τ](A) = 0 and Advauth

OCB1[Perm(T ,n),τ](A) ≤ 2n−τ/

(2n − 1). �

Note that the authenticity bound is close to 2−τ ; in particular, 2n−τ/(2n −
1) ≤ 1/(2τ − 1) for all τ ≥ 2. The bounds do not degrade with the number
of queries asked by the adversary, the length of these queries, or the time the
adversary runs. For the complexity-theoretic analog we have the following.

Corollary 1 (OCB1 with a Tweakable Blockcipher). Fix n ≥ 1, τ ∈
[0 ..n], T = {0, 1}×{0, 1}n×[1 .. 2n/2]×{0, 1}, and Ẽ: K×T ×{0, 1}n → {0, 1}n

a tagged, tweakable blockcipher. Then Advpriv
OCB1[Ẽ,τ]

(t,σ) ≤ Advp̃rp
Ẽ

(t′,σ) and

Advauth
OCB1[Ẽ,τ](t,σ) ≤ Adv[±]p̃rp

Ẽ
(t′,σ) + 2n−τ/(2n − 1), where t′ = t + cnσ for

some absolute constant c. �

The proof requires CPA-security for privacy but authenticity uses the notion
that combines CPA- and CCA-security (Definition 5). It is here that one has
formalized the intuition that the first m−1 tweakable-blockcipher calls to OCB1
need to be CCA-secure but the last two calls need only be CPA-secure.

To realize OCB1 with a conventional blockcipher E: K × {0, 1}n → {0, 1}n,
use XEX∗, instantiating OCB1[Ẽ, τ] by way of Ẽ = XEX∗[E, 2I3J] where I =
[1 .. 2n/2] and J = {0, 1}. Overloading the notation, we write this scheme as
OCB1[E, τ]. The method is rewritten in Fig. 2.

28 P. Rogaway

Corollary 2 (OCB1 with a Blockcipher). Fix n ≥ 1 and τ ∈ [0 ..n]. Assume
that 2, 3 provide unique representations on [1 .. 2n/2]×{0, 1} and 2i3j �= 1 for all
(i, j) ∈ [1 .. 2n/2]× {0, 1}. Let E: K × {0, 1}n → {0, 1}n be a blockcipher. Then

Advpriv
OCB1[E,τ](t,σ) ≤ Advprp

E (t′, 2σ) +
4.5σ2

2n
and

Advauth
OCB1[E,τ](t,σ) ≤ Adv±prp

E (t′, 2σ) +
9.5σ2

2n
+

2n−τ

2n − 1
where t′ = t + cnσ for some absolute constant c. �

Propositions 1 and 2 establish that n = 128 and n = 64 satisfy the require-
ment for unique representations. They also guarantee that there is no represen-
tative of 1 within [1 .. 2n/2]×{0, 1}. To see this, note that the propositions imply
that (0, 0) is the only representative for 1 within a space I1 × I2 that includes
[1 .. 2n/2]× {0, 1}, and so there can be no representative of 1 within a subspace
of I1 × I2 that excludes (0, 0).

Blockcipher-based OCB1 is more efficient than OCB. With OCB one expects
to use preprocessing to compute a value L = EK(0n) and a collection of 2iL-
values. This is gone in OCB1; preprocessing is not useful there beyond setting up
the underlying blockcipher key. Beyond this, with OCB processing the jth block
involved xoring into the current offset a value L(i) = 2iL where i = ntz(j) was
the number of trailing zero-bits in the index j. In the absence of preprocessing,
offset-calculations were not constant time. This too is gone.

The previous paragraph notwithstanding, the time difference or chip-area
difference between optimized implementations of OCB and OCB1 will be small,
since the overhead of OCB over a mode like CBC was already small. The
larger gain is that the mode is simpler to understand, implement, and prove
correct.

11 The PMAC1 Message Authentication Code

As with OCB, one can recast PMAC [4] to use a tweakable blockcipher and,
having done so, one can instantiate the tweakable blockcipher, this time with
the XE construction. The resulting algorithm, PMAC1, is simpler and more
efficient than PMAC. In the latter construction one had to xor into the cur-
rent offset a value L(i) = 2iL where i was the number of trailing zero-bits
in the current block index j. This is gone in PMAC1, and an implementation
no longer needs to concern itself with Gray codes, precomputing L(i)-values,
or finding the most efficient way to bring in the right L(i) value. Details are
in [14].

To make an authenticated encryption scheme that handles associated-data,
combine OCB1 and PMAC1 [13]. Encrypt message M under key K, nonce N ,
and header H by OCB1.EncryptNK(M)⊕PMAC1K(H) where the ⊕ xors into the
end. Omit the ⊕ PMAC1K(H) if H = ε. We call this scheme AEM.

Efficient Instantiations of Tweakable Blockciphers and Refinements 29

12 Comments

Under the approach suggested by this paper, to get good efficiency for a design
that uses a tweakable-blockcipher, the designer must accept certain design rules.
In particular, the tweak space needs to look like {0, 1}n × BIG × SMALL for
appropriate sets BIG and SMALL, and one needs to arrange that most tweaks
be obtained by incrementing the prior one. It is a thesis implicit in this work
that these restrictions are not overly severe.

Besides simplifying the design and proof for OCB and PMAC, we have im-
proved their efficiency. The improvement are not large (the modes were already
highly efficient), but performance improvements, of any size, was not a benefit
formerly envisaged as flowing from the tweakable-blockcipher abstraction.

Somewhat strangely, our constructions depend on the relative easiness of
computing discrete logarithms. I know of no other example where one needs to
compute discrete logs in order to design or verify a mode of operation.

I end this paper by acknowledging that everyone writes block cipher, not
blockcipher. Still, the time has come to spell this word solid. I invite you to join
me.

Acknowledgments

Thanks to David Wagner for pointing out an oversight in an early draft. Useful
comments were also received from John Black and the anonymous referees.

This research was supported by NSF 0208842 and by a gift from Cisco System.
Thanks to the NSF (particularly Carl Landwehr) and to Cisco (particularly
David McGrew) for their kind support of my research.

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption: Analysis of the DES modes of operation. Sympo-
sium on Foundations of Computer Science, FOCS ’97, IEEE Computer Society,
pp. 394–403, 1997.

2. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System Sciences,
vol. 61, no. 3, Dec 2000. Earlier version in CRYPTO ’94.

3. M. Bellare, P. Rogaway, and D. Wagner. The EAX Mode of operation. Fast
Software Encryption, FSE 2004. Lecture Notes in Computer Science, vol. 3017,
Springer-Verlag, pp. 389–407, 2004.

4. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. Advances in Cryptology — Eurocrypt ’02. Lecture Notes
in Computer Science, vol. 2332, Springer-Verlag, pp. 384–397, 2002.

5. V. Gligor and P. Donescu. Fast encryption and authentication: XCBC en-
cryption and XECB authentication modes. Fast Software Encryption, FSE 2001.
Lecture Notes in Computer Science, vol. 2355, Springer-Verlag, pp. 92–108, 2001.

30 P. Rogaway

6. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, vol. 28, April 1984, pp. 270–299.

7. S. Halevi and P. Rogaway. A parallelizable enciphering mode. Topics in Cryp-
tology — CT-RSA 2004. Lecture Notes in Computer Science, vol. 2964, Springer-
Verlag, pp. 292–304, 2004.

8. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search
(an analysis of DESX). J. of Cryptology, vol. 14, no. 1, pp. 17–35, 2001.

9. C. Jutla. Encryption modes with almost free message integrity. Advances in
Cryptology — EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045,
Springer-Verlag, pp. 529–544, 2001.

10. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances
in Cryptology — CRYPTO ’02. Lecture Notes in Computer Science, vol. 2442,
Springer-Verlag, pp. 31–46, 2002.

11. S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information
Theory, vol 24, pp. 106–110, 1978.

12. J. Pollard. Monte Carlo methods for index computation (mod p). Mathematics
of Computation, vol. 32, pp. 918–924, 1978.

13. P. Rogaway. Authenticated-encryption with associated-data. ACM Conference
on Computer and Communications Security 2002, CCS 2002. ACM Press, pp. 98–
107, 2002.

14. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. Manuscript, 2004. Full version of this paper, available
from the author’s web page.

15. P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of opera-
tion for efficient authenticated encryption. ACM Transactions on Information and
System Security, vol. 6, no. 3, pp. 365–403, 2003. Earlier version, with T. Krovetz,
in CCS 2001.

16. R. Schroeppel. The hasty pudding cipher. AES candidate submitted to NIST,
1998.

17. D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM).
Network Working Group RFC 3610. The Internet Society, September 2003.

A Tweakable Blockciphers Implicit in Prior Work

When tweaks increase in sequence, the most efficient constructions formerly
known for a tweakable blockcipher are those implicit in earlier modes [4, 5, 9, 15],
recast in view of Liskov, Rivest, and Wagner [10]. In particular:

Jutla [9] might be seen as suggesting a construction (among others) of
Ẽ: (K × K′) × ({0, 1}n × Z+

p) × {0, 1}n → {0, 1}n by way of ẼN,i
KK′(X) =

EK(X ⊕Δ)⊕Δ where Δ = i� mod p and � = EK′(N) and p is the largest
prime less than 2n.
Gligor and Donescu [5] might be seen as suggesting constructions like
Ẽ: (K× {0, 1}n)× [1 .. 2n − 1] → {0, 1}n by Ẽi

K,r(X) = EK(X + δ) where
δ = ir and addition is done modulo 2n.

Efficient Instantiations of Tweakable Blockciphers and Refinements 31

Rogaway, Bellare, and Black [15] might be seen as implicitly suggesting
making a tweakable blockcipher Ẽ: K × ({0, 1}n × [0 .. 2n−2])× {0, 1}n →
{0, 1}n from an ordinary blockcipher E: K × {0, 1}n → {0, 1}n by way of
ẼN,i

K (X) = EK(X ⊕ Δ) ⊕ Δ where Δ = γiL ⊕ R and L = EK(0n) and
R = EK(N ⊕ L) and γi is the i-th Gray-code coefficient.
Black and Rogaway [4] might be seen as making Ẽ: K × [0 .. 2n−2] ×
{0, 1}n → {0, 1}n out of E: K×{0, 1}n → {0, 1}n by Ẽi

K(X) = EK(X⊕Δ)
where Δ = γiL and L = EK(0n) and γi is as before.
The last two definitions ignore the “special” treatment afforded to blocks
modified by xoring in 2−1L. The implicit intent [4, 15] was to use this
mechanism to enlarge the tweak space by one bit, effectively taking the
cross product with {0, 1}.

Eliminating Random Permutation Oracles in the
Even-Mansour Cipher

Craig Gentry and Zulfikar Ramzan

DoCoMo Communications Laboratories USA, Inc.
{cgentry, ramzan}@docomolabs-usa.com

Abstract. Even and Mansour [EM97] proposed a block cipher construc-
tion that takes a publicly computable random permutation oracle P and
XORs different keys prior to and after applying P : C = k2 ⊕P (M ⊕k1).
They did not, however, describe how one could instantiate such a per-
mutation securely. It is a fundamental open problem whether their con-
struction could be proved secure outside the random permutation ora-
cle model. We resolve this question in the affirmative by showing that
the construction can be proved secure in the random function oracle
model. In particular, we show that the random permutation oracle in
their scheme can be replaced by a construction that utilizes a four-round
Feistel network (where each round function is a random function oracle
publicly computable by all parties including the adversary). Further, we
prove that the resulting cipher is super pseudorandom – the adversary’s
distinguishing advantage is at most 2q2/2n if he makes q total queries to
the cipher, its inverse, as well as any random oracles. Even and Mansour,
on the other hand, only showed security against inversion and forgery.
One noteworthy aspect of this result is that the cipher remains secure
even though the adversary is permitted separate oracle access to all of
the round functions. One can achieve a two-fold and four-fold reduction
respectively in the amount of key material by a closer inspection of the
proof and by instantiating the scheme using group operations other than
exclusive-OR. On the negative side, a straightforward adaption of an ad-
vanced slide attack recovers the 4n-bit key with approximately

√
2 · 2n

work using roughly
√

2 · 2n known plaintexts. Finally, if only three Feis-
tel rounds are used, the resulting cipher is pseudorandom, but not super
pseudorandom.

1 Introduction

The Even-Mansour Construction. Even and Mansour [EM97] proposed a
block cipher construction based on XORing secret key material just prior to
and just after applying a random permutation oracle P : C = k2 ⊕ P (M ⊕ k1),
where M is the plaintext, C is the ciphertext, and k1, k2 is the key material.
The permutation P (as well as its inverse P−1) is computable by all parties,
including the adversary (see fig. 1). Even-Mansour proved that a polynomial-
time adversary with black-box query access to the cipher and its inverse, as well

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 32–47, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 33

as black-box query access to the internal permutation and its inverse cannot
invert an un-queried ciphertext of his choice, except with negligible probability.
They also proved an analogous result about computing the cipher’s forward
direction.

While there are practical limitations to their construction [Dae91, BW00], the
Even-Mansour work is well known and theoretically interesting. In particular,
it is an example of a cipher for which an adversary has black-box access to the
only real “cryptographic” component; i.e., the random permutation oracle. The
only secrets are simply XORed at the beginning and the end, and everything
else is publicly accessible.

Fundamental Open Problems. The Even-Mansour work may be described
within the framework of the random-oracle model [BR93] in which their cipher
makes use of a random permutation oracle. Naturally, the need for such a permu-
tation oracle is unpleasant, especially since Even and Mansour did not indicate
how one might instantiate such a random permutation oracle while maintaining
security. This motivates the following problem:

Open Problem 1: How can one go about instantiating the random permutation
oracle in the Even-Mansour scheme?

Furthermore, Even and Mansour only proved security against inversions and
forgeries. However, for block ciphers, the current bar is to prove super pseudoran-
domess [LR88]. That is, the cipher should be indistinguishable from a randomly
chosen permutation on the same message space even if the adversary is granted
black-box access to the forward and inverse directions of the cipher1. This mo-
tivates a second problem:

Open Problem 2: Can one prove that an Even-Mansour type construction
yields a super pseudorandom permutation?

Our Contributions. We address the first question by demonstrating that
the random permutation oracle can be replaced by a construction involving
random function oracles; i.e., the underlying oracle (which must be accessible to
all parties) does not have to be bijective, but we construct a permutation using
it that is bijective. By supplanting the use of random permutation oracles by
random function oracles, we have a result based on a less restrictive model. Our
construction uses a Feistel ladder in which the random function oracle is used
as a round function (see fig. 1). However, what is different in this setting is that
the adversary not only has access to the forward and reverse directions of the
cipher, but also to each of the individual round functions.

We address the second problem by proving that the construction is super
pseudorandom. We remark the one can construe the Kilian-Rogaway analysis

1 Their is also a notion of pseudorandomness for block ciphers wherein the adversary
must distinguish it from a random permutation given black-box access to only the
forward direction of the cipher.

34 C. Gentry and Z. Ramzan

Fig. 1. The diagram on the left depicts the Even-Mansour scheme where P is a
random permutation oracle; i.e., the adversary has black-box access to P and P −1.
The diagram on the right depicts our scheme in which the permutation oracle is
instantiated by a Feistel network consisting of publicly-accessible random function
oracles f, g

of DESX [KR96] as a proof that Even-Mansour is pseudorandom. Recall that
in DESX, the Even-Mansour random permutation is supplanted with a keyed
block cipher, such as DES. The Kilian-Rogaway proof allowed the adversary
oracle access to the internal permutation P (modeled as an ideal block cipher)
as well as P−1, to simulate that an adversary had correctly guessed the key –
this maneuver isolates the benefits of the pre- and post-whitening keys. However,
in their published proof the adversary was not given access to the inverse of the
block cipher – so super pseudorandomness was not proved2.

In addition, Ramzan-Reyzin [RR00] noted that one could use their round se-
curity framework to prove that Even-Mansour is super pseudorandom, but their
focus was different, so no proof was supplied. Also their comment was limited to
the original Even-Mansour construction (which used the random permutation
oracle). Therefore, we consider addressing the first fundamental open problem
as our main technical contribution; a side benefit of our work is a proof of super-
pseudorandomness for Even-Mansour style block ciphers.

Our results help us better understand block cipher design. First, they point
to the benefit of pre- and post- whitening. In particular, our construction shows
that, in the random function oracle model, one can construct a super pseudo-
random block cipher in which the all key material is only incorporated during
the pre- and post-whitening phases and in a very simple way. This is despite
the fact that the adversary has access to the internals of the cipher. Second, our
constructions show that it may be possible to obtain a middle ground between

2 Kilian and Rogaway mentioned that one could extend their proof to address chosen
ciphertext queries, however, they did not provide the proof, nor did they state a
formal security theorem where such access is given.

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 35

pure black-box analysis and one in which an adversary has some meaningful
knowledge about the internal design of the black box. This can be thought of
as a “gray-box” analysis. We also remark that the random permutation oracle
model seems less appealing than the random function oracle model. Instantiat-
ing a random function oracle while maintaining security seems more plausible
since such functions could be made sufficiently complex that their behavior is
ill understood. On the other hand, when instantiating a random permutation
oracle with an actual permutation, one is limited in the complexity of the de-
sign since the function must remain bijective and efficient to invert. Our results
give hope that one may be able to base future cryptosystems on random permu-
tation oracles and replace them with constructions based on random function
oracles in a provably secure way. Finally, our work helps bridge the gap between
the theory and practice of Feistel ciphers. In particular, the theoretical work
on Feistel ciphers (e.g., [LR88]) considers round functions that are strong (e.g.,
pseudorandom) and potentially complex keying mechanisms (e.g., the functions
themselves are keyed). This departs from practice in two ways. First, round func-
tions in practice are weak. Second, block cipher round keys are introduced in
some simple way, for example by XORing them prior to applying an un-keyed
function (c.f., DES [FIPS46]). Our work sits somewhere in between since it con-
siders complex round functions (random oracles), but simple keying procedures
(XORing). Therefore, we can view our work as providing better mathematical
insight into the security of DES-like ciphers.

Other Results. Our proof of security holds even if the amount of key material
is reduced twofold. Also, if we permit group operations other than XOR, we can
recycle keying material, yielding a fourfold reduction; interestingly, if XOR is
used with recycled keying material, the cipher behaves like an involution and
is trivially distinguishable from a random permutation. This idea of consider-
ing different group operations has previously been applied to Luby-Rackoff ci-
phers [PRS02]. On the negative side, a “sliding with a twist” attack [BW00]
allows an adversary to recover the key using

√
2 · 2n known plaintexts and√

2·2n work. Finally, if we instantiate the permutation with three Feistel rounds,
the construction is pseudorandom, but is not super pseudorandom. The attack
adapts the standard distinguisher for three-round Luby-Rackoff ciphers [LR88].
Due to space constraints, as well as the fact that these results follow easily from
existing techniques, we omit a further discussion. For details, see the full version
of the paper [GR04].

Caveat(s) Emptor. While the random-oracle model is an extremely useful
cryptographic tool, there are instances of schemes that are secure in the random
oracle model, but are insecure for any instantiation of the random oracle by a
polynomial-time computable function [CGH98, GK03, BBP04]. We further note
that the lower bounds we present indicate that n should be chosen so that 2n/2

is sufficiently large to thwart distinguishing attacks. We also remark that Even

36 C. Gentry and Z. Ramzan

and Mansour gave a O(2−n) upper bound on the adversary’s success probabil-
ity, whereas our bound resembles O(2−n/2). However, Even and Mansour only
proved security against inversions and forgeries whereas we show super pseudo-
randomness. Moreover, we eliminate the random permutation oracle requirement
and also give the adversary access to the innards of the cipher. Therefore, we
expect there to be a sizeable gap in the respective security guarantees. In light of
these caveats, we stress that our main contribution is in resolving fundamental
issues from the Even-Mansour work and gaining more theoretical insight into
block cipher design; we do not recommend this as a practical approach to build-
ing a block cipher. In fact, efficient random oracle model based block ciphers are
desired, then Ramzan and Reyzin have a four-round Feistel block cipher con-
struction in which the middle two rounds use a random oracle, and the outer
two rounds involve universal hash functions [RR00].

Organization. Section 2 reviews prior definitions and constructions. Section 3
discusses our main construction and security proof. Finally, we make concluding
remarks in Section 4.

2 Prior Definitions and Constructions

We describe definitions and prior constructions that are germane to our work. We
avoid asymptotic analysis in favor of the “concrete” (or “exact”) security model
as laid out by Bellare, Kilian, and Rogaway [BKR94], and Bellare, Canetti,
Krawczyk [BCK96]. However, our results can be adapted to either model.

Notation. For a natural number n, we let In denote the set of bit strings of
length n: {0, 1}n. For a bit string x, we let |x| denote its length. If |x| is even, then
xL and xR denote the left and right halves of the bits respectively; we sometimes
write x = (xL, xR). If x and y are two bit strings with |x| = |y|, we denote by
x⊕ y their bitwise exclusive OR. If S is a probability space, then x

R← S denotes
the process of picking an element from S according to the underlying probability
distribution. Unless otherwise specified, the underlying distribution is assumed
to be uniform. By a finite function (or permutation) family F , we denote a set of
functions with common domain and common range. Let Randk→� be the set of
all functions going from Ik to I�, and let Permm be the set of all permutations on
Im. We call a finite function (or permutation) family keyed if every function in
it can be specified (not necessarily uniquely) by a key a. We denote the function
given by a as fa. We assume that given a, it is possible to efficiently evaluate fa

at any point (as well as f−1
a in case of a keyed permutation family). For a given

keyed function family, a key can be any string from Is, where s is known as “key
length.” (Sometimes it is convenient to have keys from a set other than Is; we
do not consider such function families simply for clarity of exposition, but our
results continue to apply in such cases.) For functions f and g, g ◦ f denotes the
function x �→ g(f(x)).

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 37

Model of Computation. We model the adversary A as a program for a Ran-
dom Access Machine (RAM) with black-box access to some number k of oracles,
each computing some specified function. If (f1, . . . , fk) is a k-tuple of functions,
then Af1,...,fk denotes a k-oracle adversary who is given black-box oracle access
to each of the functions f1, . . . , fk. We define A’s “running time” to be the num-
ber of time steps it takes plus the length of its description (to prevent one from
embedding arbitrarily large lookup tables in A’s description).

Pseudorandom Functions and Block Ciphers. The pseudorandomness of
a keyed function family F with domain Ik and range I� captures its compu-
tational indistinguishability from Randk→�. The following definition is adapted
from [GGM84]:

Definition 1. A pseudorandom function family F is a keyed function family
with domain Ik, range I�, and key length s. Let A be a 1-oracle adversary. Then
we define A’s advantage as

Advprf
F (A) �

∣∣∣Pr[a R← Is : Afa = 1]− Pr[f R← Randk→� : Af = 1]
∣∣∣ .

For any integers q, t ≥ 0, we define Advprf
F (q, t) � maxA{Advprf

F (A)}, as an
insecurity function, where the maximum is taken over choices of adversary A
such that:

– A makes at most q oracle queries, and
– the running time of A, plus the time necessary to select a R← Is and answer
A’s queries, is at most t.

Recall that the Even-Mansour cipher [EM97] operates on a 2n-bit string x
as follows E(x) = k2 ⊕ P (x ⊕ k1) where k1, k2 ∈ I2n constitutes the keying
material and P is a random permutation oracle. Here P and P−1 are publicly
computable (in a black-box fashion) by all parties. Even and Mansour proved
that E is hard to invert on a point C0 of the adversary’s choice even if the
adversary has oracle access to E, E−1, P, P−1 subject to the restriction that the
adversary cannot query the E−1 oracle on the point C0; i.e., it is hard to find M0
such that M0 = E−1

k1,k2
(C0). Similarly, they showed that the adversary cannot

compute the ciphertext corresponding to a message point M0 of its choice with
access to these same oracles, but this time subject to the restriction that the
adversary cannot query the E oracle on point M0; i.e., it is hard to find C0
such that C0 = Ek1,k2(M0). While these results capture some of the security
requirements needed for a block cipher, there are stronger notions of security
for a block cipher. One such notion, proposed by Luby and Rackoff [LR88],
is called super pseudorandomness. The notion captures the pseudorandomness
of a permutation family on I� in terms of its indistinguishability from Perm�,
where the adversary is given access to both directions of the permutation. In
other words, it measures security of a block cipher against chosen plaintext and
ciphertext attacks. We now describe such notions and how to achieve them.

38 C. Gentry and Z. Ramzan

Definition 2. A block cipher P is a keyed permutation family with domain and
range I� and key length s. Let A be a 2-oracle adversary. Then we define A’s
advantage as

Advsprp
P (A) �

∣∣∣Pr[a R← Is : Apa,p−1
a = 1]− Pr[p R← Perm� : Ap,p−1

= 1]
∣∣∣ .

For any integers q, t ≥ 0, Advsprp
F (q, t) specifies the insecurity function (anal-

ogous to Definition 1).

Luby and Rackoff showed how to construct a secure block cipher using Feistel
permutations.

Definition 3 (Basic Feistel Permutation). Let F be a function family with
domain and range In. Let f ∈ F . Let x = (xL, xR) with xL, xR ∈ In. We denote
by f the permutation on I2n defined as f(x) = (xR, xL⊕f(xR)). Note that it is a
permutation because f−1(y) = (yR⊕ f(yL), yL). Similarly, let F = {f | f ∈ F}.

Definition 4 (Feistel Network). If f1, . . . , fs are mappings with domain and
range In, then we denote by Φ(f1, . . . , fs) the permutation on I2n defined as
Φ(f1, . . . , fs) = fs ◦ . . . ◦ f1.

Theorem 1 (Luby-Rackoff). Let h1, f1, f2, h2 be independently-keyed func-
tions from a keyed function family F with domain and range In and key space
Is. Let P be the family of permutations on I2n with key space I4s defined by
P = Φ(h1, f1, f2, h2) (the key for an element of P is simply the concatenation of
keys for h1, f1, f2, h2). Then, Advsprp

P (q, t) ≤ Advprf
F (q, t)+

(
q
2

) (
2−n+1 + 2−2n+1

)
.

The Luby-Rackoff result proved security when the adversary has access to the
permutation and its inverse. In our case, we will show security of the Even-
Mansour cipher when the adversary has black-box access to the cipher, its in-
verse, and to each of the internal round functions.

Having presented the classical definitions of block ciphers and Feistel net-
works, we now describe notions of the Ramzan-Reyzin round security frame-
work [RR00] which we make use of in the present work.

Definition 5 (Round Decomposition [RR00]). Let P,F1,F2, . . . ,Fr be
keyed permutation families, each with domain and range I� and key length s,
such that for any key a ∈ Is, pa = fr

a ◦ · · · ◦ f1
a . Then F1, . . . ,Fr is called an

r-round decomposition for P. For i ≤ j, denote by (i → j)a the permutation
f j

a ◦ . . . ◦ f i
a, and by (i← j)a the permutation

(
f j

a ◦ . . . ◦ f i
a

)−1. Denote by i→ j
and i← j the corresponding keyed function families.

Note that having oracle access to a member of i→ j means being able to give
inputs to round i of the forward direction of a block cipher and view outputs
after round j. Likewise, having oracle access to i← j corresponds to being able
to give inputs to round j of the reverse direction of the block cipher and view
outputs after round i. Thus, the oracle for 1→ r = P corresponds to the oracle

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 39

for a chosen plaintext attack, and the oracle for 1 ← r = P−1 corresponds to
the oracle for a chosen ciphertext attack.

We now give a formal security definition of a block cipher when an adversary
has access to internal rounds. Note that the adversary is allowed oracle access
to some subset K of the set {i → j, i ← j : 1 ≤ i ≤ j ≤ r}, and the insecurity
function additionally depends on K.

Definition 6 (Round Security [RR00]). Let P be a block cipher with domain
and range I�, key length s, and some r-round decomposition F1, . . . ,Fr. Fix
some subset K = {π1, . . . ,πk} of the set {i→ j, i← j : 1 ≤ i ≤ j ≤ r}, and let
A be a k + 2-oracle adversary. Then we define A’s advantage as

Advsprp
P,F1,...,Fr,K(A) =∣∣∣Pr[a R← Is : Apa,p−1

a ,π1
a,...,πk

a = 1]− Pr[p R← Perm�, a
R← Is : Ap,p−1,π1

a,...,πk
a = 1]

∣∣∣
For any integers q, t ≥ 0 and set K, Advsprp

P,F1,...,Fr,K(q, t) specifies our inse-
curity function (analogous to Definition 2).

Ramzan and Reyzin [RR00] were the first to consider what happens when
internal round functions of a Feistel network are available to an external adver-
sary.

Theorem 2 (Ramzan-Reyzin). Let f1, f2, f3, f4 be independently-keyed func-
tions from a keyed function family F with domain and range In and key space
Is. Let P be the family of permutations on I2n with key space I4s defined by
P = Φ(f1, f2, f3, f4) with the natural 4-round decomposition F ,F ,F ,F . Let
K = {i→ j, i← j : 2 ≤ i ≤ j ≤ 3}. Then

Advsprp
P,F,F,F,F,K

(q, t) ≤ Advprf
F (q, t) +

(
q

2

)(
2−n+1 + 2−2n+1)+ q2 (2−n−1) .

Ramzan-Reyzin consider the case where all parties have black-box access to
the internal permutations f2, f3. They noted that if the underlying round func-
tions f1, and f2 are chosen from Randn→n, then one could translate their results
to the random oracle model wherein f2, f3 are modeled as random function or-
acles that are accessible to all parties, including the adversary.

3 Our Main Result

We now prove our main result. We use the Ramzan-Reyzin round-security frame-
work [RR00] to analyze our construction and leverage their techniques to obtain
the desired result. However, for technical reasons, the proof must also incorpo-
rate an additional hybrid distribution into the argument. Now, let Ψf,g

k1,k2
denote

the Even-Mansour construction when the internal permutation is replaced by a
four-round Feistel network with outer round function g and inner round func-
tion f : Ψf,g

k1,k2
(x) = k2 ⊕ Φ(g, f, f, g)(x⊕ k1). Here k1, k2 ∈ I2n are the keys and

40 C. Gentry and Z. Ramzan

f, g are modeled as random function oracles; i.e., they are publicly accessible to
all parties (including the adversary) and behave like random functions. Observe
then that the adversary can compute not only the Even-Mansour permutation,
but also knows its internal structure and has black-box access to the functions
f and g around which it is designed. We view this construction as consisting of
the composition of six round permutations:

– πk1
1 (x) = x⊕ k1

– π3,π4 = f . Recall that f denotes a permutation on I2n defined as f(x) =
(xR, xL ⊕ f(xR)).

– π2,π5 = g.
– πk2

6 (x) = x⊕ k2.

Observe that Ψf,g
k1,k2

(M) = πk2
6 ◦ π5 ◦ · · · ◦ π2 ◦ πk1

1 . We now state our main
result in the following theorem:

Theorem 3 (Main Result). Suppose K ⊆ {i → j, i ← j | 2 ≤ i ≤ j ≤ 5}.
Let f be modeled as a random oracle, and let k1 and k2 be picked randomly and
independently from I2n. Let Ψf,g

k1,k2
(x) = k2 ⊕ Φ(g, f, f, g)(x ⊕ k1), and R be a

random permutation on I2n. Then

Advsprp
P,π1,π2,...,π6

(q, t,K) ≤
(
2q2 − q

)
· 2−n +

(
q

2

)
· 2−2n+1.

Observe that we do not consider any terms of the form Advprf
F (q, t) since we

assume that the underlying round functions are modeled as random oracles in
which case such terms will evaluate to 0.

Recasting the problem in the round-security framework allows us to apply
the techniques of Ramzan and Reyzin [RR00] (who generalized the techniques
of Naor and Reingold [NR99] to deal with the extra queries from an oracle with
internal access). We note that access to the oracles of K is equivalent to access
to the oracles for f and g3. Now, consider the following theorem.

Theorem 4. Let f and g be modeled as random oracles, and let k1 and k2 be
picked randomly and independently from I2n. Let Ψf,g

k1,k2
(x) = k2⊕Φ(g, f, f, g)(x⊕

k1), and let R be a random element of Perm2n. Then, for any 4-oracle adversary
A (we do not restrict the running time of A) that makes at most qc queries to
its first two oracles (either Ψ, Ψ−1 or R,R−1) and at most qof and qog queries
to its second two oracles (f and g) respectively, it follows that:∣∣∣Pr[AΨ,Ψ−1,f,g = 1]− Pr[AR,R−1,f,g = 1]

∣∣∣
≤ (q2

c +2qofqc+2qogqc+q2
c−qc)2−n+

(
qc

2

)(
2 · 2−n + 2−2n+1) .

3 We remark, however, that one query to an oracle in K may need to be simulated by
multiple queries to f, g. Therefore, the total number of queries made to f and g is
an upper bound on the number of queries that would need to be made to an oracle
in K.

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 41

Observing that the total number of queries q = qc + qof + qog, it is straight-
forward to see that

(q2
c + 2qofqc + 2qogqc + q2

c − qc) ≤ 2q2 − q.

Therefore, we see that theorem 4 implies theorem 3. In the sequel, we describe
the proof of theorem 4. The first part of the proof focuses on the adversary’s
transcript (i.e., his “view”) and shows that each possible transcript is about as
likely to occur when A is given Ψ, f, g as when A is given R, f, g. This part of the
proof also relies on a hybrid distribution Ψ̃ to facilitate the proof. The second
part uses a standard probability argument to show that if the distributions on
transcripts are similar, then A will have a small advantage in distinguishing Ψ
from R.

Proof of Theorem 4. To start with, let P denote the permutation oracle
(either Ψ or R) that A accesses. From now on, for notational convenience we
ignore the superscripts f, g and the subscripts k1, k2 associated with Ψ . Let Of

and Og denote the oracles that compute the functions f and g (note that when A
gets Ψ as its permutation oracle, f and g are actually used as the round function
in the computation of the oracle P = Ψ ; when A gets R as its permutation
oracle, f and g are independent of P = R). The machine A makes two types of
queries to the oracle P : (+, x) which asks to obtain the value of P (x), or (−, y)
which asks to obtain the value of P−1(y) – where both x and y are in I2n. We call
these cipher queries. We define the query-answer pair for the ith cipher query as
〈xi, yi〉 ∈ I2n×I2n if A’s query was (+, xi) and yi is the answer it received from P
or its query was (−, yi) and xi is the answer it received. We assume that A makes
exactly qc cipher queries and we call the sequence {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P the

cipher-transcript of A. In addition, A can make queries to Of and Og. We call
these oracle queries. We denote these queries as: (Of , x′) (resp. (Og, x′)) which
asks to obtain f(x′) (resp. g(x′)). We define the query-answer pair for the ith

oracle query as 〈x′
i, y

′
i〉 ∈ In × In if A’s query was (Of , x′) and the answer it

received was y′ and as 〈x′′
i , y

′′
i 〉 ∈ In × In if A’s query was (Og, x′′) and the

answer it received was y′′. We assume that A makes qof and qog queries to
Of and Og respectively. We call the sequence {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of the

f -oracle-transcript of A and {〈x′′
1 , y

′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og the g-oracle-transcript

ofA. Note that sinceA is computationally unbounded, we can make the standard
assumption that A is a deterministic machine. Under this assumption, the exact
next query made byA can be determined by the previous queries and the answers
received. We formalize this as follows:

Definition 7. We denote the i + j + k + 1st query A makes as a function of
the first i+ j +k query-answer pairs in A’s cipher and oracle transcripts (where
either i < qc or j < qof or k < qog) by:

CA[{〈x1, y1〉, . . . , 〈xi, yi〉}P , {〈x′
1, y

′
1〉, . . . , 〈x′

j , y
′
j〉}Of , {〈x′′

1 , y
′′
1 〉, . . . , 〈x′′

k , y
′′
k 〉}Og].

42 C. Gentry and Z. Ramzan

For the case that all queries have been made (i.e., i = qc, j = qof , k = qog),
we define the above expression to denote A’s output as a function of its cipher
and oracle transcripts.

Definition 8. Let σ = (TP , Tf , Tg) be a three tuple comprising the sequences
TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg =

{〈x′′
1 , y

′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , and where for 1 ≤ i ≤ qc we have that 〈xi, yi〉 ∈

I2n × I2n, for 1 ≤ j ≤ qof , we have that 〈x′
j , y

′
j〉 ∈ In × In, and for 1 ≤ k ≤ qog,

we have that 〈x′′
k , y

′′
k 〉 ∈ In × In. Then, σ is a possible A-transcript if for every

1 ≤ i ≤ qc, for every 1 ≤ j ≤ qof and for every 1 ≤ k ≤ qog,

CA[{〈x1, y1〉, . . . , 〈xi, yi〉}P , {〈x′
1, y

′
1〉, . . . , 〈x′

j , y
′
j〉}Of {〈x′′

1 , y
′′
1 〉, . . . , 〈x′′

k , y
′′
k 〉}Og] ∈

{(+, xi+1), (−, yi+1), (Of , x′
j+1), (Og, x′′

k+1)}.

We now consider two useful processes for answering A’s cipher queries.

Definition 9. Let Ψ̃ denote the process in which the cipher queries and f-oracle
queries are answered as they would be for Ψ , however the g-oracle queries are
answered by another independent random function oracle h.

Definition 10. Let R̃ denote the process that answers all oracle queries as Ψ
would, but answers the ith cipher query of A as follows:

1. If A’s query is (+, xi) and for some 1 ≤ j < i the jth query-answer pair is
〈xi, yi〉, then R̃ answers yi.

2. If A’s query is (−, yi) and for some 1 ≤ j < i the jth query-answer pair is
〈xi, yi〉, then R̃ answers xi.

3. If neither of the above happens, then R̃ answers with a uniformly chosen
element in I2n.

We formalize the fact that R̃’s answers may not be consistent with any func-
tion, let alone any permutation.

Definition 11. Let σ′ = {〈x1, y1〉, . . . , 〈xqc
, yqc
〉}P be any possible A-cipher

transcript. We say that σ′ is inconsistent if for some 1 ≤ j < i ≤ qc the corre-
sponding query-answer pairs satisfy xi = xj but yi �= yj, or xi �= xj but yi = yj.
Likewise, we call any A-transcript σ that contains σ′ inconsistent.

Note 1. If σ = (TP , Tf , Tg), with sub-transcripts TP = {〈x1, y1〉, . . . , 〈xqc
, yqc
〉}P ,

Tf = {〈x′
1, y

′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg = {〈x′′

1 , y
′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , is a

possible A-transcript, we assume from now on that if σ is consistent and if i �= j
then xi �= xj , yi �= yj , x′

i �= x′
j , and x′′

i �= x′′
j . This formalizes the concept

that A never repeats a query if it can determine the answer from a previous
query-answer pair.

Fortunately, the process R̃ often behaves like a permutation. It turns out
that if A is given oracle access to either R̃ or R to answer its cipher queries, it
will have a negligible advantage in distinguishing between the two. Proposition 1
states this more formally. Before doing so, we first consider the distributions on

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 43

the various transcripts seen by A as a function of the different distributions on
answers it can get.

Definition 12. The discrete random variables TΨ , TΨ̃ , TR, TR̃ denote the cipher
and oracle transcripts seen by A when its cipher queries are answered by Ψ , Ψ̃ ,
R, R̃ respectively, and its oracle queries are answered by Of or Og.

Remark 1. Observe that according to our definitions and assumptions,AΨ,Ψ−1,f,g

and CA(TΨ) denote the same random variable. The same is true for the other
discrete random variables.

Proposition 1. |PrR̃[CA(TR̃) = 1]− PrR[CA(TR) = 1]| ≤
(
qc

2

)
· 2−2n.

The proof of this proposition has appeared in numerous places [NR99, RR00].
The idea is to observer that TR, TR̃ have the same distribution conditioned on
TR̃ being consistent. One can then bound the probability that TR̃ is inconsistent
by
(
qc

2

)
· 2−2n. The proof can be completed by a standard probability argument.

We omit the details, though they are available in the full version [GR04]. We now
proceed to obtain a bound on the advantage that A will have in distinguishing
between TΨ and TR̃. We first show that TΨ and TΨ̃ are identically distributed,
unless the input to g in a cipher query related to Ψ matches the input to g in
an oracle query related to Ψ . We can compute the likelihood of such an event as
a function of only k1 and k2 – we term this event BadG and define it next; we
then compute the probability that it occurs.

Definition 13. For every specific pair of keys k1, k2 ∈ I2n, we define BadG(k1, k2)
to be the set of all possible and consistent transcripts σ = (TP , Tf , Tg), with sub-
transcripts TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of ,

and Tg = {〈x′′
1 , y

′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og satisfying at least one of the following

events:
– BG1: there exists 1 ≤ i ≤ qc, 1 ≤ j ≤ qog such that xR

i ⊕ kR
1 = x′′

j , or
– BG2: there exists 1 ≤ i ≤ qc, 1 ≤ j ≤ qog such that yL

i ⊕ kL
2 = x′′

j .

Proposition 2. Let k1, k2 be randomly and independently chosen from I2n. For
any possible and consistent A−transcript σ = (TP , Tf , Tg), with sub-transcripts
TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg =

{〈x′′
1 , y

′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , we have that

Pr
k1,k2

[σ ∈ BadG(k1, k2)] ≤ 2qogqc · 2−n.

Proof. (Sketch) A transcript σ is in BadG(k1, k2) if one of BG1 or BG2 occur.
We obtain an upper bound on the probabilities of each of these events separately
by using the fact that k1, k2 are chosen uniformly at random from I2n. Applying
the union bound to sum the individual probabilities yields the desired result.

We now show that TΨ and TΨ̃ are identically distributed if neither BG1 nor
BG2 occur.

44 C. Gentry and Z. Ramzan

Lemma 1. Let σ = (TP , Tf , Tg), where TP = {〈x1, y1〉, . . . , 〈xqc
, yqc
〉}P , Tf =

{〈x′
1, y

′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg = {〈x′′

1 , y
′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , be any pos-

sible and consistent A− transcript, then

Pr
Ψ

[TΨ = σ|σ /∈ BadG(k1, k2)] = Pr
Ψ̃

[TΨ̃ = σ].

Proof. (Sketch) Observe that xR
i ⊕ kR

1 �= x′′
j and yL

i ⊕ kL
2 �= x′′

j for all i, j
whenever σ /∈ BadG(k1, k2). In such a case, the inputs to g during the cipher
queries are distinct from the inputs to g during the g-oracle queries. Since there
is no overlap in the two sets of queries, since g is modeled as a random oracle,
and since the events depend only on the choice of k1 and k2 (which are chosen
independently of g), the distribution is identical to one in which g is replaced by
another independently chosen random oracle h.

We now focus on TΨ̃ . It turns out that TΨ̃ and TR̃ are identically distributed
unless the same value is input to the inner random oracle f on different oc-
casions (we show this in Lemma 2). We can compute the likelihood of this
event as a function of only k1, k2, and g. We call this event “Bad” (in the next
definition) and obtain a bound on the probability that it actually occurs (in
Proposition 3).

Definition 14. For every specific pair of keys k1, k2 ∈ I2n and oracle g ∈
Randn→n, define Bad(k1, k2, g) to be the set of all possible and consistent tran-
scripts σ = (TP , Tf , Tg), with sub-transcripts TP = {〈x1, y1〉, . . . , 〈xqc

, yqc
〉}P ,

Tf = {〈x′
1, y

′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of , and Tg = {〈x′′

1 , y
′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , sat-

isfying at least one of the following events:

– B1: ∃ 1 ≤ i < j ≤ qc such that g(xR
i ⊕ kR

1)⊕ xL
i = g(xR

j ⊕ kR
1)⊕ xL

j

– B2: ∃ 1 ≤ i < j ≤ qc such that yR
i ⊕ g(yL

i ⊕ kL
2) = yR

j ⊕ g(yL
j ⊕ kL

2)
– B3: ∃ 1 ≤ i, j ≤ qc such that g(xR

i ⊕ kR
1)⊕ xL

i ⊕ kL
1 = kR

2 ⊕ yR
j ⊕ g(yL

j ⊕ kL
2)

– B4: ∃ 1 ≤ i ≤ qc, 1 ≤ j ≤ qof such that g(xR
i ⊕ kR

1)⊕ xL
i ⊕ kL

1 = x′
j

– B5: ∃ 1 ≤ i ≤ qc, 1 ≤ j ≤ qof such that kR
2 ⊕ yR

i ⊕ g(yL
i ⊕ kL

2) = x′
j.

Proposition 3. Let k1, k2 be randomly and independently chosen from I2n.
Then, for any possible and consistent A− transcript σ = (TP , Tf , Tg), with sub-
transcripts TP = {〈x1, y1〉, . . . , 〈xqc , yqc〉}P , Tf = {〈x′

1, y
′
1〉, . . . , 〈x′

qof
, y′

qof
〉}Of ,

and Tg = {〈x′′
1 , y

′′
1 〉, . . . , 〈x′′

qog
, y′′

qog
〉}Og , we have that

Pr
k1,k2,g

[σ ∈ Bad(k1, k2, g)] ≤
(

q2
c + 2qofqc + 2 ·

(
qc

2

))
· 2−n.

Proof. (Sketch) Recall that a transcript σ ∈ Bad(k1, k2, g) if at least one of
the above events occurs. We obtain an upper bound on the probabilities of
each of these events separately using the fact that k1, k2 are chosen uniformly at

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 45

random from I2n and that g is chosen uniformly at random from Randn→n. Ap-
plying the union bound to sum the probabilities for each event yields the desired
result.

Lemma 2. Let σ be defined as in Lemma 1. Then,

Pr
Ψ̃

[TΨ̃ = σ|σ /∈ Bad(k1, k2, g)] = Pr
R̃

[TR̃ = σ].

Proof. It is easy to see that PrR̃[TR̃ = σ] = 2−(2qc+qof +qog)n (following an argu-
ment in [NR99], [RR00]). Now, fix k1, k2, g to be such that σ /∈ Bad(k1, k2, g).
We will now compute Prf,h[TΨ̃ = σ] (recall that in the definition of Ψ̃ , h is a
random oracle independent of f and g, and note that the probability is now
only over the choice of f and h). Since σ is a possible A-transcript, it follows
that TΨ̃ = σ if and only if yi = k1 ⊕ Ψ̃(g, f, f, g)(xi ⊕ k2) for all 1 ≤ i ≤ qc,
y′

j = f(x′
j), for all 1 ≤ j ≤ qof , and y′′

j = g(x′′
j) for all 1 ≤ j ≤ qog. If we define

Si = kL
1 ⊕ xL

i ⊕ g(xR
i ⊕ kR

1) and Ti = kR
2 ⊕ yR

i ⊕ g(yL
i ⊕ kL

2), then

(yL
i , y

R
i) = Ψ̃(xL

i , x
R
i)⇔ f(Si)⊕ kR

1 = Ti ⊕ xR
i and f(Ti)⊕ kL

2 = yL
i ⊕ Si.

Now observe that for all 1 ≤ i < j ≤ qc, Si �= Sj and Ti �= Tj (otherwise
σ ∈ Bad(k1, k2, g)). Similarly, for all 1 < i, j < qc, Si �= Tj . In addition, it follows
again from the fact that σ /∈ Bad(k1, k2, g) that for all 1 ≤ i ≤ qc and 1 ≤ j ≤ qog,
x′

i �= Sj and x′
i �= Tj . So, if σ /∈ Bad(k1, k2, g) all the inputs to f are distinct. Since

f is modeled as a random oracle, Prf,h[TΨ̃ = σ] = 2−(2qc+qof +qog)n (the cipher
transcript contributes 2−2nqc and the oracle transcripts contribute 2−qof n−qogn to
the probability). Thus, for every choice of k1, k2, g such that σ /∈ Bad(k1, k2, g),
the probability that TΨ̃ = σ is exactly the same: 2−(2qc+qof +qog)n. Therefore:
PrΨ̃ [TΨ̃ = σ|σ /∈ Bad(k1, k2, g)] = 2−(2qc+qof +qog)n.

The rest of the proof consists of using the above lemma and Propositions 1, 2
and 3, as well as Lemmas 1 and 2, in a probability argument. The idea is to first
express the adversary’s advantage as a function of how its distinguishing machine
behaves on specific transcripts. Then, these probabilities are re-expressed to
incorporate the conditions Bad and BadG. By basic manipulation of probabilities,
we can show that the adversary’s advantage is bounded above by the probability
of the conditions Bad or BadG occurring, plus the probability that the transcript
is inconsistent. An additional term of the form

(
qc

2

)
· 2−2n also appears because

of an application of the triangle inequality. The complete details are omitted due
to space constraints, though are available in the full version [GR04].

4 Conclusions

We resolved a fundamental open problem of the Even-Mansour work by demon-
strating that the underlying random permutation oracle could be instantiated

46 C. Gentry and Z. Ramzan

with a construction based on random function oracles. There are many avenues
for future work. For example, we may be able to apply our techniques to other
situations where random permutation oracles are useful. Also, there is a sizeable
gap between the best known key-recovery attack and the bound achieved in our
security proof. Perhaps that gap can be decreased by developing a variant on
the slide-with-twist that exploits the structure of our construction.

References

[BBP04] M. Bellare, A. Boldyreva, and A. Palacio. An un-instantiable random-oracle-
model scheme for a hybrid-encryption problem. In C. Cachin and J. Ca-
menisch, editors, Proc. EUROCRYPT 2004, Lecture Notes in Computer
Science. Springer-Verlag, 2004.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions
revisited: The cascade construction and its concrete security. In 37th An-
nual Symposium on Foundations of Computer Science, pages 514–523. IEEE,
1996.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher
block chaining. In Yvo G. Desmedt, editor, Advances in Cryptology—
CRYPTO ’94, volume 839 of Lecture Notes in Computer Science, pages
341–358. Springer-Verlag, 21–25 August 1994.

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In First ACM Conference on Computer and
Communications Security, pages 62–73, Fairfax, 1993.

[BW00] A. Biryukov and D. Wagner. Advanced slide attacks. In Advances in Cryp-
tology – Proc. of Eurocrypt 2000. Springer-Verlag.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. In Proc. 30th ACM Symp. on Theory of Computing, 1998.

[Dae91] J. Daemen. Limitations of the Even-Mansour construction. In Advances in
Cryptology – ASIACRYPT ’91, vol. 739, 495–498, 1992. Springer-Verlag.
Initially Presented at the Rump Session.

[EM97] S. Even and Y. Mansour. A construction of a cipher from a single pseudo-
random permutation. Journal of Cryptology, 10(3):151–162, Summer 1997.
Earlier version in Proc. ASIACRYPT 1991. Lecture Notes in Computer Sci-
ence, vol. 739, 210–224, Springer Verlag (1992).

[GGM84] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, 33(4):792–807, October 1984.

[GK03] S. Goldwasser and Y. Tauman Kalai. On the (in)security of the Fiat-Shamir
Paradigm. In Proceedings of FOCS 2003, 2003.

[GR04] C. Gentry and Z. Ramzan. Eliminating random permutation oracles in the
Even-Mansour cipher. Cryptology ePrint archive, 2004.

[KR96] J. Kilian and P. Rogaway. How to protect against exhaustive search. In
Proc. CRYPTO 96, Lecture Notes in Computer Science. Springer-Verlag,
1996.

[LR88] M. Luby and C. Rackoff. How to construct pseudorandom permutations and
pseudorandom functions. SIAM J. Computing, 17(2):373–386, April 1988.

Eliminating Random Permutation Oracles in the Even-Mansour Cipher 47

[FIPS46] National Bureau of Standards. FIPS publication 46: Data encryption stan-
dard, 1977. Federal Information Processing Standards Publication 46.

[NR99] M. Naor and O. Reingold. On the construction of pseudo-random permuta-
tions: Luby-Rackoff revisited. J. of Cryptology, 12:29–66, 1999. Preliminary
version in: Proc. STOC 97.

[PRS02] S. Patel, Z. Ramzan, and G. Sundaram. Luby-Rackoff ciphers: Why XOR
is not exclusive. In Proc. of Selected Areas of Cryptography, Lecture Notes
in Computer Science, Vol. 2595, pages 271–290.

[RR00] Z. Ramzan and L. Reyzin. On the Round Security of Symmetric-Key Cryp-
tographic Primitives. In Proc. CRYPTO 00, Lecture Notes in Computer
Science. Springer-Verlag, 2000.

Towards Plaintext-Aware Public-Key
Encryption Without Random Oracles

Mihir Bellare and Adriana Palacio

Dept. of Computer Science & Engineering, University of California,
San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

{mihir, apalacio}@cs.ucsd.edu
http://www-cse.ucsd.edu/users/{mihir, apalacio}

Abstract. We consider the problem of defining and achieving plaintext-
aware encryption without random oracles in the classical public-key
model. We provide definitions for a hierarchy of notions of increasing
strength: PA0, PA1 and PA2, chosen so that PA1+IND-CPA → IND-
CCA1 and PA2+IND-CPA → IND-CCA2. Towards achieving the new
notions of plaintext awareness, we show that a scheme due to Damg̊ard
[12], denoted DEG, and the “lite” version of the Cramer-Shoup scheme
[11], denoted CS-lite, are both PA0 under the DHK0 assumption of [12],
and PA1 under an extension of this assumption called DHK1. As a result,
DEG is the most efficient proven IND-CCA1 scheme known.

1 Introduction

The theory of encryption is concerned with defining and implementing notions
of security for encryption schemes [22, 23, 17, 25, 27, 15]. One of the themes in its
history is the emergence of notions of security of increasing strength that over
time find applications and acceptance.

Our work pursues, from the same perspective, a notion that is stronger than
any previous ones, namely plaintext awareness. Our goal is to strengthen the
foundations of this notion by lifting it out of the random-oracle model where
it currently resides. Towards this end, we provide definitions of a hierarchy of
notions of plaintext awareness, relate them to existing notions, and implement
some of them. We consider this a first step in the area, however, since important
questions are left unresolved. We begin below by reviewing existing work and
providing some motivation for our work.

1.1 Background

Intuitively, an encryption scheme is plaintext aware (PA) if the “only” way that
an adversary can produce a valid ciphertext is to apply the encryption algorithm
to the public key and a message. In other words, any adversary against a PA
scheme that produces a ciphertext “knows” the corresponding plaintext.

Random-Oracle model work. The notion of PA encryption was first sug-
gested by Bellare and Rogaway [6], with the motivation that PA+IND-CPA

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 48–62, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles 49

should imply IND-CCA2. That is, security against chosen-plaintext attack
coupled with plaintext awareness should imply security against adaptive chosen-
ciphertext attack. The intuition, namely, that if an adversary knows the plaintext
corresponding to a ciphertext it produces, then a decryption oracle must be use-
less to it, goes back to [8, 9]. Bellare and Rogaway [6] provided a formalization
of PA in the random oracle (RO) model. They asked that for every adversary A
taking the public key and outputting a ciphertext, there exist an extractor that,
given the same public key and a transcript of the interaction of A with its RO,
is able to decrypt the ciphertext output by A. We will refer to this notion as
PA-BR.

Subsequently, it was found that PA-BR was too weak for PA-BR+IND-CPA
to imply IND-CCA2. Bellare, Desai, Pointcheval and Rogaway [4] traced the
cause of this to the fact that PA-BR did not capture the ability of the adversary
to obtain ciphertexts via eavesdropping on communications made to the receiver.
(Such eavesdropping can put into the adversary’s hands ciphertexts whose de-
cryptions it does not know, lending it the ability to create other ciphertexts
whose decryptions it does not know.) They provided an appropriately enhanced
definition (still in the RO model) that we denote by PA-BDPR, and showed that
PA-BDPR+IND-CPA → IND-CCA2.

Plaintext awareness is exploited, even though typically implicitly rather than
explicitly, in the proofs of the IND-CCA2 security of numerous RO-model en-
cryption schemes, e.g., [16, 28, 7].

PA and the RO model. By restricting the above-mentioned RO-model defini-
tions to schemes and adversaries that do not query the RO, one obtains natural
counterpart standard (i.e., non-RO) model definitions of PA. These standard-
model definitions turn out, however, not to be achievable without sacrificing
privacy, because the extractor can simply be used for decryption. This indicates
that the use of the RO model in the definitions of [6, 4] is central.

Indeed, PA as per [6, 4] is “designed” for the RO model in the sense that
the definition aims to capture certain properties of certain RO-model schemes,
namely, the fact that possession of the transcript of the interaction of an adver-
sary with its RO permits decryption of ciphertexts formed by this adversary. It
is not clear what counterpart this intuition has in the standard model.

The lack of a standard-model definition of PA results in several gaps. One
such arises when we consider that RO-model PA schemes are eventually instan-
tiated to get standard-model schemes. In that case, what property are these
instantiated schemes even supposed to possess? There is no definition that we
might even discuss as a target.

PA via key registration. PA without ROs was first considered by Herzog,
Liskov and Micali [21], who define and implement it in an extension of the usual
public-key setting. In their setting, the sender (not just the receiver) has a public
key, and, in a key-registration phase that precedes encryption, proves knowledge
of the corresponding secret key to a key-registration authority via an interactive
proof of knowledge. Encryption is a function of the public keys of both the sender

50 M. Bellare and A. Palacio

and the receiver, and the PA extractor works by extracting the sender secret key
using the knowledge extractor of the interactive proof of knowledge.

Their work also points to an application of plaintext-aware encryption where
the use of the latter is crucial in the sense that IND-CCA2-secure encryption
does not suffice, namely to securely instantiate the ideal encryption functions of
the Dolev-Yao model [14].

1.2 Our Goals and Motivation

The goal of this work is to provide definitions and constructions for plaintext-
aware public-key encryption in the standard and classical setting of public-key
encryption, namely the one where the receiver (but not the sender) has a public
key, and anyone (not just a registered sender) can encrypt a message for the
receiver as a function of the receiver’s public key. In this setting there is no
key-registration authority or key-registration protocol akin to [21].

Motivations include the following. As in the RO model, we would like a
tool enabling the construction of public-key encryption schemes secure against
chosen-ciphertext attack. We would also like to have some well-defined notion
that can be viewed as a target for instantiated RO-model PA schemes. (One
could then evaluate these schemes with regard to meeting the target.)

Additionally, we would like to enable the possibility of instantiating the ideal
encryption functions of the Dolev-Yao model [14] without recourse to either
random oracles or the key-registration model. Note that the last is an application
where, as per [21], PA is required and IND-CCA2 does not suffice, meaning
plaintext-awareness is crucial. (However, see also [1].)

As we will see later, consideration of PA in the standard model brings other
benefits, such as some insight, or at least an alternative perspective, on the
design of existing encryption schemes secure against chosen-ciphertext attack.
Let us now discuss our contributions.

1.3 Definitions

The first contribution of this paper is to provide definitions for plaintext-aware
encryption in the standard model and standard public-key setting.

Overview. We provide a hierarchy consisting of three notions of increasing
strength that we denote by PA0, PA1 and PA2. There are several motivations
for this. One is that these will be seen (in conjunction with IND-CPA) to imply
security against chosen-ciphertext attacks of different strengths. Another is that,
as will become apparent, PA is difficult to achieve, and progress can be made by
first achieving it in weaker forms. Finally, it is useful, pedagogically, to bring in
new definitional elements incrementally.

A closer look. Our basic definitional framework considers a polynomial-time
adversary C, called a ciphertext creator, that takes input the public key and
can query ciphertexts to an oracle. A polynomial-time algorithm C∗ is said to
be a successful extractor for C if it can provide replies to the oracle queries of C

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles 51

IND-CPA IND-CCA1 IND-CCA2

PA0+IND-CPA PA1+IND-CPA PA2+IND-CPA

1
2

4
3

5

Fig. 1. An arrow is an implication, and, in the directed graph given by the arrows,
there is a path from A to B if and only if A implies B. The hatched arrows represent
separations. Solid lines represent results from this paper, while dashed lines represent
results from prior work [4, 15]. The number on an arrow or hatched arrow refers to the
theorem in this paper that establishes this relationship. Absence of a number on a solid
arrow means the result is trivial

that are computationally indistinguishable from those provided by a decryption
oracle.

An important element of the above framework is that the extractor gets as
input the same public key as the ciphertext creator, as well as the coin tosses
of the ciphertext creator. This reflects the intuition that the extractor is the
“subconscious” of the adversary, and begins with exactly the same information
as the adversary itself.

We say that an encryption scheme is PA0 (respectively, PA1) if there exists
a successful extractor for any ciphertext creator that makes only a single oracle
query (respectively, a polynomial number of oracle queries).

Eavesdropping capability in PA2 is captured by providing the ciphertext
creator C with an additional oracle that returns ciphertexts, but care has to be
taken in defining this oracle. It does not suffice to let it be an encryption oracle
because we want to model the ability of the adversary to obtain ciphertexts whose
decryptions it may not know. Our formalization of PA2 allows the additional
oracle to compute a plaintext, as a function of the query made to it and coins
unknown to C, and return the encryption of this plaintext to C.

Formal definitions of PA0, PA1 and PA2 are in Section 3.

1.4 Relations

PA by itself is not a notion of privacy, and so we are typically interested in PA
coupled with the minimal notion of privacy, namely IND-CPA [22, 23]. We con-
sider six notions, namely, PA0+IND-CPA, PA1+IND-CPA and PA2+IND-CPA,
on the one hand, and the standard notions of privacy IND-CPA, IND-CCA1
[25] and IND-CCA2 [27], on the other. We provide implications and separa-
tions among these six notions in the style of [4, 15]. The results are depicted in
Figure 1. For notions A, B, an implication, represented by A → B, means that
every encryption scheme satisfying notion A also satisfies notion B, and a separa-
tion, represented by A �→ B, means that there exists an encryption scheme satis-
fying notion A but not satisfying notion B. (The latter assumes there exists some
encryption scheme satisfying notion A, since otherwise the question is vacuous.)

52 M. Bellare and A. Palacio

Figure 1 shows a minimal set of arrows and hatched arrows, but the relation
between any two notions is resolved by the given relations. For example, IND-
CCA1 �→ PA1+IND-CPA, because, otherwise, there would be a path from IND-
CCA2 to PA0+IND-CPA, contradicting the hatched arrow labeled 3. Similarly,
we get PA0 �→ PA1 �→ PA2, meaning the three notions of plaintext awareness
are of increasing strength.

The main implications are that PA1+IND-CPA implies IND-CCA1 and
PA2+IND-CPA implies IND-CCA2. The PA1+IND-CPA → IND-CCA1 result
shows that even a notion of PA not taking eavesdropping adversaries into account
is strong enough to imply security against a significant class of chosen-ciphertext
attacks. Since the PA+IND-CPA → IND-CCA2 implication has been a moti-
vating target for definitions of PA, the PA2+IND-CPA → IND-CCA2 result
provides some validation for the definition of PA2.

Among the separations, we note that IND-CCA2 does not imply PA0, mean-
ing even the strongest form of security against chosen-ciphertext attack is not
enough to guarantee the weakest form of plaintext awareness.

1.5 Constructions

The next problem we address is to find provably-secure plaintext-aware encryp-
tion schemes.

Approaches. A natural approach to consider is to include a non-interactive
zero-knowledge proof of knowledge [13] of the message in the ciphertext. How-
ever, as we explain in [2], this fails to achieve PA.

As such approaches are considered and discarded, it becomes apparent that
achieving even the weaker forms of PA in the standard (as opposed to RO)
model may be difficult. We have been able to make progress, however, under
some strong assumptions that we now describe.

DHK assumptions. Let G be the order q subgroup of Z∗
2q+1, where q, 2q + 1

are primes, and let g be a generator of G. Damg̊ard [12] introduced and used an
assumption that states, roughly, that an adversary given ga and outputting a
pair of the form (gb, gab) must “know” b. The latter is captured by requiring an
extractor that given the adversary coins and inputs can output b. We call our
formalization of this assumption (cf. Assumption 2) DHK0.1 We also introduce
an extension of this assumption called DHK1 (cf. Assumption 1), in which the
adversary does not just output one pair (gb, gab), but instead interacts with the

1 Another formalization, called DA-1, is used by Hada and Tanaka [19]. (We refer
to the full version of their paper [19], which points out that the formalization of
the preliminary version [20] is wrong.) This differs from DHK0 in being for a non-
uniform setting. DA-1 is called KEA1 by [5], based on Naor’s terminology [24]: KEA
stands for “knowledge of exponent.” Hada and Tanaka [19] also introduced and used
another assumption, that they call DA-2 and is called KEA2 in [5], but the latter
show that this assumption is false. The DHK0/DA-1/KEA1 assumptions, to the best
of our knowledge, are not known to be false.

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles 53

extractor, feeding it such pairs adaptively and each time expecting back the
discrete logarithm of the first component of the pair.

The DEG scheme. Damg̊ard presented a simple ElGamal variant that we call
DEG. It is efficient, requiring only three exponentiations to encrypt and two to
decrypt.

We prove that DEG is PA0 under the DHK0 assumption and PA1 under
the DHK1 assumption. Since DEG is easily seen to be IND-CPA under the
DDH assumption, and we saw above that PA1+IND-CPA → IND-CCA1, a
consequence is that DEG is IND-CCA1 assuming DHK1 and DDH. DEG is in
fact the most efficient IND-CCA1 scheme known to date to be provably secure
in the standard model.

Damg̊ard [12] claims that DEG meets a notion of security under ciphertext
attack that we call RPR-CCA1, assuming DHK0 and assuming the ElGamal
scheme meets a notion called RPR-CPA. (Both notions are recalled in the full
version of this paper [2], and are weaker than IND-CCA1 and IND-CPA, re-
spectively). As we explain in [2], his proof has a flaw, but his overall approach
and intuition are valid, and the proof can be fixed by simply assuming DHK1 in
place of DHK0. In summary, our contribution is (1) to show that DEG meets a
stronger and more standard notion of security than RPR-CCA1, namely IND-
CCA1, and (2) to show it is PA0 and PA1, indicating that it has even stronger
properties, and providing some formal support for the intuition given in [12]
about the security underlying the scheme.

CS-Lite. CS-lite is a simpler and more efficient version of the Cramer-Shoup
encryption scheme [11] that is IND-CCA1 under the DDH assumption. We show
that CS-lite is PA0 under the DHK0 assumption and PA1 under the DHK1
assumption. (IND-CPA under DDH being easy to see, this again implies CS-lite is
IND-CCA1 under DHK1 and DDH, but in this case the conclusion is not novel.)
What we believe is interesting about our results is that they show that some form
of plaintext awareness underlies the CS-lite scheme, and this provides perhaps
an alternative viewpoint on the source of its security. We remark, however, that
DEG is more efficient than CS-lite.

Warning and discussion. DHK0 and DHK1 are strong and non-standard
assumptions. As pointed out by Naor [24], they are not efficiently falsifiable.
(However, such assumptions can be shown to be false as exemplified in [5]).
However standard-model schemes, even under strong assumptions, might provide
better guarantees than RO model schemes, for we know that the latter may
not provide real-world security guarantees at all [10, 26, 18, 3]. Also, PA without
random oracles is challenging to achieve, and we consider it important to “break
ground” by showing it is possible, even if under strong assumptions.

Open questions. The central open question is to find an IND-CPA+PA2
scheme provably secure under some plausible assumption. We suggest, in partic-
ular, that an interesting question is whether the Cramer-Shoup scheme, already
known to be IND-CCA2, is PA2 under some appropriate assumption. (Intu-

54 M. Bellare and A. Palacio

itively, it seems to be PA2.) It would also be nice to achieve PA0 or PA1 under
weaker and more standard assumptions than those used here.

2 Notation and Standard Definitions

We let N = {1, 2, 3, . . .}. We denote by ε the empty string, by |x| the length of
a string x, by x̄ the bitwise complement of x, by “‖” the string-concatenation
operator, and by 1k the string of k ∈ N ones. We denote by [] the empty list.
Given a list L and an element x, L@x denotes the list consisting of the elements
in L followed by x. If S is a randomized algorithm, then S(x, y, . . . ;R) denotes
its output on inputs x, y, . . . and coins R; s

$← S(x, y, . . .) denotes the result of
picking R at random and setting s = S(x, y, . . . ;R); and [S(x, y, . . .)] denotes
the set of all points having positive probability of being output by S on inputs
x, y, Unless otherwise indicated, an algorithm is randomized.

Encryption schemes. We recall the standard syntax. An asymmetric (also
called public-key) encryption scheme is a tuple AE = (K, E ,D,MsgSp) whose
components are as follows. The polynomial-time key-generation algorithm K
takes input 1k, where k ∈ N is the security parameter, and returns a pair (pk, sk)
consisting of a public key and matching secret key. The polynomial-time encryp-
tion algorithm E takes a public key pk and a message M to return a ciphertext
C. The deterministic, polynomial-time decryption algorithm D takes a secret
key sk and a ciphertext C to return either a message M or the special sym-
bol ⊥ indicating that the ciphertext is invalid. The polynomial-time computable
message-space function MsgSp associates to each public key pk a set MsgSp(pk)
called the message space of pk. It is required that for every k ∈ N

Pr
[

(pk, sk) $← K(1k) ; M
$← MsgSp(pk) ; C

$← E(pk, M) : D(sk, C) = M
]

= 1 .

Standard security notions. We recall the definitions of IND-CPA, IND-
CCA1, and IND-CCA2 security that originate in [22], [25], and [27], respectively.
We use the formalizations of [4]. Let AE = (K, E ,D,MsgSp) be an asymmetric
encryption scheme, let k ∈ N and b ∈ {0, 1}. Let X be an algorithm with access
to an oracle. For aaa ∈ {cpa, cca1, cca2}, consider the following experiment

Experiment Expind-aaa-b
AE,X (k)

(pk, sk) $← K(1k) ; (M0,M1,St) $← XO1(·)(find,pk) ; C
$← E(pk, Mb)

d ← XO2(·)(guess, C,St) ; Return d

where
If aaa = cpa then O1(·) = ε and O2(·) = ε
If aaa = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If aaa = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)
In each case it is required that M0,M1 ∈ MsgSp(pk) and |M0| = |M1|. In the

case of IND-CCA2, it is also required that X not query its decryption oracle with
ciphertext C. We call X an ind-aaa-adversary. The ind-aaa-advantage of X is

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles 55

Experiment Exppa1-d
AE,C,D(k)

(pk, sk) $← K(1k) ; x
$← CD(sk,·)(pk) ; d

$← D(x) ; Return d

Experiment Exppa1-x
AE,C,D,C∗(k)

(pk, sk) $← K(1k)
Choose coins R[C], R[C∗] for C,C∗, respectively ; St[C∗] ← (pk, R[C])
Run C on input pk and coins R[C] until it halts, replying to its oracle queries
as follows:

– If C makes query Q then
(M, St[C∗]) ← C∗(Q, St[C∗]; R[C∗]) ; Return M to C as the reply EndIf

Let x denote the output of C ; d
$← D(x) ; Return d

Fig. 2. Experiments used to define PA1 and PA0

Advind-aaa
AE,X (k) = Pr

[
Expind-aaa-1

AE,X (k) = 1
]
− Pr

[
Expind-aaa-0

AE,X (k) = 1
]
.

For AAA ∈ {CPA, CCA1, CCA2}, AE is said to be IND-AAA secure if
Advind-aaa

AE,X (·) is negligible for every polynomial-time ind-aaa-adversary X .

3 New Notions of Plaintext Awareness

In this section we provide our formalizations of plaintext-aware encryption. We
provide the formal definitions first and explanations later. We begin with PA1,
then define PA0 via this, and finally define PA2.

Definition 1. [PA1] Let AE = (K, E ,D,MsgSp) be an asymmetric encryption
scheme. Let C be an algorithm that has access to an oracle, takes as input a
public key pk, and returns a string. Let D be an algorithm that takes a string
and returns a bit. Let C∗ be an algorithm that takes a string and some state
information, and returns a message or the symbol ⊥, and a new state. We call C
a ciphertext-creator adversary, D a distinguisher, and C∗ a pa1-extractor. For
k ∈ N, we define the experiments shown in Figure 2. The pa1-advantage of C
relative to D and C∗ is

Advpa1
AE,C,D,C∗(k) = Pr

[
Exppa1-d

AE,C,D(k) = 1
]
− Pr

[
Exppa1-x

AE,C,D,C∗(k) = 1
]
.

We say that C∗ is a successful pa1-extractor for C if for every polynomial-
time distinguisher D the function Advpa1

AE,C,D,C∗(·) is negligible. We say AE is
PA1 secure if for any polynomial-time ciphertext creator there exists a successful
polynomial-time pa1-extractor.

Definition 2. [PA0] Let AE be an asymmetric encryption scheme. We call a
ciphertext-creator adversary that makes exactly one oracle query a pa0 ciphertext
creator. We call a pa1-extractor for a pa0 ciphertext creator a pa0-extractor. We
say that AE is PA0 secure if for any polynomial-time pa0 ciphertext creator
there exists a successful polynomial-time pa0-extractor.

56 M. Bellare and A. Palacio

Experiment Exppa2-d
AE,C,P,D(k)

(pk, sk) $← K(1k) ; Clist ← []
Choose coins R[C], R[P] for C,P, respectively ; St[P] ← ε

Run C on input pk and coins R[C] until it halts, replying to its oracle queries
as follows:

– If C makes query (dec, Q) then
M ← D(sk, Q) ; Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St[P]) ← P(Q, St[P]; R[P]) ; C
$← E(pk, M) ; Clist ← Clist@ C

Return C to C as the reply EndIf

Let x denote the output of C ; d
$← D(x) ; Return d

Experiment Exppa2-x
AE,C,P,D,C∗(k)

(pk, sk) $← K(1k) ; Clist ← []
Choose coins R[C], R[P], R[C∗] for C,P,C∗, respectively
St[P] ← ε ; St[C∗] ← (pk, R[C])
Run C on input pk and coins R[C] until it halts, replying to its oracle queries
as follows:

– If C makes query (dec, Q) then
(M, St[C∗]) ← C∗(Q,Clist, St[C∗]; R[C∗])
Return M to C as the reply EndIf

– If C makes query (enc, Q) then

(M, St[P]) ← P(Q, St[P]; R[P]) ; C
$← E(pk, M) ; Clist ← Clist@ C

Return C to C as the reply EndIf

Let x denote the output of C ; d
$← D(x) ; Return d

Fig. 3. Experiments used to define PA2

We now explain the ideas behind the above formalisms. The core of the
formalization of plaintext awareness of asymmetric encryption scheme AE =
(K, E ,D,MsgSp) considers a polynomial-time ciphertext-creator adversary C
that takes input a public key pk, has access to an oracle and returns a string.
The adversary tries to distinguish between the cases that its oracle is D(sk, ·), or
it is an extractor algorithm C∗ that takes as input the same public key pk. PA1
security requires that there exist a polynomial-time C∗ such that C’s outputs in
the two cases are indistinguishable. We allow C∗ to be stateful, maintaining state
St[C∗] across invocations. Importantly, C∗ is provided with the coin tosses of C;
otherwise, C∗ would be functionally equivalent to the decryption algorithm and
thus could not exist unlessAE were insecure with regard to providing privacy. We
remark that this formulation is stronger than one not involving a distinguisher
D, in which C simply outputs a bit representing its guess, since C∗ gets the
coins of C, but not the coins of D.

PA0 security considers only adversaries that make a single query in their
attempt to determine if the oracle is a decryption oracle or an extractor.

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles 57

Definition 3. [PA2] Let AE = (K, E ,D,MsgSp) be an asymmetric encryption
scheme. Let C be an algorithm that has access to an oracle, takes as input a
public key pk, and returns a string. Let P be an algorithm that takes a string
and some state information, and returns a message and a new state. Let D be
an algorithm that takes a string and returns a bit. Let C∗ be an algorithm
that takes a string, a list of strings and some state information, and returns
a message or the symbol ⊥, and a new state. We call C a ciphertext-creator
adversary, P a plaintext-creator adversary, D a distinguisher, and C∗ a pa2-
extractor. For k ∈ N, we define the experiments shown in Figure 3. It is required
that, in these experiments, C not make a query (dec, C) for which C ∈ Clist.
The pa2-advantage of C relative to P, D and C∗ is

Advpa2
AE,C,P,D,C∗(k) = Pr

[
Exppa2-d

AE,C,P,D(k) = 1
]

− Pr
[
Exppa2-x

AE,C,P,D,C∗(k) = 1
]

.

We say that C∗ is a successful pa2-extractor for C if for every polynomial-
time plaintext creator P and distinguisher D, the function Advpa2

AE,C,P,D,C∗(·)
is negligible. We say AE is PA2 secure if for any polynomial-time ciphertext
creator there exists a successful polynomial-time pa2-extractor.

In the definition of PA2, the core setting of PA1 is enhanced to model the
real-life capability of a ciphertext creator to obtain ciphertexts via eavesdropping
on communications made by a third party to the receiver (cf. [4]). Providing C
with an encryption oracle does not capture this because eavesdropping puts into
C’s hands ciphertexts of which it does not know the corresponding plaintext,
and, although we disallow C to query these to its oracle, it might be able to
use them to create other ciphertexts whose corresponding plaintext it does not
know and on which the extractor fails.

Modeling eavesdropping requires balancing two elements: providing C with a
capability to obtain ciphertexts of plaintexts it does not know, yet capturing the
fact that C might have partial information about the plaintexts, or control of
the distribution from which these plaintexts are drawn. We introduce a compan-
ion plaintext-creator adversary P who, upon receiving a communication from
C, creates a plaintext and forwards it to an encryption oracle. The ciphertext
emanating from the encryption oracle is sent to both C and C∗. C has some
control over P via its communication to P, but we ensure this is not total by
denying C and C∗ the coin tosses of P, and also by asking that C∗ depend on
C but not on P.

The extractor C∗ is, as before, provided with the coin tosses of C. Two types
of oracle queries are allowed to C. Via a query (dec,Q), it can ask its oracle to
decrypt ciphertext Q. Alternatively, it can make a query (enc,Q) to call P with
argument Q, upon which the latter computes a message M and forwards it to
the encryption oracle, which returns the resulting ciphertext to C, and C∗ in the
case that C’s oracle is C∗. We observe that if an asymmetric encryption scheme
is PA2 secure then it is PA1 secure, and if it is PA1 secure then it is PA0 secure.

See [2] for extensive comparisons of these definitions with previous ones, and
also for stronger, statistical versions of these notions.

58 M. Bellare and A. Palacio

4 Relations Among Notions

We now state the formal results corresponding to Figure 1, beginning with the
two motivating applications of our notions of plaintext awareness. Proofs of these
results are provided in the full version of this paper [2].

Theorem 1. [PA1+IND-CPA ⇒ IND-CCA1] Let AE be an asymmetric
encryption scheme. If AE is PA1 secure and IND-CPA secure, then it is IND-
CCA1 secure.

Theorem 2. [PA2+IND-CPA ⇒ IND-CCA2] Let AE be an asymmetric
encryption scheme. If AE is PA2 secure and IND-CPA secure, then it is IND-
CCA2 secure.

Theorem 3. [IND-CCA2 �⇒ PA0+IND-CPA] Assume there exists an IND-
CCA2-secure asymmetric encryption scheme. Then there exists an IND-CCA2-
secure asymmetric encryption scheme that is not PA0 secure.

Theorem 4. [PA1+IND-CPA �⇒ IND-CCA2] Assume there exists a PA1
secure and IND-CPA-secure asymmetric encryption scheme. Then there exists
a PA1 secure and IND-CPA-secure asymmetric encryption scheme that is not
IND-CCA2 secure.

Theorem 5. [PA0+IND-CPA �⇒ IND-CCA1] Assume there exists a PA0
secure and IND-CPA-secure asymmetric encryption scheme. Then there exists
a PA0 secure and IND-CPA-secure asymmetric encryption scheme that is not
IND-CCA1 secure.

5 Constructions

Prime-order groups. If p, q are primes such that p = 2q + 1, then we let
Gq denote the subgroup of quadratic residues of Z∗

p. Recall this is a cyclic sub-
group of order q. If g is a generator of Gq then dlogq,g(X) denotes the discrete
logarithm of X ∈ Gq to base g. A prime-order-group generator is a polynomial-
time algorithm G that on input 1k returns a triple (p, q, g) such that p, q are
primes with p = 2q + 1, g is a generator of Gq, and 2k−1 < p < 2k (p is k bits
long).

The DHK assumptions. Let G be a prime-order-group generator, and suppose
(p, q, g) ∈ [G(1k)]. We say that (A,B,W) is a DH-triple if there exist a, b ∈ Zq

such that A = ga mod p, B = gb mod p and W = gab mod p. We say that (B,W)
is a DH-pair relative to A if (A,B,W) is a DH-triple. One way for an adversary
H taking input p, q, g, A to output a DH-pair (B,W) relative to A is to pick
—and thus “know”— some b ∈ Zq, set B = gb mod p and W = Ab mod p, and
output (B,W). Damg̊ard [12] makes an assumption which, informally, says that
this is the “only” way that a polynomial-time adversary H can output a DH-pair
relative to A. His framework to capture this requires that there exist a suitable

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles 59

Experiment Expdhk1
G,H,H∗(k)

(p, q, g) $← G(1k) ; a
$← Zq ; A ← ga mod p

Choose coins R[H], R[H∗] for H ,H∗, respectively ; St[H∗] ← ((p, q, g, A), R[H])
Run H on input p, q, g, A and coins R[H] until it halts, replying to its oracle
queries as follows:

– If H makes query (B, W) then
(b, St[H∗]) ← H∗((B, W), St[H∗]; R[H∗])
If W ≡ Ba (mod p) and B ≡ gb (mod p) then return 1
Else return b to H as the reply EndIf EndIf

Return 0

Fig. 4. Experiment used to define the DHK1 and DHK0 assumptions

extractor H∗ that can compute dlogq,g(B) whenever H outputs some DH-pair
(B,W) relative to A.

We provide a formalization of this assumption that we refer to as the DHK0
(DHK stands for Diffie-Hellman Knowledge) assumption. We also present a nat-
ural extension of this assumption that we refer to as DHK1. Here the adversary
H , given p, q, g, A, interacts with the extractor, querying it adaptively. The ex-
tractor is required to be able to return dlogq,g(B) for each DH-pair (B,W)
relative to A that is queried to it. Below we first present the DHK1 assumption,
and then define the DHK0 assumption via this.

Assumption 1. [DHK1] Let G be a prime-order-group generator. Let H be an
algorithm that has access to an oracle, takes two primes and two group elements,
and returns nothing. Let H∗ be an algorithm that takes a pair of group elements
and some state information, and returns an exponent and a new state. We call H
a dhk1-adversary and H∗ a dhk1-extractor. For k ∈ N we define the experiment
shown in Figure 4. The dhk1-advantage of H relative to H∗ is

Advdhk1
G,H ,H∗(k) = Pr

[
Expdhk1

G,H ,H∗(k) = 1
]
.

We say that G satisfies the DHK1 assumption if for every polynomial-time
dhk1-adversary H there exists a polynomial-time dhk1-extractor H∗ such that
Advdhk1

G,H ,H∗(·) is negligible.

Assumption 2. [DHK0] Let G be a prime-order-group generator. We call a
dhk1-adversary that makes exactly one oracle query a dhk0-adversary. We call
a dhk1-extractor for a dhk0-adversary a dhk0-extractor. We say that G satisfies
the Diffie-Hellman Knowledge (DHK0) assumption if for every polynomial-time
dhk0-adversary H there exists a polynomial-time dhk0-extractor H∗ such that
Advdhk1

G,H ,H∗(·) is negligible.

We observe that DHK1 implies DHK0 in the sense that if a prime-order-
group generator satisfies the former assumption then it also satisfies the latter
assumption.

60 M. Bellare and A. Palacio

Algorithm K(1k)

(p, q, g) $← G(1k)

x1
$← Zq ; X1 ← gx1 mod p

x2
$← Zq ; X2 ← gx2 mod p

Return ((p, q, g, X1, X2), (p, q, g, x1, x2))

Algorithm E((p, q, g, X1, X2), M)

y
$← Zq ; Y ← gy mod p

W ← Xy
1 mod p ; V ← Xy

2 mod p

U ← V · M mod p

Return (Y, W, U)

Algorithm D((p, q, g, x1, x2), (Y, W, U))
If W ≡ Y x1 (mod p) then return ⊥
Else M ← U · Y −x2 mod p ; Return M

EndIf

MsgSp((p, q, g, X1, X2)) = Gq

Fig. 5. Algorithms of the encryption scheme DEG = (K, E , D, MsgSp) based on prime-
order-group generator G

Constructions. We would like to build an asymmetric encryption scheme that
is PA0 secure (and IND-CPA secure) under the DHK0 assumption. An obvious
idea is to use ElGamal encryption. Here the public key is X = gx, where x is the
secret key, and an encryption of message M ∈ Gq has the form (Y,U), where
Y = gy mod p and U = Xy ·M mod p = gxy ·M mod p. However, we do not
know whether this scheme is PA0 secure.

We consider a modification of the ElGamal scheme that was proposed by
Damg̊ard [12]. We call this scheme Damg̊ard ElGamal or DEG. It is parameter-
ized by a prime-order group generator G, and its components are depicted in
Figure 5. The proof of the following is in the full version of this paper [2]:

Theorem 6. Let G be a prime-order-group generator and let DEG = (K, E ,
D,MsgSp) be the associated Damg̊ard ElGamal asymmetric encryption scheme
defined in Figure 5. If G satisfies the DHK0 and DDH assumptions then DEG
is PA0+IND-CPA secure. If G satisfies the DHK1 and DDH assumptions then
DEG is PA1+IND-CPA secure.

As a consequence of the above and Theorem 1, DEG is IND-CCA1 secure
under the DHK1 and DDH assumptions. DEG is in fact the most efficient known
IND-CCA1 scheme with some proof of security in the standard model.

Next we consider the “lite” version of the Cramer-Shoup asymmetric encryp-
tion scheme [11]. The scheme, denoted CS-lite, is parameterized by a prime-order
group generator G, and its components are depicted in Figure 6. This scheme is
known to be IND-CCA1 secure under the DDH assumption [11]. We are able to
show the following. The proof can be found in [2].

Theorem 7. Let G be a prime-order-group generator, and let CS-lite = (K, E ,
D,MsgSp) be the associated Cramer-Shoup lite asymmetric encryption scheme
defined in Figure 6. If G satisfies the DHK0 and DDH assumptions then CS-lite
is PA0+IND-CPA secure. If G satisfies the DHK1 and DDH assumptions then
CS-lite is PA1+IND-CPA secure.

Towards Plaintext-Aware Public-Key Encryption Without Random Oracles 61

Algorithm K(1k)

(p, q, g1)
$← G(1k) ; g2

$← Gq \ {1}
x1

$← Zq ; x2
$← Zq ; z

$← Zq

X ← gx1
1 · gx2

2 mod p ; Z ← gz
1 mod p

Return ((p, q, g1, g2, X, Z), (p, q, g1, g2, x1, x2, z))

Algorithm E((p, q, g1, g2, X, Z), M)

r
$← Zq

R1 ← gr
1 mod p

R2 ← gr
2 mod p

E ← Zr · M mod p

V ← Xr mod p

Return (R1, R2, E, V)

Algorithm D((p, q, g1, g2, x1, x2, z), (R1, R2, E, V))
If V ≡ Rx1

1 · Rx2
2 (mod p) then return ⊥

Else M ← E · R−z
1 mod p ; Return M EndIf

MsgSp((p, q, g1, g2, X, Z)) = Gq

Fig. 6. Algorithms of the encryption scheme CS-lite = (K, E , D, MsgSp) based on
prime-order-group generator G

Again, the above and Theorem 1 imply that CS-lite is IND-CCA1 secure
under the DHK1 and DDH assumptions. This however is not news, since we
already know that DDH alone suffices to prove it IND-CCA1 [11]. However,
it does perhaps provide a new perspective on why the scheme is IND-CCA1,
namely that this is due to its possessing some form of plaintext awareness.

In summary, we have been able to show that plaintext awareness without
ROs is efficiently achievable, even though under very strong and non-standard
assumptions.

References

1. M. Backes, B. Pfitzmann and M. Waidner. A composable cryptographic li-
brary with nested operations. CCS 03.

2. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption
without random oracles. Full version of this extended abstract. Available at
http://www-cse.ucsd.edu/users/mihir.

3. M. Bellare, A. Boldyreva and A. Palacio. An un-instantiable random oracle
model scheme for a hybrid encryption problem. EUROCRYPT ’04.

4. M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among
notions of security for public-key encryption schemes. CRYPTO ’98.

5. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. CRYPTO ’04.

6. M. Bellare and P. Rogaway. Optimal asymmetric encryption. EUROCRYPT
’94.

7. D. Boneh. Simplified OAEP for the RSA and Rabin functions. CRYPTO ’01.
8. M. Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its

applications. STOC 88.
9. M. Blum, P. Feldman and S. Micali. Proving security against chosen ciphertext

attacks. CRYPTO ’88.
10. R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology,

revisited. STOC 98.

62 M. Bellare and A. Palacio

11. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, Vol. 33, No. 1, 2003, pp. 167–226.

12. I. Damg̊ard. Towards practical public key systems secure against chosen cipher-
text attacks. CRYPTO ’91.

13. A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without
interaction. FOCS 92.

14. D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions
on Information Theory, Vol. 29, 1983, pp. 198–208.

15. D. Dolev, C. Dwork, and M. Naor. Non-Malleable cryptography. SIAM
Journal on Computing, Vol. 30, No. 2, 2000, pp. 391–437.

16. E. Fujisaki, T. Okamoto, D. Pointcheval and J. Stern. RSA-OAEP is secure
under the RSA assumption. CRYPTO ’01.

17. O. Goldreich. A uniform-complexity treatment of encryption and zero-
knowledge. Journal of Cryptology, Vol. 6, No. 1, 1993, pp. 21–53.

18. S. Goldwasser and Y. Taumann. On the (in)security of the Fiat-Shamir
paradigm. FOCS 03.

19. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge proto-
cols. IACR Cryptology ePrint Archive, Report 1999/009, March 1999. Available
at http://eprint.iacr.org/1999/009/. [Revised version of [20].]

20. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols.
CRYPTO ’98. [Preliminary version of [19].]

21. J. Herzog, M. Liskov and S. Micali. Plaintext awareness via key registration.
CRYPTO ’03.

22. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer
and System Science, Vol. 28, 1984, pp. 270–299.

23. S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic
cryptosystems. SIAM Journal on Computing, Vol. 17, No. 2, 1988, pp. 412–426.

24. M. Naor. Cryptographic assumptions and challenges. CRYPTO ’03.
25. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attacks. STOC 90.
26. J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic

Proofs: The Non-committing Encryption Case. CRYPTO ’02
27. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge

and chosen ciphertext attack. CRYPTO ’91.
28. V. Shoup. OAEP reconsidered. Journal of Cryptology Vol. 15, No. 4, 2002,

pp. 223–249.

OAEP 3-Round:
A Generic and Secure Asymmetric

Encryption Padding

Duong Hieu Phan and David Pointcheval

École normale supérieure – Dépt d’informatique,
45 rue d’Ulm, 75230 Paris Cedex 05,

France
{duong.hieu.phan, david.pointcheval}@ens.fr

Abstract. The OAEP construction is already 10 years old and well-
established in many practical applications. But after some doubts about
its actual security level, four years ago, the first efficient and provably
IND-CCA1 secure encryption padding was formally and fully proven to
achieve the expected IND-CCA2 security level, when used with any trap-
door permutation. Even if it requires the partial-domain one-wayness
of the permutation, for the main application (with the RSA permuta-
tion family) this intractability assumption is equivalent to the classical
(full-domain) one-wayness, but at the cost of an extra quadratic-time
reduction. The security proof which was already not very tight to the
RSA problem is thus much worse.

However, the practical optimality of the OAEP construction is two-
fold, hence its attractivity: from the efficiency point of view because of
two extra hashings only, and from the length point of view since the
ciphertext has a minimal bit-length (the encoding of an image by the
permutation.) But the bandwidth (or the ratio ciphertext/plaintext) is
not optimal because of the randomness (required by the semantic secu-
rity) and the redundancy (required by the plaintext-awareness, the sole
way known to provide efficient CCA2 schemes.)

At last Asiacrypt ’03, the latter intuition had been broken by exhibit-
ing the first IND-CCA2 secure encryption schemes without redundancy,
and namely without achieving plaintext-awareness, while in the random-
oracle model: the OAEP 3-round construction. But this result achieved
only similar practical properties as the original OAEP construction: the
security relies on the partial-domain one-wayness, and needs a trapdoor
permutation, which limits the application to RSA, with still a quite bad
reduction.

This paper improves this result: first we show the OAEP 3-round ac-
tually relies on the (full-domain) one-wayness of the permutation (which
improves the reduction), then we extend the application to a larger class
of encryption primitives (including ElGamal, Paillier, etc.) The extended
security result is still in the random-oracle model, and in a relaxed CCA2
model (which lies between the original one and the replayable CCA sce-
nario.)

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 63–77, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

64 D.H. Phan and D. Pointcheval

1 Introduction

The OAEP construction [4, 12, 13] is now well-known and widely used, since
it is an efficient and secure padding. However, the latter property had been
recently called into question: indeed, contrarily to the widely admitted result,
the security cannot be based on the sole one-wayness of the permutation [28],
but the partial-domain one-wayness [12, 13]. For an application to RSA, the
main trapdoor one-way permutation, the two problems are equivalent, but the
security reduction is much worse than believed, because of a quadratic reduction
between the two above problems.

There is also a second drawback of the OAEP construction, since its use is
limited to permutations. It can definitely not apply to any function, as tried and
failed on the NTRU primitive [15].

Finally, the optimality, as claimed in the name of the construction, is ambigu-
ous and not clear: from the efficiency point of view, the extra cost for encryption
and decryption is just two more hashings which is indeed quite good. But the
most important optimality was certainly from the length point of view: the ci-
phertext is just an image by the permutation, and thus the shortest as possible.
However, another important parameter is the bandwidth, or the ratio cipher-
text/plaintext, which is not optimal: the construction requires a randomness
over 2k bits for a semantic security in 2−k, and redundancy over k bits for pre-
venting chosen-ciphertext attacks (plaintext-awareness): the ciphertext is thus
at least 3k bits as large as the plaintext.

1.1 Related Work

Right after the Shoup’s remark about the security of OAEP [28], several alter-
natives to OAEP have been proposed: OAEP+ (by Shoup himself) and SAEP,
SAEP+ (by Boneh [6]) but either the bandwidth, or the reduction cost remain
pretty bad. Furthermore, their use was still limited to permutations.

About generic paddings applicable to more general encryption primitives,
one had to wait five years after the OAEP proposal to see the first efficient
suggestions: Fujisaki–Okamoto [10, 11] proposed the first constructions, then
Pointcheval [23] suggested one, and eventually Okamoto–Pointcheval [18] in-
troduced the most efficient construction, called REACT. However, all these
proposals are far to be optimal for the ciphertext size. They indeed apply,
in the random-oracle model, the general approach of symmetric and asym-
metric components integration [27]: an ephemeral key is first encrypted using
key-encapsulation, then this key is used on the plaintext with a symmetric en-
cryption scheme (which is either already secure against chosen-ciphertext at-
tacks, or made so by appending a MAC – or a tag with a random oracle, for
achieving plaintext-awareness.)

Plaintext-awareness [4, 3] was indeed the essential ingredient to achieve IND-
CCA2 security in the random-oracle model: it makes the simulation of the de-
cryption oracle quite easy, by rejecting almost all the decryption queries, unless
the plaintext is clearly known. But this property reduces the bandwidth since

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding 65

“unnecessary” redundancy is introduced. Randomness is required for the seman-
tic security, but this is the sole mandatory extra data for constructing a secure
ciphertext. At last Asiacrypt [21], the first encryption schemes with just such a
randomness, but no redundancy, has been proposed: plaintext-awareness is no
longer achieved, since any ciphertext is valid and corresponds to a plaintext. But
this does not exclude the IND-CCA2 security level. In that paper [21], we indeed
proved that an extension of OAEP, with 3 rounds but without redundancy, pro-
vides an IND-CCA2 secure encryption scheme, with any trapdoor permutation,
but again under the partial-domain one-wayness. Hence a bad security reduction.

Note 1. The classical OAEP [4] construction can be seen as a 2-round Feistel
network, while our proposal [21] was a 3-round network, hence the name OAEP
3-round. By the way, one should notice that SAEP [6] can be seen as a 1-round
Feistel network.

1.2 Achievements

In this paper, we address the two above problems: the bad security reduction of
the OAEP constructions, because of the need of the intractability of the partial-
domain one-wayness; and the restriction to permutations.

First, we show that, contrarily to the OAEP (2-round) construction which
cannot rely on the (full-domain) one-wayness, the OAEP 3-round simply requires
the (full-domain) one-wayness: because of the third round, the adversary looses
any control on the r value. It is not able to make ciphertexts with the same r,
without querying it.

Then, we extend the application of OAEP 3-round to a larger class of encryp-
tion primitives: it applies to any efficiently computable probabilistic injection
f : E × R → F, which maps any x ∈ E into F in a probabilistic way according
to the random string ρ ∈ R. We need this function to be one-way: given y ∈ F,
it must be hard to recover x ∈ E (we do not mind about the random string
ρ); this probabilistic function also needs to satisfy uniformity properties which
are implied by a simple requirement: f is a bijection from E× R onto F. Some
additional restrictions will appear in the security proof:

– we cannot really consider the CCA2 scenario, but a relaxed one denoted
RCCA, which is between the usual one and the replayable CCA2 introduced
last year [7] and considered enough in many applications.

– the simulation will need a decisional oracle which checks whether two ele-
ments in F have the same pre-images in E. The security result will thus be
related to the well-known gap-problems [19, 18].

This extension allows almost optimal bandwidths for many very efficient
asymmetric encryption schemes, with an IND-RCCA security level related to gap-
problems (e.g. an ElGamal variant related to the Gap Diffie-Hellman problem.)
Note that the application to trapdoor one-way permutations like RSA results
in a much more efficient security result, and provides an IND-CCA2 encryption
scheme under the sole one-wayness intractability assumption.

66 D.H. Phan and D. Pointcheval

This paper is then organized as follows: in the next section, we review the
classical security model for asymmetric encryption, and present our new CCA-
variant. In section 3, we present the OAEP 3-round construction for any prob-
abilistic injection, with some concrete applications. The security result is pre-
sented and proven in section 4.

2 Security Model

In this section, we review the security model widely admitted for asymmetric
encryption. Then, we consider some relaxed CCA-variants. First, let us briefly
remind that a public-key encryption scheme S is defined by three algorithms:
the key generation algorithm K(1k), which produces a pair of matching public
and private keys (pk, sk); the encryption algorithm Epk(m; r) which outputs a
ciphertext c corresponding to the plaintext m ∈M, using random coins r ∈ R;
and the decryption algorithm Dsk(c) which outputs the plaintext m associated
to the ciphertext c.

2.1 Classical Security Notions

Beyond one-wayness, which is the basic security level for an encryption scheme,
it is now well-admitted to require semantic security (a.k.a. polynomial security
or indistinguishability of encryptions [14], denoted IND): if the attacker has some
a priori information about the plaintext, it should not learn more with the view
of the ciphertext. More formally, this security notion requires the computational
indistinguishability between two messages, chosen by the adversary, one of which
has been encrypted, which one has been actually encrypted with a probability
significantly better than one half: the advantage Advind

S (A), where the adversary
A is seen as a 2-stage Turing machine (A1, A2), should be negligible, where
Advind

S (A) is formally defined as

2× Pr

[
(pk, sk)← K(1k), (m0,m1, s)← A1(pk),
b

R← {0, 1}, c = Epk(mb) : A2(m0,m1, s, c) = b

]
− 1.

Stronger security notions have also been defined thereafter (namely the non-
malleability [8]), but we won’t deal with it since it is similar to the semantic
security in several scenarios [3, 5].

On the other hand, an attacker can use many kinds of attacks, according
to the available information: since we are considering asymmetric encryption,
the adversary can encrypt any plaintext of its choice with the public key, hence
the basic chosen-plaintext attack. But the strongest attack is definitely when
the adversary has an unlimited access to the decryption oracle itself, adaptive
chosen-ciphertext attacks [25], denoted CCA or CCA2 (by opposition to the earlier
lunchtime attacks [17], denoted CCA1, where this oracle access is limited until
the challenge is known.) From now, we simply use CCA instead of CCA2 since
we focus on adaptive adversaries.

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding 67

The strongest security notion that we now widely consider is the semantic
security against adaptive chosen-ciphertext attacks denoted IND-CCA —where
the adversary just wants to distinguish which plaintext, between two messages
of its choice, had been encrypted; it can ask any query to a decryption oracle
(except the challenge ciphertext).

2.2 Relaxed CCA-Security

First, at Eurocrypt ’02, An et al [1] proposed a “generalized CCA” security notion,
where the adversary is restricted not to ask, to the decryption oracle, ciphertexts
which are in relation with the challenge ciphertext. This relation must be an equiv-
alence relation, publicly and efficiently computable, and decryption-respecting: if
two ciphertexts are in relation, they necessarily encrypt identical plaintexts. This
relaxation was needed in that paper, so that extra bits in the ciphertext, which can
be easily added or suppressed, should not make the scheme theoretical insecure,
while its security is clearly the same from a practical point of view.

More recently, another relaxation (an extra one beyond the above one) has
been proposed by Canetti et al [7]: informally, it extends the above relation
to the (possibly non-computable) equality of plaintexts. More precisely, if the
adversary asks for a ciphertext c to the decryption oracle, c is first decrypted
into m. Then, if m is one of the two plaintexts output in the first stage by the
adversary, the decryption oracle returns test, otherwise the actual plaintext m is
returned. They called this variant the “replayable CCA” security. They explain
that this security level, while clearly weaker than the usual CCA one, is enough
in most of the practical applications. The classical CCA security level is indeed
very strong, too strong for the same reasons as explained above for the first
relaxation.

In this paper, we could work with the latter relaxation, the “replayable CCA”
scenario. But for a simpler security proof, as well as a more precise security result
(with nice corollaries for particular cases, such as the RSA one) we restrict it
a little bit into the “relaxed CCA” scenario, denoted RCCA. A scheme which
is secure in this scenario is trivially secure in the “replayable CCA” one, but
not necessarily in the “generalized CCA” or the usual CCA scenario. The actual
relations between these scenarios depend on the way the random string is split. In
the formal notation of the encryption algorithm, we indeed split the randomness
in two parts r and ρ: c = Epk(m; r, ρ). The encryption algorithm is thus a function
fromM×R×R into the ciphertext set. We know that for being an encryption
scheme, this function must be an injection with respect toM (several elements in
M×R×R can map to the same ciphertext, but all these elements must project
uniquely on M: the plaintext.) In our new relaxation, we split the randomness
in R× R so that this function is also an injection with respect toM×R.

Let us assume that the challenge ciphertext is c� = Epk(m�; r�, ρ�). Let us con-
sider the ciphertext c = Epk(m; r, ρ). According to the above comment, (m�, r�)
and (m, r) are uniquely defined from c� and c respectively, while ρ� and ρ may not
be unique. Upon receiving c, the relaxed decryption oracle first checks whether
(m�, r�) = (m, r) in which case it outputs test. Otherwise, it outputs m.

68 D.H. Phan and D. Pointcheval

Definition 2 (Relaxed CCA). In the “relaxed CCA” scenario, an adversary
has an unlimited access to the relaxed decryption oracle.

Property 3. Security in the “relaxed CCA” scenario implies security in the “re-
playable CCA” one.

Proof. As already noticed, this is a trivial relation, since the decryption oracle in
the latter scenario can be easily simulated by the relaxed decryption oracle: if its
output is test, this value is forwarded, else the returned plaintext m is compared
to the output of the adversary at the end of the first stage. According to the
result of the comparison, either a test-answer is also given (if m ∈ {m0,m1}),
or m.

This property was just to make clear that we do not relax more the CCA
security, but still keep it beyond what is clearly acceptable for practical use.
Namely, note that if R is the empty set, then the RCCA scenario is exactly the
usual CCA one: if f is a permutation from E onto F (the RSA case.)

3 OAEP 3-Round: A General and Efficient Padding

3.1 The Basic Primitive

Our goal is to prove that OAEP 3-round can be used with a large class of
one-way functions. More precisely, we need an injective probabilistic trapdoor
one-way function family (ϕpk)pk from a set Epk to a set Fpk, respectively to the
index pk: almost any encryption primitive, where the plaintext set is denoted
Epk and the ciphertext set is denoted Fpk, is fine: for any parameter pk (the
public key), there exists the inverse function ψsk (where sk is the private key)
which returns the pre-image in Epk. An injective probabilistic trapdoor one-way
function f from E to F is actually a function f : E × R → F, which takes
as input a pair (x, ρ) and outputs y ∈ F. The element x lies in E and is the
important input, ρ is the random string in R which makes the function to be
probabilistic. Injectivity means that for any y there is at most one x (but maybe
several ρ) such that y = f(x, ρ). The function g which on input y outputs x is
the inverse of the probabilistic function f . Clearly, we need the function f to be
efficiently computable, but the one-wayness means that computing the unique x
(if it exists) such that y = f(x, ρ) is intractable (unless one knows the trapdoor
g.) These are the basic requirement for an asymmetric encryption primitive. But
for our construction to work, we need two additional properties:

– the function f : E× R→ F is a bijection;
– without knowing the trapdoor, it is intractable to invert f in E, even for

an adversary which has access to the decisional oracle Samef (y, y′) which
answers whether g(y) = g(y′).

The latter property is exactly the “gap problem” notion, which is defined
by the following success probability Succgap

f (t, q), for any adversary A whose

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding 69

running time is limited by t, and the number of queries to the decisional oracle
Samef is upper-bounded by q:

Succgap
f (t, q) = max

A
{x R← E, ρ R← R, y = f(x, ρ) : ASamef (y) = x}.

For a family of functions, this success probability includes the random choice
of the keys in the probability space, and assumes the inputs randomly drawn
from the appropriate sets, hence the notation Succgap

ϕ (t, q) for a family (ϕpk)pk.

3.2 Examples

Let us see whether the two above additional properties are restrictive or not in
practice:

– The first example is clearly the RSA permutation [26], where for a given
public key pk = (n, e), the sets are E = F = Z�

n and R is the empty set. Then,
this is clearly an injective (but deterministic) function, which is furthermore
a bijection. Because of the determinism, the decisional oracle Same(y, y′)
simply checks whether y = y′: the gap problem is thus the classical RSA
problem.

– The goal of our extension of OAEP is to apply it to the famous ElGamal
encryption [9] in a cyclic group G of order q, generated by g. Given a public
key pk = y ∈ G, the sets are E = G, R = Zq and F = G × G: ϕy(x, ρ) =
(gρ, x× yρ), which is a probabilistic injection from E onto F, and a bijection
from E × R onto F. About the decisional oracle, it should check, on inputs
(a = gρ, b = x × yρ) and (a′ = gρ′

, b′ = x′ × yρ′
), whether x = x′, which

is equivalent to decide whether (g, y, a′/a = gρ′−ρ, b′/b = (x′/x) × yρ′−ρ)
is a Diffie-Hellman quadruple: the gap problem is thus the well-known Gap
Diffie-Hellman problem [18, 19].

– One can easily see that the Paillier’s encryption [20] also fits this formalism.

3.3 Description of OAEP 3-Round

Notations and Common Parameters. For a simpler presentation, and an
easy to read analysis, we focus on the case where E = {0, 1}n (is a binary set).
A similar analysis as in [21] could be performed to deal with more general sets.
On the other hand, any function can be mapped into this formalism at some low
cost [2].

The encryption and decryption algorithms use three hash functions: F , G,
H (assumed to behave like random oracles in the security analysis) where the
security parameters satisfy n = k + �:

F : {0, 1}k → {0, 1}� G : {0, 1}� → {0, 1}k H : {0, 1}k → {0, 1}�.

The encryption scheme uses any probabilistic injection family (ϕpk)pk, whose
inverses are respectively denoted ψsk, where sk is the private key associated to
the public key pk. The symbol “‖” denotes the bit-string concatenation and
identifies {0, 1}k × {0, 1}� to {0, 1}n.

70 D.H. Phan and D. Pointcheval

Encryption Algorithm. The space of the plaintexts is M = {0, 1}�, the en-
cryption algorithm uses random coins, from two distinct sets r ∈ R = {0, 1}k
and ρ ∈ R, and outputs a ciphertext c into F: on a plaintext m ∈ M, one
computes

s = m⊕F(r) t = r ⊕ G(s) u = s⊕H(t) c = ϕpk(t‖u, ρ).

Decryption Algorithm. On a ciphertext c, one first computes t‖u = ψsk(c),
where t ∈ {0, 1}k and u ∈ {0, 1}�, and then

s = u⊕H(t) r = t⊕ G(s) m = s⊕F(r).

4 Security Result

In this section, we state and prove the security of this construction. A sketch
is provided in the body of the paper, the full proof can be found in the full
version [22].

Theorem 4. Let A be an IND-RCCA adversary against the OAEP 3-round con-
struction with any trapdoor one-way probabilistic function family (ϕpk)pk, within
time τ . Let us assume that after qf , qg, qh and qd queries to the random oracles
F , G and H, and the decryption oracle respectively, its advantage Advind-rcca

oaep-3 (τ)
is greater than ε. Then, Succgap

ϕ (τ ′, qd(qgqh + qd)) is upper-bounded by

ε

2
− q2

d ×
(

1
2�

+
6
2k

)
− (4qd + 1)×

(qg

2�
+

qf

2k

)
− qd ×

qf + 1
2k

,

with τ ′ ≤ τ + (qf + qg + qh + qd)Tlu + q2
dTSame + (qd + 1)qgqh(Tϕ + TSame), where

Tϕ is the time complexity for evaluating any function ϕpk, TSame is the time for
the decisional oracle Sameϕpk to give its answer, and Tlu is the time complexity
for a look up in a list.

4.1 Trapdoor Permutations

Before proving this general result, let us consider the particular case where ϕpk is
a permutation from E onto F (i.e., a deterministic function.) The general result
has indeed several drawbacks:

– the reduction cost introduces a cubic factor qdqgqh which implies larger keys
for achieving a similar security level as for some other constructions;

– the security relies on a gap problem, which is a strong assumption in many
cases;

– and we cannot achieve the usual IND-CCA security level.

These drawbacks are acceptable as the price of generality: this becomes one
of the best padding for ElGamal or Paillier strongly secure variants. However,

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding 71

for trapdoor permutations, such as RSA, several OAEP variants achieve much
better efficiency.

But one should interpret the above result in this particular case: first, the
gap-problem becomes the classical one-wayness, since the decisional oracle is
simply the equality test; Furthermore, the RCCA scenario becomes the classical
CCA one; Finally, because of the determinism of the permutation, with proper
bookkeeping, one can avoid the cubic factor, and fall back to the usual quadratic
factor qgqh, as for any OAEP-like constructions (OAEP+, SAEP and SAEP+).
Then, one can claim a much better security result:

Theorem 5. Let A be an IND-CCA adversary against the OAEP 3-round con-
struction with a trapdoor one-way permutation family (ϕpk)pk, within time τ . Let
us assume that after qf , qg, qh and qd queries to the random oracles F , G and
H, and the decryption oracle respectively, its advantage Advind-cca

oaep-3 (τ) is greater
than ε. Then, Succow

ϕ (τ ′) is upper-bounded by

ε

2
− q2

d ×
(

1
2�

+
6
2k

)
− (4qd + 1)×

(qg

2�
+

qf

2k

)
− qd ×

qf + 1
2k

,

with τ ′ ≤ τ + (qf + qg + qh + qd)Tlu + qgqhTϕ, where Tϕ is the time complexity
for evaluating any function ϕpk and Tlu is the time complexity for a look up in
a list.

4.2 Sketch of the Proof

The proof is very similar to the one in [21], but the larger class (injective proba-
bilistic functions), and the improved security result (relative to the one-wayness)
make some points more intricate: for a permutation f , each value x maps to a
unique image y = f(x); whereas for a function f , each value x maps to several
images y = f(x, ρ), according to the random string ρ. Consequently, when used
as an asymmetric encryption primitive, the adversary may have the ability to
build another y′ whose pre-image is identical to the one of y: x = g(y) = g(y′).
Such a query to the decryption oracle is not excluded in the CCA scenario, while
we may not be able to either detect or answer. Hence the relaxed version of
chosen-ciphertext security, and the decisional oracle Samef : the latter helps to
detect ciphertexts with identical pre-images, the relaxed scenario gives the abil-
ity to answer test in this case. Granted the decisional oracle Samef , we can also
detect whether a decryption query c has the same pre-image as a previous de-
cryption query c′ in which case we output the same plaintext. If it is a really new
ciphertext, by using again the decisional oracle Samef , we can check whether s
and t have both been asked to G and H, respectively, which immediately leads
to the plaintext m. In the negative case, a random plaintext can be safely
returned.

4.3 More Details

The full proof can be found in the full version [22], but here are the main steps,
since the proof goes by successive games in order to show that the above decryp-

72 D.H. Phan and D. Pointcheval

tion simulation is almost indistinguishable for the adversary. Then, a successful
IND-RCCA adversary can be easily used for inverting the one-way function.

G0: We first start from the real IND-RCCA attack game.
G1–G2: We then simulate the view of the adversary, first, as usual with lists for

the random oracles and the decryption oracle (see figures 1 and 2.)
We then modify the generation of the challenge ciphertext, using a
random mask f�, totally independent of the view of the adversary:
the advantage of any adversary is then clearly zero. The plaintext
is indeed unconditionally hidden.

The only way for any adversary to detect this simulation is to ask F(r�) and
then detect that the answer differs from any possible f�. We are thus interested
in this event, termed AskF, which denotes the event that r� is asked to F .

The main difference with the OAEP 2-round construction, as shown by Shoup
with his counter-example [28], is that here an adversary cannot make another
ciphertext with the same r as r�, in the challenge ciphertext, but either by
chance, or if it had asked for both G(s�) and H(t�). We now try to show this
fact.

G3–G8: We thus modify the decryption process so that it makes no new query
to G and H. The sequence of games leads to the following new rules:

�Rule Decrypt-noT(8)

Choose m
R← {0, 1}�.

�Rule Decrypt-TnoS(8)

Choose m
R← {0, 1}�.

�Rule Decrypt-TSnoR(8)

If s = s� but s� has not been directly asked by the adversary
yet: m R← {0, 1}�.
Else, one chooses m

R← {0, 1}�, computes f = m ⊕ s and
adds (r, f) in F-List.

�Rule EvalGAdd(8)

For each (t, h) ∈ H-List and each (m, c) ∈ D-List, choose an
arbitrary random ρ ∈ R and ask for (c, c′ = ϕpk(t‖h⊕ s, ρ))
to the decisional oracle Sameϕpk . If the record is found (the
decisional oracle Sameϕpk answers “yes”), we compute r =
t⊕ g and f = m⊕ s, and finally add (r, f) in F-List.

Some bad cases may appear, which make our simulation to fail. But
they are very unlikely, we thus can safely cancel executions, applying
the following rule

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding 73

F
,
G

an
d

H
O

ra
cl

es
Query F(r): if a record (r, f) appears in F-List, the answer is f .
Otherwise the answer f is chosen randomly in {0, 1}k and the record (r, f) is
added in F-List.

Query G(s): if a record (s, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly in {0, 1}� and the record (s, g) is
added in G-List.

�Rule EvalGAdd(1)

Do nothing % To be defined later

Query H(t): if a record (t, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly in {0, 1}k and the record (t, h) is
added in H-List.

D
O

ra
cl

e Query Dsk(c): first, if we are in the second stage (the challenge c� as been
defined), ask for (c, c�) to the decisional oracle Sameϕpk . In case of positive
decision, the answer is test.
Else, for each (m′, c′) in D-List, ask for (c, c′) to the decisional oracle Sameϕpk .
In case of a positive decision, the answer is the corresponding‘m′.
Otherwise, the answer m is defined according to the following rules:

�Rule Decrypt-Init(1)

Compute t‖u = ψsk(c);

Look up for (t, h) ∈ H-List:

– if the record is found, compute s = u ⊕ h.
Look up for (s, g) ∈ G-List:

• if the record is found, compute r = t ⊕ g.
Look up for (r, f) ∈ F-List:

∗ if the record is found
�Rule Decrypt-TSR(1)

h = H(t),
s = u ⊕ h, g = G(s),
r = t ⊕ g, f = F(r),
m = s ⊕ f .

∗ else
�Rule Decrypt-TSnoR(1)

same as rule Decrypt-TSR(1).
• else

�Rule Decrypt-TnoS(1)

same as rule Decrypt-TSR(1).
– else

�Rule Decrypt-noT(1)

same as rule Decrypt-TSR(1).

Answer m and add (m, c) to D-List.

Fig. 1. Formal Simulation of the IND-RCCA Game: Oracles

74 D.H. Phan and D. Pointcheval

C
ha

lle
ng

er
For two messages (m0, m1), flip a coin b and set m� = mb, choose randomly
r� then answer c� where

�Rule Chal(1)

f� = F(r�), s� = m� ⊕ f�,
g� = G(s�), t� = r� ⊕ g�,
h� = H(t�), u� = s� ⊕ h�.

�Rule ChalC(1)

and c� = ϕpk(t�‖u�, ρ�), for random string ρ�.

Fig. 2. Formal Simulation of the IND-RCCA Game: Challenger

�Rule Abort(1)

Abort and output a random bit:

– If s� has been asked to G by the adversary, while the
latter did not ask for H(t�).

– If a Decrypt-TSR/Decrypt-TSnoR rule has been applied
with t = t�, while H(t�) had not been asked by the
adversary yet.

– If a Decrypt-TSR rule has been applied with s = s�, while
G(s�) had not been asked by the adversary yet.

The remaining bad case (termed AskGHA) is if both s� and t� have
been asked to G andH by the adversary. Such a case helps the adversary
to distinguish our simulation. On the other hand, this case helps to
invert ϕpk.

G9: With these new rules for decryption, the simulation of the decryption
oracle does not use at all the queries previously asked to G and H by
the generation of the challenge, but just the queries directly asked by
the adversary, which are available to the simulator (we remind that we
are in the random-oracle model.) One can thus make g� and h� to be
values independent to the view of the adversary:

�Rule Chal(9)

The two values r+ R← {0, 1}k and f+ R← {0, 1}� are given,
as well as g+ R← {0, 1}k and h+ R← {0, 1}� then r� = r+,
f� = f+, s� = m� ⊕ f+, g� = g+, t� = r+ ⊕ g�, h� = h+

and u� = s� ⊕ h�.

And then the decryption oracle can be simply replaced by the classical
plaintext-extractor which looks up in the lists G-List and H-List (which
only contain the queries directly asked by the adversary) to obtain the
values (s, g) and (t, h) which match with c = ϕpk(t‖s⊕ h, ρ), using the
decisional oracle Sameϕpk , but without using anymore ψsk. In case of
failure, one answers a random plaintext m.

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding 75

We simply conclude, since our reduction does not use any oracle, but
can answer any query of the adversary, in an indistinguishable way,
unless the bad case AskGHA happens: in which case we have inverted
ϕsk.

The time complexity of one simulation is thus upper-bounded by qgqh ×
(Tϕ + TSame), where Tϕ is the time to evaluate one function in the ϕ family, and
TSame the time for the decisional oracle, plus the initial look up in the D-List:
Tlu + qdTSame. Thus the global running time is bounded by (including all the list
look up):

τ ′ ≤ τ + qdqgqh × (Tϕ + TSame) + q2
d × TSame + (qf + qg + qh + qd)× Tlu.

In the particular case where ϕpk is a permutation from E onto F (a deter-
ministic one), one can improve it, using an extra list of size qgqh, which stores
all the tuples (s, g = G(s), t, h = H(t), c′ = ϕpk(t‖s ⊕ h)). The time complexity
then falls down to τ + qgqh × Tϕ + (qf + qg + qh + qd)× Tlu.

5 Conclusion

All the OAEP variants [28, 6] applied to RSA, with general exponents (i.e., not
Rabin nor e = 3) admit, in the best cases, reductions to the RSA problem with a
quadratic loss in time complexity [24] – the original OAEP is even worst because
of the reduction to the partial-domain case, which requires a more time consum-
ing reduction to the full-domain RSA problem. Furthermore, for a security level
in 2−k, a randomness of 2k bits is required, plus a redundancy of k bits.

In this paper, we show that the variant of OAEP with 3 rounds admits a
reduction as efficient as the best OAEP variants (to the full-domain RSA, when
applied to the RSA family) without having to add redundancy: one can thus
earn k bits. But this is not the main advantage.

Considering any criteria, OAEP with 3 rounds is at least as good as all the
other OAEP variants, but from a more practical point of view

– since no redundancy is required, implementation becomes easier, namely for
the decryption process [16];

– it applies to more general families than just (partial-domain) one-way trap-
door permutations, but to any probabilistic trapdoor one-way function. It is
thus safer to use it with a new primitive [15].

As a conclusion, OAEP with 3 round is definitely the most generic and the
simplest padding to use with almost all the encryption primitives.

References

1. J. H. An, Y. Dodis, and T. Rabin. On the Security of Joint Signatures and En-
cryption. In Eurocrypt ’02, LNCS 2332, pages 83–107. Springer-Verlag, Berlin,
2002.

76 D.H. Phan and D. Pointcheval

2. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-Privacy in Public-
Key Encryption. In Asiacrypt ’01, LNCS 2248, pages 566–582. Springer-Verlag,
Berlin, 2001.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions
of Security for Public-Key Encryption Schemes. In Crypto ’98, LNCS 1462, pages
26–45. Springer-Verlag, Berlin, 1998.

4. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. In Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin,
1995.

5. M. Bellare and A. Sahai. Non-Malleable Encryption: Equivalence between Two
Notions, and an Indistinguishability-Based Characterization. In Crypto ’99, LNCS
1666, pages 519–536. Springer-Verlag, Berlin, 1999.

6. D. Boneh. Simplified OAEP for the RSA and Rabin Functions. In Crypto ’01,
LNCS 2139, pages 275–291. Springer-Verlag, Berlin, 2001.

7. R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing Chosen-Ciphertext Security.
In Crypto ’03, LNCS 2729, pages 565–582. Springer-Verlag, Berlin, 2003.

8. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

9. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, IT–31(4):469–
472, July 1985.

10. E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In Crypto ’99, LNCS 1666, pages 537–554. Springer-Verlag,
Berlin, 1999.

11. E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key En-
cryption at Minimum Cost. IEICE Transaction of Fundamentals of Electronic
Communications and Computer Science, E83-A(1):24–32, January 2000.

12. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA–OAEP is Secure under
the RSA Assumption. In Crypto ’01, LNCS 2139, pages 260–274. Springer-Verlag,
Berlin, 2001.

13. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA–OAEP is Secure under
the RSA Assumption. Journal of Cryptology, 17(2):81–104, 2004.

14. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28:270–299, 1984.

15. E. Jaulmes and A. Joux. A Chosen Ciphertext Attack on NTRU. In Crypto ’00,
LNCS 1880, pages 20–35. Springer-Verlag, Berlin, 2000.

16. J. Manger. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS #1. In Crypto ’01, LNCS 2139, pages
230–238. Springer-Verlag, Berlin, 2001.

17. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In Proc. of the 22nd STOC, pages 427–437. ACM Press, New
York, 1990.

18. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In CT – RSA ’01, LNCS 2020, pages 159–175. Springer-
Verlag, Berlin, 2001.

19. T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for
the Security of Cryptographic Schemes. In PKC ’01, LNCS 1992. Springer-Verlag,
Berlin, 2001.

20. P. Paillier. Public-Key Cryptosystems Based on Discrete Logarithms Residues. In
Eurocrypt ’99, LNCS 1592, pages 223–238. Springer-Verlag, Berlin, 1999.

OAEP 3-Round: A Generic and Secure Asymmetric Encryption Padding 77

21. D. H. Phan and D. Pointcheval. Chosen-Ciphertext Security without Redundancy.
In Asiacrypt ’03, LNCS 2894, pages 1–18. Springer-Verlag, Berlin, 2003. Full
version available from http://www.di.ens.fr/users/pointche/.

22. D. H. Phan and D. Pointcheval. OAEP 3-Round: A Generic and Secure Asymmet-
ric Encryption Padding. In Asiacrypt ’04, LNCS. Springer-Verlag, Berlin, 2004.
Full version available from http://www.di.ens.fr/users/pointche/.

23. D. Pointcheval. Chosen-Ciphertext Security for any One-Way Cryptosystem. In
PKC ’00, LNCS 1751, pages 129–146. Springer-Verlag, Berlin, 2000.

24. D. Pointcheval. How to Encrypt Properly with RSA. CryptoBytes, 5(1):10–19,
winter/spring 2002.

25. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge
and Chosen Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-
Verlag, Berlin, 1992.

26. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

27. V. Shoup. A Proposal for an ISO Standard for Public-Key Encryption, december
2001. ISO/IEC JTC 1/SC27.

28. V. Shoup. OAEP Reconsidered. In Crypto ’01, LNCS 2139, pages 239–259.
Springer-Verlag, Berlin, 2001.

Stream Ciphers: Dead or Alive?

Adi Shamir

Weizmann Institute of Science, Israel
adi.shamir@weizmann.ac.il

Secret key cryptography was traditionally divided into block ciphers and stream
ciphers, but over the last 30 years the balance had steadily shifted, and today
stream ciphers have become an endangered species. In this talk I’ll survey the
current state of the art in stream ciphers: who needs them, who uses them, how
they are attacked, and how they can be protected by new types of constructions.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, p. 78, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Generalized Linear Equivalence of
Functions Over Finite Fields

Luca Breveglieri, Alessandra Cherubini, and Marco Macchetti

Politecnico di Milano, Milan, Italy
{brevegli, macchett}@elet.polimi.it

aleche@mate.polimi.it

Abstract. In this paper we introduce the concept of generalized lin-
ear equivalence between functions defined over finite fields; this can be
seen as an extension of the classical criterion of linear equivalence, and
it is obtained by means of a particular geometric representation of the
functions. After giving the basic definitions, we prove that the known
equivalence relations can be seen as particular cases of the proposed
generalized relationship and that there exist functions that are gener-
ally linearly equivalent but are not such in the classical theory. We also
prove that the distributions of values in the Difference Distribution Table
(DDT) and in the Linear Approximation Table (LAT) are invariants of
the new transformation; this gives us the possibility to find some Almost
Perfect Nonlinear (APN) functions that are not linearly equivalent (in
the classical sense) to power functions, and to treat them accordingly to
the new formulation of the equivalence criterion. This answers a question
posed in [8].

Keywords: Boolean functions, linear equivalence, differential cryptanal-
ysis, linear cryptanalysis, APN functions, S-boxes.

1 Introduction

The design criteria for symmetric key algorithms can be traced back to the work
of Shannon [18], where the concepts of confusion and diffusion are formalized.
Today, a significant number of block ciphers are built by alternating nonlinear
substitution layers with linear diffusion layers, in the so called Substitution-
Permutation Networks (SPNs). It has been proved that the usage of sufficiently
strong substitution functions, or S-boxes, leads to construction of strong block
ciphers, see for instance the Wide-Trail design technique [6]. The strength of
each S-box is often measured by means of the resistance to differential [4] and
linear [14],[3] cryptanalysis.

For a given function f : Fpm → Fpn with p prime and m,n ≥ 1 we can build
the DDT by computing the number δf (a, b) of solutions x of the equation

f(x + a)− f(x) = b a ∈ Fpm , b ∈ Fpn (1)

The lower the value of the maximum entry in the table, Δf = maxa�=0,b(δf (a, b)),
the more robust function f is versus differential cryptanalysis.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 79–91, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

80 L. Breveglieri, A. Cherubini, and M. Macchetti

In a similar way, we can construct the LAT of f by counting the number
λf (a, b) of solutions x of the equation

a • x = b • f(x) a ∈ Fp
m, b ∈ Fp

n (2)

where the inner product is indicated with • and gives a value in Fp. The ro-
bustness to linear cryptanalysis is measured with the maximum value Λf =
maxa,b �=0(||λf (a, b)− pm−1||). Good S-boxes have both small Λf and Δf values,
and usually have a complex algebraic expression; most of the results focus on
the case p = 2 which is of interest for practical applications.

Two functions are said to be equivalent if they differ by a group operation on
the input or output variables; Lorens [12] and Harrison [10],[11] have considered
the special case of invertible n-bit vectorial Boolean functions and have derived
the exact number of equivalence classes (along with asymptotic estimates) for
n ≤ 5 when different transformations such as complementation, permutation,
linear and affine transformations are applied on the input and output bits. Sim-
ilar results can be found in [1],[13] regarding the case of Boolean functions with
5 and 6 input bits and an asymptotic estimate for the number of equivalence
classes of Boolean functions under the transformation g(x) = f(Ax + b) + L(x)
(where L is a linear transformation) can be found in [7]. We can say that, in the
most general case of classical linear equivalence, two functions f, g : Fp

m → Fp
n

are linearly equivalent if there are two non-singular matrices A,B and a matrix
C over Fp such that

g(x) = Bf(Ax) + Cx (3)

The fact that two functions belong to the same equivalence class is rather
important from a cryptanalytic point of view; it is well known that the distribu-
tions of values in the DDT and LAT as defined by (1) and (2) are invariant under
the transformation (3). It is also true that if f is invertible, then g(x) = f−1(x)
has the same cryptographic robustness of f [15],[2]. This has motivated the fact
that the inverse of a function is also quoted as being equivalent to it [8]; while
this is understandable from the point of view of cryptography1, there is not for-
mal consistency in the theory, because clearly the operation of inversion is very
different from the transformation in (3).

To fill this gap, in Sect. 2 we propose a re-definition of the criterion of linear
equivalence that permits us to treat the classical case of linear equivalence and
the inversion operation with a unified approach. The criterion of generalized
linear equivalence can be applied to functions over finite fields, provided that
they are represented geometrically by set of vectors in an appropriate linear
space S. The set of vectors representing function f is denoted with F and called
the implicit embedding of f (in the space S); the implicit embedding contains
the information of the truth-table of the function.

1 A significant example is that of power functions over Fpn , as it happens that the
inverse of a power monomial is again a power monomial, generally belonging to a
different cyclotomic coset.

On the Generalized Linear Equivalence of Functions Over Finite Fields 81

Two functions f and g are said to be generally linearly equivalent if G can
be obtained from F with an invertible linear transformation T that acts on the
space S, i.e. G = T (F). We show that there exist couples of functions that are
generally linearly equivalent but are not correlated in the classical theory of
equivalence; thus the proposed criterion is in fact an extension of the classical
concept of equivalence.

In Sect. 3 we prove that the cryptographic robustness of a function versus
differential and linear cryptanalysis is invariant under the transformations con-
sidered in the framework of generalized linear equivalence, completing the proof
for the classical case.

In Sect. 4 we apply the criterion to power functions; we give an example of an
APN function that is not classically linearly equivalent to any power monomial,
but is easily obtainable using the generalized equivalence criterion. This answers
a question posed in [8].

Sect. 5 concludes the paper.

2 Extension of the Linear Equivalence Relation

2.1 A Geometric Representation

Let us consider a completely specified function f : Fp
m → Fp

n, with no restric-
tions on the values of m,n. There are different possible representations for the
object f ; we are particularly interested in the truth table of f , that lists the
output values of f associated with the corresponding (actually, all the possible)
input values. If we view the truth table as a matrix, there are pm rows, m + n
columns, and each entry belongs to the field Fp. The ordering of the rows is
not important, in the sense that two truth tables that contain the same rows in
different order specify the same function and thus can be considered as the same
truth table.

We can build a geometric representation of the function in the following way.
Let S be a linear space of dimension k = m + n, the elements (or vectors) of
which are defined over the finite field Fpm+n . Such vectors can thus be conceived
both as elements of the extension field Fpm+n and as vectors of the space S,
each vector consisting of m + n components over the basic field Fp. Denote by
+ and · (or nothing) the addition and multiplication of elements in Fpm+n ; by
extension + denotes vector addition in S, and · (or nothing) denotes scalar-
vector multiplication in S. Consider the set F of pm vectors in this space formed
by the rows of the truth-table of f , i.e. the concatenation of the input vectors
with the corresponding output vectors of f . Formally,

F = {(x|f(x)), x ∈ Fp
m, f(x) ∈ Fp

n} (4)

where with | we indicate the simple concatenation of two vectors with compo-
nents over Fp. Each vector of the set represents one complete row of the truth
table and thus the same information is contained in both representations; since
the vectors are not ordered, we can see that different orderings of the rows of

82 L. Breveglieri, A. Cherubini, and M. Macchetti

the truth table, as we would write it down on a piece of paper, actually identify
the same set of vectors, i.e. the same geometric entity. Two different functions
have different information in the truth table and therefore they are represented
with different set of vectors. We conclude that each function f can be unambigu-
ously represented with a particular set of vectors F , which we call its implicit
embedding (in the linear space S).

A natural question is when a given set of vectors actually represents a func-
tion. The following three conditions must be satisfied:

1. The set must have cardinality pm for some positive m. In fact, we consider
completely specified functions, and the number of rows in the truth table
must be pm if the function has m input variables (belonging to Fp).

2. The dimension of the vectors must be m + n for some positive n, i.e. the
function must have at least one output variable.

3. If we consider the first m components of all the vectors, we must find all
possible configurations once and only once. This is because there cannot be
a missing configuration (there would be a missing row in the truth table,
but the function must be completely specified) and there cannot be multiple
instances of the same configuration (there would be some missing configura-
tions because the cardinality of the set is pm).

We can see that there are sets of vectors which do not represent functions;
thus the representation defines a relation from the set of all functions f : Fp

m →
Fp

n to the set of all the sets of vectors in the space Fp
m+n that is one-to-one

but not onto.

2.2 Linear Transformations Over S

We have seen that all the information contained in the function specification
(truth table) is contained also in its geometric counterpart; the shape of the set
of vectors is thus a unique property of the represented function. If we apply a
linear transformation of coordinates to the space that is invertible, the infor-
mation contained in the set of vectors is not changed; instead, we change the
way we are looking at every geometric object (curves, hyperplanes, etc...) that
is contained in the linear space S, including the function represented as a set of
vectors.

Every invertible linear transformation over the whole space is governed by
a non-singular (m + n) × (m + n) matrix T over Fp. The non-singularity of
the matrix assures that we do not loose information while transforming the
coordinates, and also that the transformation has always an inverse.

Each vector of the implicit embedding of f is transformed into a new one,
but the essential shape of the configuration is invariant (we shall study the
cryptographic invariants of f in Sect. 3). Thus if one vector set is obtained
from another one by a change of basis governed by matrix T , then the two
corresponding functions are said to be generally linearly equivalent.

On the Generalized Linear Equivalence of Functions Over Finite Fields 83

Definition 1. Two functions f, g : Fp
m → Fp

n are called generally linearly
equivalent2 if and only if the implicit embedding G of g can be obtained from the
implicit embedding F of f with

G = T (F)

where T is an invertible linear transformation over the space Fp
m+n correspond-

ing to the non-singular matrix T .

We can treat the classical notion of linear equivalence as a particular case of
the generalized linear equivalence. We first consider the case m > n. Then:

1. If matrix T of the change of basis is defined as

T =
(
A 0
0 B

)
where A is a non-singular m×m matrix and B is a non-singular n×n matrix
over Fp, then:
– Matrix T is non-singular
– If we examine the transformed set of vectors, we see that it still describes

a function g which has the following relation with function f :

g(x) = Bf(A−1x)

The relation is easy to prove, once we remember that the first m components
of the vectors in the implicit embeddings of f and g represent the input
values, and the last n components represent the corresponding output values.
Thus carrying out the matrix-vector multiplication at block level, we obtain
y = Ax and g(y) = Bf(x) and substituting we have the above relation
between f and g. Obviously, if A = Im (the m×m identity matrix over Fp)
and B = In (the n × n identity matrix over Fp) we obtain again f because
the global transformation is the identity.

2. If matrix T of the change of basis is defined as

T =
(
A 0
C B

)
where A is a non-singular m×m matrix, B is an n× n non-singular matrix
and C �= 0 is an n×m matrix over Fp, then
– Matrix T is non-singular.
– If we examine the transformed set of vectors, we see that it still describes

a function g which has the following relation with function f :

g(x) = Bf(A−1x) + CA−1x

2 We observe that the concept of generalized affine equivalence could be defined along
the same line, to remove the artificial restriction that if two S-boxes are equivalent
and one maps 0 to 0, the other must also.

84 L. Breveglieri, A. Cherubini, and M. Macchetti

Thus we obtain all the functions that are linearly equivalent (in the classical
sense) to f , according to (3).

3. If matrix T of the change of basis is defined as

T =
(
A D
C B

)
where A �= 0 is an m×m matrix, B is an n×n matrix, C is an n×m matrix
and D �= 0 is an m× n matrix over Fp, then if matrix T is non-singular, we
can examine the transformed set of vectors. Two possibilities arise:
(a) It may happen that the transformed set does not describe a function

anymore because the non-singularity of T does not always imply that
condition 3 in Sect. 2.1 is satisfied.

(b) The transformed set satisfies condition 3 in Sect. 2.1, and function g is
generally equivalent to function f , although it is not obtainable within
the classical theory. The link between g and f is non-trivial: the out-
put vectors of g (the last n components of the transformed vectors) are
obtained by mixing information contained in the input vectors of f by
means of matrix C and information contained in the output vectors of f
by means of matrix B. The difference from the previous case is that the
same thing happens also to the input vectors of g by means of matrices
A and D. As a result it is not possible to express the relation between
f and g with a simple equation as before; nonetheless the two functions
are generally linearly equivalent. The truth tables of the two functions
can be expressed as:

f : x→ f(x)

g : Ax + Df(x)→ Cx + Bf(x)

Note that the reason why the transformed vector set is still representing a
function is simply that the function h : x→ Ax+Df(x) is a permutation
over Fp

m.

If m = n holds, the above cases are still valid; however, if it happens that f
is invertible, more cases can be considered. In particular:

4. If matrix T of the change of basis is defined as

T =
(

0 D
C 0

)
where C,D are non-singular m×m matrices over Fp, then:
– Matrix T is non-singular
– If we examine the transformed set of vectors, we see that it still describes

a function g, and it holds that:

g(x) = Cf−1(D−1x)

On the Generalized Linear Equivalence of Functions Over Finite Fields 85

This happens because the blocks C,D swap the input and the output parts
of all the vectors belonging to the implicit embedding of f in the implicit
embedding of g. Obviously, if C = D = Im we obtain the inverse of f .
We have thus reduced the operation of inversion of a function to a linear
transformation over the space where the implicit embedding of the function
is defined. This is surely a convenient feature of the proposed formulation.

5. If matrix T of the change of basis is defined as

T =
(

0 D
C B

)
where B �= 0 is an m×m matrix and C,D are non-singular m×m matrices
over Fp, then
– Matrix T is non-singular
– The relation between f and g is the following:

g(x) = Cf−1(D−1x) + BD−1x

i.e. we obtain all the functions that are linearly equivalent (in the classical
sense) to the inverse of f .

Last, we consider the case m < n. The following considerations can be made:

– Cases 1,2,3 are still valid; however in the conditions for case 3 we should
substitute A �= 0 with B �= 0.

– Case 4 is not applicable.
– Under some assumptions for matrix D and function f , case 5 can still be

valid. However, we loose the relationship with the inverse transformation
(which is not defined when the numbers of input and output variables are
different); moreover this case in fact becomes a special instance of 3, thus it
does not deserve a separate mention.

In all the remaining cases, either it can be proved that matrix T is singular,
or the transformed set of vectors cannot represent a function, so we have no
interest in examining them.

In the following, an example of a family of functions belonging to case 3 for
m > n is given.

Example 1. The family of functions f : Fp
2m → Fp

m with p prime and m ≥ 1
is given, where the input vector x and f(x) are defined as:

x = (x1)|(x2) x ∈ Fp
2m x1, x2 ∈ Fpm

f(x) = f((x1)|(x2)) = x−1
1 + x−1

2

where we indicate with | the simple concatenation of two vectors (actually, x1
and x2 represented as vectors over Fp are concatenated). When function f is
transformed into function g using a suitable matrix T , we can simply write

86 L. Breveglieri, A. Cherubini, and M. Macchetti

g = T (f) as the same equation holds for the implicit embeddings of the two
functions. The implicit embeddings of f and g can be visually represented, along
with a block decomposition of T ; we write explicitly:

g = T (f) =

⎛⎝ Im 0 0
0 0 Im

Im Im Im

⎞⎠ •
⎛⎝ x1

x2

x−1
1 + x−1

2

⎞⎠ =

⎛⎝ x1

x−1
1 + x−1

2
x−1

1 + x−1
2 + x1 + x2

⎞⎠
It can be observed that matrix T is non-singular and that the transformed

set of vectors still represents a function, because the input part (x1)|(x−1
1 +x−1

2)
is still a permutation over Fp

2m when x1, x2 vary over Fpm (i.e. all the possible
input values for g are specified in the implicit embedding). We make here the
underlying assumption that, with an abuse of notation, 0−1 = 0.

By Def. 1 the two functions f, g are generally linearly equivalent, although
there is no way to express the link using the classical theory of equivalence,
since every function that is classically linearly equivalent to f is obtained with
a matrix T characterized by a null upper-right block. The truth-table of g is
written in compact form as

((x1)|(x−1
1 + x−1

2))→ (x−1
1 + x−1

2 + x1 + x2)

Any property that is invariant under the considered transformation is com-
mon between f and g. In the next Section we present a result on the invariance
of cryptographic robustness.

3 Cryptographic Robustness of Generally Equivalent
Functions

We start by recalling a fundamental result of the classical theory [15], [2]:

Theorem 1. Given two functions f and g, if they are linearly equivalent i.e. if
there exist two non-singular matrices A,B such that

g(x) = Bf(Ax) (5)

then the distributions of the values in DDTs and LATs of f and g are equal.

Corollary 1. As a consequence of Theorem 1, we have that Δf = Δg and
Λf = Λg.

It is also known that the same parameters are conserved when we consider
the inverse of a function (the DDTs and LATs are merely transposed), or when
we add a linear combination of the input variables of the function directly to its
output variables [9].

Since we proved that these relations are particular occurrences of the general-
ized linear equivalence, it is therefore natural to ask whether the same parameters
are also invariant in the general case. We answer with the following theorem.

On the Generalized Linear Equivalence of Functions Over Finite Fields 87

Theorem 2. Given two functions f, g : Fp
m → Fp

n and a non-singular (m +
n) × (m + n) matrix T over Fp, if g = T (f) then the distributions of values in
the linear and differential tables of f and g are equal.

Proof. We first prove the relation regarding the DDTs of f and g.
A cell of the DDT of f located in the i-th row and j-th column contains the

number of the input vector couples (x, y) such that y = x+i and f(y) = f(x)+j,
according to (1).

Thus, if we consider the geometric representation for function f we have that
the cell contains the number of vector couples (w, z) belonging to the implicit
embedding of f such that w = z + k where k = (i)|(j) (the concatenation of i
and j); note that i ∈ Fp

m, j ∈ Fp
n and k ∈ Fp

m+n.
These couples will be transformed by the change of basis into other couples

(w′, z′) belonging to the implicit embedding of function g such that w′ = Tw,
z′ = Tz and w′ = z′ + k′ with k′ = Tk.

Since matrix T is non-singular, there is a bijection between the values of k
and those of k′, i.e. the cells of the DDT of g are just a (linear) rearrangement
of the cells of the DDT of f .

A similar reasoning can be applied to prove the relation between the LATs.
A cell of the LAT table of f located in the i-th row and j-th column contains the
number of the input vectors x such that i+ • x+ j+ • f(x) = 0, where we denote
the inner-product with • and, for sake of clearness, the transposed of a vector
with +.

Thus, if we consider the geometric representation for function f we have that
the cell contains the number of vectors w belonging to the implicit embedding of
f such that k+ • w = 0 where k = (i)|(j); note that i ∈ Fp

m, j ∈ Fp
n and

k ∈ Fp
m+n.

These vectors will be transformed by the change of basis into other vectors w′

belonging to the implicit embedding of function g such that w′ = Tw. We can
rewrite the equation as:

k+ • Tw = 0 ⇔ (T+k)+ • w = 0 ⇔ (k′)+ • w = 0

Since matrix T is non-singular, there is a bijection between the values of k and
those of k′ = T+k, i.e. the cells of the LAT of g are just a (linear) rearrangement
of the cells of the LAT of f . �

Corollary 2. As a consequence of Theorem 2 we have that if f and g are gen-
erally linearly equivalent, then Δg = Δf and Λg = Λf .

We thus conclude that two generally linearly equivalent functions are charac-
terized by the same cryptographic robustness; since the general case extends the
classical relation, we can justify the common robustness of previously unrelated
functions, such as f and g in Example 1.

It is a rather computationally difficult problem to decide whether two given
functions are linearly equivalent: besides exhaustive search on the space of all
possible matrices, it is possible to classify the functions basing on the distribu-
tion of values in the Walsh-Hadamard transform. Recently, Fuller and Millan

88 L. Breveglieri, A. Cherubini, and M. Macchetti

[9] have developed a classification method which exploits the concept of connec-
tivity between two functions f, g : F2

m → F2. They applied the method to the
case m = 8 and to the Rijndael S-box, being able to prove that all the output
variables of the only nonlinear step of the algorithm are linearly equivalent. Also,
a description of optimized algorithms being able to find out whether two given
invertible S-boxes are equivalent under a linear (or affine) transformation can be
found in [5].

The result of Theorem 2 states that the whole distributions of values in the
cryptographic tables are equal, not only the maximum values; such information
could be used as a necessary condition for the generalized equivalence of two
functions: if the two distributions differ, it can be immediately concluded that
the two functions are not generally equivalent3. The check of this condition is
not considered in [5]; we think that the check could speed up considerably the
algorithms in most cases of negative answer. Obviously the condition is not
sufficient and further techniques are needed to conclude that the two functions
are generally (or classically) linearly equivalent.

It may be useful, at the end of this Section, to give also the geometric meaning
of the parameters that measure cryptographic robustness.

In particular, the entries in the DDT of function f represent the number of
vector couples belonging to the implicit embedding of f , that sum up to the
same fixed vector, i.e. the (composed) difference vector. We can mentally view
the process if we figure that the usual parallelogram rule is used to sum the
vectors, as it would be done in standard Euclidean spaces; in practice, we are
searching the vector couples that lead to the same path in the space S. This is
evidently a measure of the redundancy of the information that characterizes the
particular set of function vectors, i.e. the function itself.

The entries in the LAT, instead, can be seen as the number of vectors belong-
ing to the implicit embedding of f that are orthogonal to a given fixed vector,
since the inner product is the scalar product in S; the fixed vector is obtained by
concatenating the masks that are classically applied to the function input and
output values to compute the LAT. This can also be thought as a measure of
the redundancy of the directions of the function vectors, and eventually of the
function itself.

Finally, note that when the classical notion of linear equivalence is considered,
we have linear rearrangements of the rows and the columns of the cryptographic
tables; when generalized equivalence is applied, we have a linear rearrangement
of the cells within the tables. There may exist couples of functions where the
distributions of the values in the cryptographic tables are equal, but the actual
arrangements of the cells cannot be linearly correlated. In these cases we can
prove that the functions are not generally equivalent if we show that there are
no possible linear rearrangements of the cells of one table that lead exactly to
the other table.

3 Since the classical equivalence is a special case of the generalized equivalence, the
two functions are not equivalent also in the classical theory.

On the Generalized Linear Equivalence of Functions Over Finite Fields 89

4 Application of the Criterion to Power Functions

The set of monomial power functions over Fpm is interesting, since significant
examples of functions with minimum possible Δf can be found in this class.

If p = 2 the minimum possible value for Δf when f : {0, 1}m → {0, 1}n is
2m−n; functions reaching this limit are called Perfect Nonlinear (PN) [16] and
exist only for m even and m ≥ 2n. If we consider the important class of S-boxes,
i.e. f : {0, 1}m → {0, 1}m, then the minimum possible value for Δf is 2; functions
reaching this limit are called Almost Perfect Nonlinear (APN) [17]. The only
known examples of APN functions (up to classical linear equivalence) are power
monomials; the list of known values for the exponent d such that f(x) = xd

is APN can be found in [8]. Such functions find applications in symmetric key
cryptography.

When p > 2 the minimum possible value for Δf is 1; functions reaching
this limit are again called Perfect Nonlinear (PN). There are examples of PN
and APN power functions over Fpm and there is also one known example of a
function that is not a power monomial but is PN over F3m for certain values of
m [8].

Normally power monomials in even characteristic are classified into cyclo-
tomic cosets, where a coset contains all the power monomials {xd, x2d, . . . ,

x2m−1d}; the value d is called the coset leader and the power functions belonging
to the same coset are classically linearly equivalent. Also, the inverse function
xd−1

has the same cryptographic robustness of xd, although it (in general) be-
longs to a different coset and is not linearly equivalent to xd. Cosets, expanded
with the usual classical equivalence criterion of Eq. 3, constitute the equivalence
classes of power functions.

Using the criterion of generalized linear equivalence, different classical equiv-
alence classes are merged into one: this is the case for instance of the classical
equivalence classes of xd and xd−1

, since we have shown that in the new formalism
the operation of inversion is nothing but a special case of linear transformation.

Moreover, we can show the existence of some functions that are not classically
linearly equivalent to any power monomial, but still are APN.

Example 2. Consider the finite field F23 ; the classification of all the possible
exponents into cyclotomic cosets is given by:

C0 = {0}
C1 = {1, 2, 4}
C3 = {3, 6, 5}

where the cosets Ci are numbered accordingly to the coset leader i. Coset C0
contains only the constant function; coset C1 contains the power monomials that
are linear; coset C3 contains non-linear APN power monomials. Since the inverse
of x6 is again x6 and the inverse of x3 is x5 this coset is its own inverse4.

4 Note that this always happens to the coset that contains the inverse power function
x−1 which in this case is actually x6.

90 L. Breveglieri, A. Cherubini, and M. Macchetti

Coset C3 can be expanded into a (classical) linear equivalence class of f(x) =
x3 by considering all the functions g(x) such that

g(x) = T (f(x)) =
(
A 0
C B

)
•
(

x
x3

)
Obviously, all these functions are APN and x5, x6 are some members of this

class.
Now, consider the function h(x) such that

h(x) = T ′(f(x)) =
(
I + S I
I 0

)
•
(

x
x3

)
where S is the matrix that gives the square of x (x2 is a linear transformation in
even characteristic, thus it can be represented by a matrix multiplication). The
implicit embedding of h, and thus its truth-table, is described by:

x3 + x2 + x → x

This implicit embedding still defines a function because x3 + x2 + x is a
permutation polynomial over F2m with m odd, see Corollary 2.10 of [19]. Since
matrix T is non-singular, h is generally linearly equivalent to f and thus is APN.
However, h does not belong to the classical equivalence class that extends C3
because all the functions in this class are obtainable from f(x) only using matri-
ces T with a null upper-right block. We conclude that h belongs to a (classical)
equivalence class that contains APN functions but is different from that of f(x),
which is the only one obtainable from power functions over F23 . Both these
equivalence classes will be merged into one, when the general equivalence classes
are considered; thus, this is another example of class merging.

Note that function h can actually be obtained from function f using classical
means, i.e. by first transforming f into a classically linear equivalent function g
and then inverting, since:(

I + S I
I 0

)
=
(

0 I
I 0

)
•
(

I 0
I + S I

)
However, this does not lead to a function that is classically equivalent to f ;

while this may be difficult to prove classically, it becomes evident when general
linear equivalence is introduced and one considers that matrix T ′ cannot belong
to the family of matrices T indicated in the example.

5 Conclusions

In this paper we have presented the criterion of generalized linear equivalence.
We have shown that the criterion extends the classical notion of linear equiv-
alence; all the known cases of transformations that lead to invariance of the

On the Generalized Linear Equivalence of Functions Over Finite Fields 91

cryptographic robustness can be treated as special instances of the proposed re-
lation. Also, it can be shown that there are functions that cannot be correlated
using the classical theory but become equivalent under the proposed criterion.
We have used general equivalence to show that there are APN functions that
are not classically linearly equivalent to power monomials, and that these equiv-
alence classes are merged under the extended criterion.

References

1. Berlekamp, E.R., Welch, L.R.: Weight Distributions of the Cosets of the (32,6)
Reed-Muller Code. IEEE Transactions on Information Theory, 18(1):203–207,
1972.

2. Beth, T., Ding, C.: On Almost Perfect Nonlinear Permutations. Proceedings of
EUROCRYPT ’93, 65–76, 1994.

3. Biham, E.: On Matsui’s Linear Cryptanalysis. Proceedings of EUROCRYPT ’94,
341–355, 1994.

4. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology, 4(1):3–72, 1991.

5. Biryukov, A., De Canniere, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanaly-
sis: Linear and Affine Equivalence Algorithms. Proceedings of EUROCRYPT 2003,
33–50, 2003.

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer-Verlag, 2002.

7. Denev, J.D., Tonchev, V.D.: On the Number of Equivalence Classes of Boolean
Functions under a Transformation Group. IEEE Transactions on Information The-
ory, 26(5):625–626, 1980.

8. Dobbertin, H., Mills, D., Muller, E.N., Pott, A., Willems, W.: APN functions in
odd characteristic. Discrete Mathematics, 267(1-3):95–112, 2003.

9. Fuller, J., Millan, W.,: On linear Redundancy in the AES S-Box. Available online
on http://eprint.iacr.org, 2002.

10. Harrison, M.A.: The Number of Classes of Invertible Boolean Functions. Journal
of ACM, 10:25–28, 1963.

11. Harrison, M.A.: On Asymptotic Estimates in Switching and Automata Theory.
Journal of ACM, 13(1):151–157, 1966.

12. Lorens, C.S.: Invertible Boolean Functions. IEEE Transactions on Electronic Com-
puters, EC-13:529–541, 1964.

13. Maiorana, J.A.: A Classification of the Cosets of the Reed-Muller code r(1,6).
Mathematics of Computation, 57(195):403–414, 1991.

14. Matsui, M.: Linear Cryptanalysis method for DES cipher. Proceedings of EURO-
CRYPT ’93, 386–397, 1994.

15. Nyberg, K.: Differentially Uniform Mappings for Cryptography. Proceedings of
EUROCRYPT ’93, 55–64, 1994.

16. Nyberg, K.: Perfect Nonlinear S-Boxes. Proceedings of EUROCRYPT ’91, 378–
386, 1991.

17. Nyberg, K., Knudsen, L. R.: Provable security against differential cryptanalysis.
Proceedings of CRYPTO ’92, 566–574, 1992.

18. Shannon, C.E.: Communication Theory of Secrecy Systems. Bell System Technical
Journal, 28:656–715, 1949.

19. Small, C.: Arithmetics of Finite Fields. Dekker, New York, 1991.

Sieving Using Bucket Sort�

Kazumaro Aoki and Hiroki Ueda

NTT, 1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847, Japan
{maro, ueda}@isl.ntt.co.jp

Abstract. This paper proposes a new sieving algorithm that employs
a bucket sort as a part of a factoring algorithm such as the number
field sieve. The sieving step requires an enormous number of memory
updates; however, these updates usually cause cache hit misses. The
proposed algorithm dramatically reduces the number of cache hit misses
when the size of the sieving region is roughly less than the square of the
cache size, and the memory updates are several times faster than the
straightforward implementation.

1 Introduction

The integer factoring problem is one of the most important topics for public-key
cryptography, because the RSA cryptosystem is the most widely used public-key
cryptosystem, and its security is based on the difficulty of the integer factoring
problem. Over a few hundred bits, the number field sieve [1] is currently the
most fastest algorithm to factor an RSA modulus.

The number field sieve consists of many steps. It is known that the sieving
step is theoretically and experimentally the most time-consuming step. It is
noted that a straightforward implementation of the sieving step on a PC causes
a long delay in memory reading and writing, and the sieving program is several
dozen times faster if all memory accesses utilize the cache memory.

This paper focuses on memory access in the software implementation of the
sieving step on a PC, and introduces an algorithm that reduces the number
of cache hit misses. The experimental results confirm that the proposed sieving
algorithm is several times faster than that in the straightforward implementation.

2 Preliminaries

2.1 Number Field Sieve

This section briefly describes the number field sieve algorithm that is relevant to
the scope of the paper. Details regarding this algorithm can be found in (e.g. [1]).

� This work is supported in part by a consignment research from the Telecommunica-
tions Advancement Organization of Japan (now the National Institute of Information
and Communications Technology) and by the CRYPTREC project.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 92–102, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Sieving Using Bucket Sort 93

Let N be a composite number and it will be factored. Find an irreducible
polynomial f(X) ∈ ZZ[X] and its root M such that f(M) ≡ 0 (mod N). The
purpose of the sieving step is to collect many coprime pairs (a, b) ∈ ZZ2 such
that NR(a, b) = |a + bM | is BR-smooth and NA(a, b) = |(−b)deg ff(−a/b)| is
BA-smooth1. Such a coprime, (a, b), is called a relation.

We describe the line-by-line sieve (hereafter we simply referred to as line
sieve) as Algorithm 1, and it is the most basic algorithm used to find relations.
Hereafter, we omit the details on the algebraic side, because very similar algo-
rithms are used for the algebraic side. Algorithm 1 assumes that 2Ha elements
are allocated for array S. The sieving region may be divided if 2Ha is greater
than the suitable size for the implementation platform. The size of each ele-
ment, S[a], is typically 1 byte, and the base for log p is selected such that it does
not to exceed the maximum representable value of S[a]. In Step 8 in the inset,

Algorithm 1 (line sieve for rational side (basic version)).

1: for b ← 1 to Hb

2: for all a (−Ha ≤ a < Ha), initialize S[a] to log NR(a, b)
3: for prime p ← 2 to BR

4: Compute a ≥ −Ha as the first sieving point depending on b and p
5: while a < Ha

6: S[a] ← S[a] − log p
7: a ← a + p
8: Completely factor NR(a, b) for all a if S[a] < some threshold

the threshold is determined by considering the error generated by the logarithm
rounded to the nearest integer in Steps 2 and 6, and the omission of prime
powers2.

2.2 Large Prime Variation

If BR is close to or greater than Ha, the while-loop in Step 5 is hardly activated,
and the first sieving point computation in Step 4 may dominate the sieving time.
For this case, we can use the large prime variation. The changes compared to
the basic version are as follows:

1. Set the bound for p at Step 3 to BL
R (< BR).

2. Relax the threshold at Step 8 in Algorithm 1.

The faster the primality testing and factoring for small integers greater than
BL

R become available, the more relaxed the threshold can become.
Based on the experience, the most time-consuming part in large prime vari-

ation is reading and writing to memory to update S[a] in Step 6. This paper
optimizes the memory read/write process.

1 “x is y-smooth” means that all prime factors of x are less than or equal to y.
2 By regarding prime power pe as prime and log pe as log p, prime powers can be easily

incorporated into Algorithm 1.

94 K. Aoki and H. Ueda

2.3 Memory Latency of a PC

Recent PCs have incorporated cache memory, and cache memory can usually
be classified into several levels. A low level cache represents fast access but low
capacity. For better understanding, we provide an example. Let us consider the
Pentium 4 memory characteristics for logical operations performed by general
purpose registers as shown in Table 1.

Table 1. Pentium 4 Northwood [2, p.1-17,1-19,1-20]

Line size Size Latency
Register (4 B) 32 B 1

2 processor cycle
Level 1 cache 64 B 8 KB 2 processor cycles
Level 2 cache 64 B+64 B 512 KB 7 processor cycles
Main memory (4 KB) ≈1 GB 12 processor cycles + 6-12 bus cycles

The memory system in a PC is constructed to provide good performance
for continuous address access, that is, random address access is very poor. A
line sieve algorithm updates S[a] by step p in Step 6 in Algorithm 1. When p is
greater than the size of cache memory, the updates seem to be random access.
A read from the main memory requires at least 12 + 6 × (2.53/0.533) = 40.5
processor cycles, where the Pentium 4 frequency is 2.53 GHz and FSB is 533 MHz,
according to Table 1. However, the user probably feels that the time required
for main memory access requires more processor cycles. An experiment shows
that the time for a random read from the main memory requires several hundred
processor cycles.

2.4 Previous Work

Sieving can be considered as waiting for memory because other steps in the in-
nermost loop are small and very simple, according to Steps 5 to 7 in Algorithm 1.
To overcome cache hit misses, [3] proposed the block sieving algorithm. There
are two differences between the basic version of the line sieve in Algorithm 1
and the block sieving algorithm: the addition of Algorithm 2 between Steps 2
and 3, and the initial p in Step 3 is modified to the smallest prime greater
than BS

R. The block sieving algorithm classifies factor base primes into smallish
primes (∈ (0,BS]) and largish primes (∈ (BS ,BL]), and updates each small
region whose size is HS

a by smallish primes. To achieve better performance, HS
a

and BS
R are set to approximately the size of the cache memory. Note that the

computation of the first sieving point in Step 3 in Algorithm 2 can be omitted
if the last sieving point computed in Step 4 is available. Focusing on the mem-
ory hierarchy, the performance of the sieving step may be better optimized in
order to consider more parameters in classifying smallish primes in some envi-
ronments.

Sieving Using Bucket Sort 95

Algorithm 2 (Additional steps from line sieve to block sieving algo-
rithm).

1: for aS ← −Ha to Ha step +HS
a

2: for prime p ← 2 to BS
R

3: Compute a ≥ aS as the first sieving point
4: while a < aS + HS

a

5: S[a] ← S[a] − log p
6: a ← a + p

3 Sieving Using Bucket Sort

The number of cache hit misses for smallish primes greatly decreases using the
block sieving algorithm described in Sect. 2.4; however, the sieving for largish
primes still generate many cache hit misses. This section describes the reduction
in the number of cache hit misses for largish primes using the bucket sorting
algorithm [4, Sect. 5.2.5].

As mentioned in Sect. 2.3, memory updates between close addresses are not
penalized, and the log p minuses which are memory update operations are com-
mutative. Sorting (a, log p) using key a can reduce the number of cache hit misses;
however, the sorting should be done very quickly, because the number of S[a]
updates is roughly 2Ha(log log BL− log log BS), that is, it is almost linear to Ha.
While complete sorting is not required and recent PC models have very large
memory capacity, we use the bucket sorting algorithm to address this issue.

3.1 Proposed Algorithm

The proposed algorithm replaces the largish prime sieving in Algorithm 1, that
is, the algorithm has the same function as Algorithm 1 for sieving largish primes.

The algorithm is based on bucket sorting. Let n be the number of buckets, and
r be

⌈nS

n

⌉
, where nS denotes the number of elements in S. Note that nS = 2Ha

for Algorithm 1. The algorithm comprises the continuous runs of Algorithms 3
and 4.

Algorithm 3.

1: Let all buckets empty
2: for prime p ← BS

R + 1 to BL
R

3: Compute a ≥ −Ha as the first sieving point
4: while a < Ha

5: Store (a, log p) to the
⌊

a + Ha

r

⌋
th bucket

6: a ← a + p

96 K. Aoki and H. Ueda

Algorithm 4.

1: for all buckets that are numbered i (0 ≤ i < n)
2: for all (a, log p) in the bucket i
3: S[a] ← S[a] − log p

Algorithm 3 throws (a, log p) in the buckets, and Algorithm 4 updates S[a]
using the elements in the buckets.

3.2 Why Can Proposed Algorithm Hit Cache Memory?

Figure 1 forms the basis for the following discussion. We first consider Algo-
rithm 4. All elements in a bucket will only updates the memory in range r.

Thus,
r × (Size of each S[a]) ≤ (Size of cache memory) (1)

should hold. Next, we consider Algorithm 3. For each bucket, the addresses for
memory writes are continuous. It is sufficient if

n× (Size of cache line) ≤ (Size of cache memory) (2)

holds. Note that the cache memory can only be updated in units called cache
lines. We assume that the size of (a, log p) is less than the size of a cache line.
When combining (1) and (2), n exists if

nS × (Size of each S[a]) = (Size of S[•]) ≤ (Size of cache memory)2

(Size of cache line)
(3)

holds.
Let us consider a typical parameter using Table 1. The size of the cache

memory is 512 KB, and the size of the cache line is 128 B. Therefore, the right
hand side of (3) is 231 B. If we allocate each S[a] as 1 B, then S can occupy up
to 2 GB. This means that the proposed algorithm is effective for most PCs. The
proposed algorithm increases the number of memory accesses, but dramatically
reduces the number of cache hit misses with appropriate prefetching.

S
�
�

�
�

�������cache memory when Algorithm 4 runs

Buckets

0 1 i n − 1
�� �	�����In cache memory when Algorithm 3 runs

at a particular moment

��
r

Fig. 1. Memory usage for buckets and S

Sieving Using Bucket Sort 97

3.3 Related Work

[5], which follows the inspiring work [6], independently proposed sieving hard-
ware, which sorts (a, log p). The paper does not consider the cache memory;
however, their algorithm is similar in that sieving is converted to sorting .

4 Optimizations and Improvements

This section considers optimization techniques and improvements to the pro-
posed algorithm.

4.1 (a, log p) Size Reduction

The size of a stored in a bucket can be reduced. a′ = a + Ha mod r is sufficient
to recover a, because a = ir + a′ −Ha for the ith bucket.

Moreover, the number of bits for log p can be reduced to 1 bit, because
(a, log p) can be generated in ascending order on p and log p in a bucket increases
very slow.

4.2 Number of Buckets

For efficient computation of Step 5 in Algorithm 3 and the technique described
in Sect. 4.1, r should be a power of 2 on most PCs.

4.3 Hierarchical Buckets

Considering the idea of radix sort and cache hierarchy, Algorithm 4 can be
modified to Algorithms 3 and 4 using smaller buckets.

4.4 Reduction in Memory for Buckets

Consider the case that a PC does not have enough memory to allocate buckets
to store all (a, log p)s. Whenever a bucket is full at Step 5 in Algorithm 3, call
Algorithm 4 and empty the buckets.

4.5 Reduction in Sieving Memory S

First, perform sieving for largish primes using Algorithms 3 and 4. When exe-
cuting Algorithm 4, smallish prime can be sieved between Steps 1 and 2. In the
ith bucket, a is in [ir−Ha, (i+1)r−Ha). Thus, r elements for S[a] are sufficient
for the ith bucket.

Note that this idea cannot be used with the idea described in Sect. 4.4.

4.6 Bucket Reuse for Trial Division

The trial sieving algorithm [7] was proposed to reduce the time in Step 8 in
Algorithm 1. The algorithm acts almost the same as the sieving algorithm dis-
cussed above, but it only considers a small set of (a, b). When filling buckets in
Algorithm 3, store p in addition to (a, log p), and the buckets can be used for

98 K. Aoki and H. Ueda

trial sieving. This can reduce the computational cost of the first sieving points
for largish primes. However, storing p probably doubles the memory allocation
for the buckets. It may be a good idea to avoid storing small primes that are
classified as largish primes.

4.7 Application to Lattice Sieve

The idea behind the proposed algorithm can be applied to any algorithm if the
memory update operation is commutative. There are no problems in using the
proposed algorithm for the lattice sieve.

4.8 Tiny Primes

[8, p.334] suggests that S[a] is initialized by the logarithm of tiny primes. It can
be efficiently achieved by the following idea. First, compute the sieving pattern
for tiny primes, which are less than BT , and their small powers. Once the pattern
is computed, the initialization of S[a] can be done by duplicating the pattern by
adjusting the correct starting position.

5 Implementation on Pentium 4

We implemented Algorithms 3 and 4 in the lattice sieve using all the techniques
in Sect. 4 except for Sect. 4.4 and last haf of Sect. 4.1 on a Pentium 4 (North-
wood) with 1 GB main memory and 533 MHz FSB. The specifications are the
same as those described in Table 1. The prime bounds are described in Table 2.
These names are from [9]. We tried to obtain the best Bs using the factor base
parameter for c158 as described in [10].

Table 2. Prime Bounds and Algorithms

Range Name Algorithm
p ≤ BT p: Tiny prime Sieving pattern

BT < p ≤ BS p: Smallish prime Block sieving
BS < p ≤ BL p: Largish prime Bucket sorting
BL < p ≤ B p: Large prime Primality testing and factoring

5.1 Parameter Selection

We assign 1 B for log p and 4 B for each (a, log p), because the smallest mem-
ory read and write unit is 1 B and the basic memory data unit is 4 B for the
Pentium 4.

On the factorization of c158, the sieving rectangle was 2Hc×Hd = 214×213.
To translate the rectangle to a line sieve case, we can interpret 2Ha = 214×213 =
227. The large primes in each relation and the values of BL

R and BL
A are unclear.

Therefore, we select two large primes for both sides in each relation, and set
BL

R = 30× 106, BL
A = 0.9×Q, and BS

R = BS
A = 512× 210, where Q denotes the

Sieving Using Bucket Sort 99

special-Q according to our factoring code, the primality testing for large prime
products, factor base bound for the line sieve, and the size of level 2 cache. We
tried the depths of 1, 2, and 3 for the hierarchical buckets with all powers of 2
for r, and found that the best hierarchy depth is 2. Surprisingly, the best rs are
not the combination of the size of the level 2 cache and level 1 cache, but 2 MB
and 256 KB.

Next, we tried to find the best BS
R and BS

A. Based on dozens of experments,
we find that BS

R = 2Hc and BS
A = 5Hc achieve almost the best performance.

Remark 1. We sieve prime powers less than
√

BL, and select BT
R = BT

A = 5.
Remark 2. We classify smallish primes into small sets taking into account the

size of the caches and sieving range.
Remark 3. After executing Algorithm 3, the numbers of elements in each bucket

are roughly the same. We found that a 2% difference is the largest
in our experiments.

Remark 4. We used base-2 Solovay-Strassen primality testing [11, pp.90–91], and
ρ [11, pp.177–183] and SQUFOF [11, pp.186–193] as the factoring
algorithm for large primes.

5.2 Factoring Example

We factor 164-digit cofactor c164 in 21826+1 using GNFS, and 248-digit cofactor
c248 in 21642 + 1 using SNFS employing the above implementation. Refer to the
Appendix for detailed information. The parameters used in the factoring of c164
and c248 are summarized in Table 3. For comparison purposes, Table 3 also
includes the parameters used in the factoring of RSA-512 [12].

Table 3. Factoring Parameters for Lattice Sieve

Hc Hd BL
R BL

A B max sp-Q #sp-Q #LP rel/MY
c164 16 K 8 K 40 m 0.95Q 4 g 194 m 8.2 m 2+2 29 k
c248 16 K 8 K 0.95Q 100 m 4 g 200 m 10.2 m 2+2 22 k

RSA-512 4 K 5 k 16 M 16 M 1 g 15.7 m 308 m 2+2 14 k
k: 103, K: 210, m: 106, M: 220 g: 109, G: 230

rel/MY: Generated relations per MIPS year

The proposed siever yields more relations per MIPS year despite that c164 is
larger than RSA-512. However, a straightforward comparison should be avoided
because the characteristics of computers used for the above factoring are quite
different, and MIPS is not optimal for comparing the sieving complexity.

Remark 1. The lattice siever used for RSA-512 is intended to factor RSA-130 [12,
Sect. 3.2].

Remark 2. We timed MIPS using the output of a “BYTE benchmark.” We
obtained 3969679.6 lps for Dhrystone 2 without register variables.
Thus, MIPS is computed by 3969679.6/1767 ≈ 2246.6. This number
is used for c164 and c248 in column rel/MY.

100 K. Aoki and H. Ueda

Remark 3. We noticed that numbers larger than RSA-512 such as RSA-576
are already factored using GNFS [13] and that their siever seems
faster than one that was used for RSA-512. However, not enough
information is provided to estimate the timings. We used the records
that were published and the largest values [12].

6 Conclusion

We proposed a sieving algorithm that cleverly uses the cache memory. The al-
gorithm accelerates the memory update processes in the sieving step to several
times faster than that of the simple log p subtraction. Moreover, we implemented
the proposed algorithm in the lattice sieve on a Pentium 4, and successfully fac-
tored a 164-digit number using GNFS, and a 248-digit number using SNFS.

Acknowledgments

The authors gratefully thank Prof. Yuji Kida for fruitful discussions, his ideas
regarding Sect. 4.5 and the last half of Sect. 4.6. Moreover, the authors thank him
for his contribution in approximating BS in Sect. 5.1. We also thank Dr. Takeshi
Shimoyama of Fujitsu Labs and Dr. Soichi Furuya of Hitachi for suggesting a
hint for reducing the number of bits for log p in Sect. 4.1.

References

1. Lenstra, A.K., Lenstra, Jr., H.W., eds.: The development of the number field sieve.
Volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg
(1993)

2. Intel Corporation: IA-32 Intel Architecture Optimiza-
tion Reference Manual. (2004) Order Number: 248966-010
(http://support.intel.com/design/pentium4/manuals/248966.htm).

3. Wambach, G., Wettig, H.: Block sieving algorithms. Tech-
nical Report 190, Informatik, Universität zu Köln (1995)
(http://www.zaik.uni-koeln.de/~paper/index.html?show=zpr95-190).

4. Knuth, D.E.: Sorting and Searching. Second edn. Volume 3 of The Art of Computer
Programming. Addison Wesley (1998)

5. Geiselmann, W., Steinwandt, R.: A dedicated sieving hardware. In Desmedt,
Y.G., ed.: Public Key Cryptography — PKC2003. Volume 2567 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (2003) 254–
266

6. Bernstein, D.J.: Circuits for integer factorizaion: a proposal. (available at
http://cr.yp.to/factorization.html\#nfscircuit) (2002)

7. Golliver, R.A., Lenstra, A.K., McCurley, K.S.: Lattice sieving and trial division.
In Adleman, L.M., Huang, M.D., eds.: Algorithmic Number Theory — First Inter-
national Symposium, ANTS-I. Volume 877 of Lecture Notes in Computer Science.,
Berlin, Heidelberg, New York, Springer-Verlag (1994) 18–27

Sieving Using Bucket Sort 101

8. Silverman, R.D.: The multiple polynomial quadratic sieve. Mathematics of Com-
putation 48 (1987) 329–339

9. Shamir, A., Tromer, E.: Factoring large numbers with the TWIRL device. In
Boneh, D., ed.: Advances in Cryptology — CRYPTO 2003. Volume 2729 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, New York (2003)
1–26

10. Bahr, F., Franke, J., Kleinjung, T.: Factorization of 158-digit cofactor of 2953 + 1.
(available at http://www.crypto-world.com/announcements/c158.txt) (2002)

11. Riesel, H.: Prime Numbers and Computer Methods for Factorization. Second edn.
Volume 126 of Progress in Mathematics. Birkhäuser, Boston, Basel, Berlin (1993)

12. Cavallar, S., Dodson, B., Lenstra, A.K., Lioen, W., Montgomery, P.L., Murphy,
B., te Riele, H., Aardal, K., Gilchrist, J., Guillerm, G., Leyland, P., Marchand,
J., Morain, F., Muffett, A., Putnam, C., Zimmermann, P.: Factorization of a 512-
bit RSA modulus. In Preneel, B., ed.: Advances in Cryptology — EUROCRYPT
2000. Volume 1807 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Heidelberg, New York (2000) 1–18

13. Contini, S.: Factor world! (http://www.crypto-world.com/FactorWorld.html)
(2002)

14. Wagstaff, S.S.: The Cunningham Project. (2003)
(http://www.cerias.purdue.edu/homes/ssw/cun/).

15. Aoki, K., Kida, Y., Shimoyama, T., Sonoda, Y., Ueda, H.: GNFS164.
(http://www.rkmath.rikkyo.ac.jp/~kida/gnfs164e.htm) (2003)

16. Aoki, K., Kida, Y., Shimoyama, T., Sonoda, Y., Ueda, H.: SNFS248.
(http://www.rkmath.rikkyo.ac.jp/~kida/snfs248e.htm) (2004)

Appendix: Factoring Parameters and Statistics for c164
and c248

c164 and c248 are selected from Cunningham table [14].
c164 is the 164-digit cofactor of 21826 + 1. 21826 + 1 can be trivially factored

to 2, 1826L× 2, 1826M, where 2, 1826L = 2913 − 2457 + 1, and its several factors
are already known:

2, 1826L = 997× 2113× 10957× 46202197673× 209957719973
× 457905185813813× 9118425814963735020084050069
× 758984045239765414366290480154514089× c164

c164 is factored into two primes, p68× p97, where

p68 = 343346448861824465
46273008924242084634327089789559771215864092254849.

c248 is the 248-digit cofactor of 21642 + 1. 21642 + 1 can be trivially factored
to 2, 1642L×2, 1642M, where 2, 1642M = c248 = 2821 +2411 +1. c248 is factored
into two primes, p88× p160, where

p88 = 75052937460116417664924678548932616036
64038102314712839047907776243712148179748450190533.

102 K. Aoki and H. Ueda

c164poly =
8293702863045600 x5

+ 5627796025215486707 x4

+ 557524556427309931902111 x3

+ 176917216602508818430161036 x2

− 13601173202899548432935219131949 x
− 12171622290476241497444980012311021

M = 411268775932725752596939184846

c248poly =
x6

+ 2 x3

+ 2
M = 2137

Fig. 2. Polynomials used to factor c164 and c248

We used the polynomials described in Fig. 2 to factor c164 and c248.
Statistics are summarized in Table 4. CPU years for sieving are converted

for the Pentium 4 2.53 GHz. Line sieve is used for c164 factoring, and it yields
49 m relations. Free relations are not used for both factorings. Linear algebra is
computed by a 16 PC cluster with GbE using block Lanczos with 128-bit block.
The Pentium 4 is used for both factoring, but its frequency is about 2.53 GHz
for c164 and 3.2 GHz for c248. The programs used for the factoring are basically
the same except that minor improvements are included for c248. More detailed
information can be found at [15, 16].

Table 4. Statistics

Sieve Linear algebra
CPU years Yields Matrix size Row weight Calendar days

c164 7 458 m 7.5 m 167 12
c248 8.2 558 m 7.4 m 208 9.5

Right-Invariance: A Property
for Probabilistic Analysis of Cryptography

Based on Infinite Groups

Eonkyung Lee

Dept. of Applied Mathematics, Sejong University, Seoul, Korea
eonkyung@sejong.ac.kr

Abstract. Infinite groups have been used for cryptography since about
twenty years ago. However, it has not been so fruitful as using finite
groups. An important reason seems the lack of research on building a
solid mathematical foundation for the use of infinite groups in cryptog-
raphy. As a first step for this line of research, this paper pays attention
to a property, the so-called right-invariance, which makes finite groups
so convenient in cryptography, and gives a mathematical framework for
correct, appropriate use of it in infinite groups.

1 Introduction

In modern cryptography, many schemes are designed based on groups. The most
popular problems used for cryptography may be the integer factorization and
discrete logarithm problems in finite groups. From these problems, many schemes
have been developed. However, on quantum computer they turned out to be
efficiently solved by Shor’s algorithms [19].

Not to put all eggs in one basket as well as to enrich cryptography, peo-
ple have attempted to use infinite groups for cryptography. Compared to finite
groups, in infinite groups there are only a few types of schemes (e.g. key agree-
ment protocol or public key encryption) [24, 9, 21–23, 13, 2] and a few ways
of analyses of attacks (e.g. deterministic or empirical) [3, 10, 17, 12, 11, 16, 7]. A
natural question is how we can proceed one more step. An impediment to this
seems to be connected with “probability”. Indeed, many cryptographic schemes
have checkpoints concerning probability for their basic security, and many cases
of cryptanalysis rely on probabilistic analysis. Furthermore, we do not see that
we can build a provably secure cryptosystem without probability. However, there
is nothing discussed seriously for it in the literature on infinite-group-based cryp-
tography.

Our Results. When cryptosystems are designed or analyzed using infinite
groups, we sometimes feel attracted to use nice properties or tools which are
commonly used in finite groups. However, we do not since either it looks wrong
or we are not sure if it is right or wrong. A possible approach to resolve this
problem is to extract a nice property of finite groups, to generalize it in arbitrary

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 103–118, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

104 E. Lee

groups, and then to construct a rigorous theory by which we can decide when
we can or cannot use this property in infinite groups.

This paper follows this way focusing on a particular property, the so-called
right-invariance: we define a probability measure (cf. probability distribution in
probability theory) P on a group G as right-invariant if P (E) = P (Ex) for all
E ⊂ G on which P is defined and for all x ∈ G. We show that right-invariance
property depends on a particular subgroup and the index of the subgroup deter-
mines when right-invariance can or cannot be used in infinite groups.

For the situations where this property is allowable, one may be curious about
how it can be handled in practice. It is easy to find a probability measure which is
right-invariant only in a particular situation. However, what is more meaningful
is to find a probability measure which is right-invariant in all situations where
such property is allowable. Namely, a right-invariant probability measure that
can be used universally on a given group. As to this, we prove that most infinite
groups dealt with in cryptography do not have such a probability measure. So we
discuss weaker, yet practical alternatives with concrete examples. Using these,
we illustrate how our theory is applied to infinite-group-based cryptography via
two opposite types of situations.

Organization. Sec. 2 gives basic notations and brief definitions for reading this
paper. Sec. 3 discusses why right-invariance is attractive, and formalizes the no-
tion. Sec. 4 explores right-invariance property through building a mathematical
framework. Sec. 5 discusses the notion of universally right-invariant probabil-
ity measure and its alternatives. Sec. 6 shows how the results developed in the
previous sections can be applied to practice. This paper concludes with Sec. 7.

2 Preliminaries

IN, Z, and IR denote the sets of all positive integers, all integers, and all real
numbers, respectively. For a < b, (a, b) = {x ∈ IR | a < x < b} and [a, b] =
{x ∈ IR | a ≤ x ≤ b}. For n ∈ IN, Zn = {0, 1, . . . , n − 1} and Z∗

n = {a ∈ Zn |
gcd(a, n) = 1}. For sets S and T , S\T = {x ∈ S | x �∈ T}. |S| and 2S denote
the cardinal number of S and the collection of all subsets of S, respectively.
S−1 = {x−1 | x ∈ S}. A partition of S means a family {Si}i∈I of non-empty,
mutually disjoint subsets of S such that S = ∪i∈ISi. ∅ denotes the empty set.

Definition 1. (a) LetM⊂ 2X for a non-empty set X.M is called a σ-algebra
in X if (i) ∅ ∈ M, (ii) E ∈ M implies X\E ∈ M, and (iii) E1, E2, . . . ∈ M
implies ∪∞

i=1Ei ∈M.
(b) IfM is a σ-algebra in a non-empty set X, then (X,M) is called a measurable

space and the members of M are called the measurable sets in X.

If S is any collection of subsets of X, there exists a smallest σ-algebraM in
X such that S ⊂M. ThisM is called the σ-algebra generated by S.

Right-Invariance: A Property for Probabilistic Analysis of Cryptography 105

Definition 2. (a) For a measurable space (X,M), a set function μ :M→ [0, 1]
is called a probability measure on M if it satisfies that (i) μ(X) = 1 and (ii)
if E1, E2, . . . ∈M are mutually disjoint, μ(∪∞

i=1Ei) =
∑∞

i=1 μ(Ei).
(b) For a measurable space (X,M), if μ is a probability measure on M, then

(X,M, μ) is called a probability space. In particular, it is called atomic if
M = 2X . Measurable sets of a probability space are called events.

Let G be a group and H a subgroup of G. For x ∈ G, let ZH(x) = {y ∈ H |
yx = xy}, which is a subgroup of H. Hx = {hx | h ∈ H} is called a right coset
of H in G and xH = {xh | h ∈ H} a left coset of H in G. The index of H in G,
denoted by [G : H], is the cardinal number of the set of distinct right (or left)
cosets of H in G. For a normal subgroup H of G, G/H denotes {Hx | x ∈ G}
and is called the factor group of G over H. 1G denotes the identity of G.

Definition 3. (a) For a set X, w = w1 · · ·w� is called a reduced word on X if
w is the empty word or w satisfies that (i) � ∈ IN; (ii) wi ∈ X ∪ X−1 for
all 1 ≤ i ≤ �; (iii) wi+1 �= w−1

i for all 1 ≤ i < �. |w| = 0 (if w is the empty
word) or � (otherwise) denotes the word length of w.

(b) F (X) is called the free group generated by X. It is the set of all reduced
words on X with the binary operation: for any w1, w2 ∈ F (X), w1 · w2 is
the reduced form of the word obtained by the juxtaposition w1w2 of the two
words. The symbol ‘·’ is omitted if there is no confusion.

3 Role of Right-Invariance in Cryptography

This section shows why this paper selects right-invariance as a useful property.

Role in Random Self-Reducibility. Informally, a problem is called random
self-reducible if solving it on any instance is efficiently reduced to solving it on
a random instance. For a random self-reducible problem, if breaking a crypto-
graphic scheme implies solving the problem on average, it means solving it in
the worst case. Thus, since Blum and Micali [4] introduced this notion, it has
played an invaluable role in showing provable security of many schemes. We refer
to [1, 8] for detailed references on it and the cryptographic significance of this
feature. We state it roughly in terms of the discrete logarithm problem with
proper parameters; a prime p and a generator g of Z∗

p. n is the length of p when
it is represented in a bit-string.

Let a, b ∈ IN and let A be a probabilistic polynomial time algorithm such
that

Pr
x

[A(p, g, gx mod p) = x] >
1
na

,

where x is taken uniformly at random from Zp−1. Then, there exists a
probabilistic polynomial time algorithm D such that for all y ∈ Zp−1,

Pr[D(p, g, gy mod p) = y] > 1− 1
nb

.

106 E. Lee

D is built based on the following idea: for any fixed y ∈ Zp−1, D chooses x ∈
Zp−1 uniformly at random, gets w by running A on an input (p, g, gygx mod p),
outputs w−x mod p− 1 if gw = gygx mod p, otherwise repeats this process some
polynomial times. A basic property used in computing the success probability
of D is that for any y ∈ Zp−1

Pr
x

[A(p, g, gy+x mod p) = y + x mod p− 1] = Pr
x

[A(p, g, gx mod p) = x], (1)

where x is taken uniformly at random from Zp−1.
Equation (1) can be generalized as follows: given a group G, for all r ∈ G

Pr(f(X) = 0) = Pr(f(Xr) = 0) or (2)
Pr(f(X) = 0) = Pr(f(rX) = 0), (3)

where X is a random variable over G and f : G→ {0, 1} is a predicate. Without
loss of generality (WLOG), in this paper we focus on (2).

If G is a finite group and X has the uniform distribution, (2) is true. In this
case, it is being used as an underlying assumption in probabilistically analyzing
many kinds of cryptographic schemes. However, it is not true in general if G
is an infinite group or if one cannot uniformly generate elements from even a
finite group. We know that no probability distribution can ever be uniform on
any infinite group, however the concept of uniformity makes infinite groups more
flexibly handled in cryptography. A natural question is what distribution on an
infinite group is an analogue of the uniform distribution on a finite group.

For an arbitrary group G, let’s recall the meaning of a random variable. The
fact that X is a random variable over G with a probability distribution P means
that P is the probability measure on the atomic measurable space (G, 2G) and
Pr[X ∈ E] = P (E) for any E ⊂ G. In order for (2) to hold when G is an infinite
group, we see it from a measure-theoretic point of view. Namely, we consider not
only 2G but also a smaller σ-algebra G for P . By restricting P originally defined
on 2G to G, (G, 2G, P) induces another probability space (G,G, P).

Definition 4. Let (G,G, P) be a probability space. E ∈ G is called a right-
invariant event (resp. left-invariant event) if, for all x ∈ G, Ex ∈ G (resp.
xE ∈ G) and P (E) = P (Ex) (resp. P (E) = P (xE)). (G,G, P) (or shortly P) is
called right-invariant (resp. left-invariant) if all events are right-invariant (resp.
left-invariant).

For a situation in which one is interested (e.g. points where one wants to com-
pute probabilities or to compare them), if a σ-algebra covering all the events in
question (i.e. containing all the events in question as its measurable sets) can be
constructed and there exists a right-invariant probability measure thereon, then
we say that right-invariance is allowable (or can be used, etc.) in the situation.

4 Right-Invariant Probability Space

In order to discuss right-invariance from a measure-theoretic point of view, we
first analyze the structure of an arbitrary σ-algebra in infinite groups, and then

Right-Invariance: A Property for Probabilistic Analysis of Cryptography 107

a special type of σ-algebra. From this we formulate a way of deciding whether
or not right-invariance property is allowable in a given situation.

Throughout this paper, we deal with only finitely generated groups since
groups with infinitely many generators are not practical. Note that any finitely
generated infinite group is a countable set.

σ-Algebra in Finitely Generated Infinite Groups. Let G be a finitely
generated infinite group and G be a σ-algebra in G. For x ∈ G, define

MG(x) = {E ∈ G | x ∈ E} and MG(x) = ∩E∈MG(x)E.

In particular, denote MG(1G) by MG . The following proposition shows that
MG(x) is the smallest measurable set containing x.

Proposition 1. For a finitely generated infinite group G, let G be any σ-algebra
in it. Then, MG(x) ∈ G for all x ∈ G. Furthermore, any measurable set is
partitioned into MG(x)’s.

Proof. Let x ∈ G. Since G ∈MG(x) and x ∈MG(x), MG(x) �= ∅. We show that
MG(x) can be expressed as an intersection of a countable number of measurable
sets. For y ∈ G, define a set Ay as follows.

Ay =
{
G if y ∈MG(x),
E such that y �∈ E ∈MG(x) if y �∈MG(x).

Since G is a countable set, it suffices to show that MG(x) = ∩y∈GAy. (i)
MG(x) ⊂ ∩y∈GAy: If w �∈ ∩y∈GAy, there exists y ∈ G such that w �∈ Ay. Since
Ay ∈ MG(x), w �∈MG(x). (ii) MG(x) ⊃ ∩y∈GAy: If w �∈MG(x), w �∈ Aw. Thus,
w �∈ ∩y∈GAy. Therefore, MG(x) ∈ G.

Let E ∈ G. Since, for any x ∈ E, MG(x) ⊂ E, E = ∪x∈EMG(x). Thus it
suffices to show that any distinct MG(x) and MG(y) are disjoint. Assume MG(x)∩
MG(y) �= ∅. If x �∈MG(y), then MG(x)\MG(y) ∈MG(x) since MG(x)\MG(y) ∈ G
and x ∈MG(x)\MG(y). Since MG(x) is the intersection of all members ofMG(x),
MG(x) ⊂MG(x)\MG(y). In particular, MG(x)∩MG(y) = ∅ which contradicts to
the assumption. Thus x ∈ MG(y), so MG(x) ⊂ MG(y). By the same argument,
MG(y) ⊂MG(x). Therefore, MG(x) = MG(y). �

Right-Closed σ-Algebra in Finitely Generated Infinite Groups

Definition 5. A measurable space (G,G) (or a σ-algebra G in G) is called right-
closed (resp. left-closed) if, for any E ∈ G and any x ∈ G, Ex ∈ G (resp. xE ∈ G).

A σ-algebra generated by a subgroup and all its right cosets is right-closed.
The following shows that right-closed σ-algebras have only this form.

Theorem 1. For a finitely generated infinite group G, the following conditions
on a measurable space (G,G) are equivalent.
(i) G is right-closed.
(ii) MG(x) = MGx for all x ∈ G.
(iii) MG is a subgroup of G, and G is generated by MG and all its right cosets.

108 E. Lee

Proof. (i)⇒(ii): Suppose that (i) holds. Let x ∈ G. Since MG(x) = ∩A∈MG(x)A
and MGx = (∩A∈MG(1G)A)x = ∩A∈MG(1G)(Ax) = ∩B∈MG(1G)xB, it suffices to
show that MG(x) =MG(1G)x.

Let Ax, where A ∈ MG(1G), be an arbitrary element of MG(1G)x. Since
1G ∈ A, x = 1Gx ∈ Ax and so Ax ∈ MG(x) by (i). Thus MG(1G)x ⊂ MG(x).
Conversely, if A ∈ MG(x), then 1G = xx−1 ∈ Ax−1 ∈ MG(1G) by (i). Thus,
MG(x) ⊂MG(1G)x.

(ii)⇒(iii): Suppose that (ii) holds. Let a, b ∈MG . Since b ∈MG , MG = MG(b)
by Proposition 1. Then, a ∈MG(b) = MGb by (ii), and so ab−1 ∈MG . Therefore,
MG is a subgroup of G.

For any E ∈ G, E = ∪x∈EMG(x) by Proposition 1. MG(x) = MGx ∈ G by
(ii), and so E = ∪x∈EMGx. Thus, G is generated by all right cosets of MG .

(iii)⇒(i): It is trivial. �

Analogous result holds for left-closed σ-algebras. By combining these, we get
the following.

Corollary 1. For a finitely generated infinite group G, the following conditions
on a measurable space (G,G) are equivalent.

(i) G is both left- and right-closed.
(ii) xMG = MG(x) = MGx for all x ∈ G.
(iii) MG is a normal subgroup of G and G is generated by MG and all its cosets.

Right-InvarianceProperty of FinitelyGenerated InfiniteGroups. Right-
invariance property is what belongs to a probability measure defined on a right-
closed σ-algebra. When a probability space is right-invariant, any measurable set
is, of course, right-invariant. Conversely, Proposition 1 and Theorem 1 imply that
right-invariance of MG is extended to the whole space.

Theorem 2. For a finitely generated infinite group G, let G be a right-closed
σ-algebra in G. P (MG) = P (MGx) for all x ∈ G if and only if P (E) = P (Ex)
for all E ∈ G and all x ∈ G.

From Theorems 1 and 2, we have the following.

Corollary 2. Let G be a finitely generated infinite group. If (G,G, P) is a right-
invariant probability space, then [G : MG] is finite and P (MGx) = [G : MG]−1 for
all x ∈ G. Therefore, if [G : MG] is infinite, (G,G, P) cannot be right-invariant
for any probability measure P .

5 Universally Right-Invariant Probability Measure and
Alternatives

Now we can decide whether or not right-invariance is allowable in a given situa-
tion. Suppose that it is allowable. Then, what are the concrete examples of the
probability measure which is both useful and practical for such property?

Right-Invariance: A Property for Probabilistic Analysis of Cryptography 109

5.1 Universally Right-Invariant Probability Measure

Given a right-closed measurable space (G,G), if MG is of finite-index, it is easy
to get a probability measure that is right-invariant only on (G,G). However,
what is more meaningful is the one that is right-invariant on any right-closed
σ-algebra G with finite-index MG . By Corollary 2, it can be defined as follows.

Definition 6. A probability measure P defined on an atomic measurable space
(G, 2G) is called a universally right-invariant probability measure on G if P (H) =
P (Hx) for any finite-index subgroup H of G and any x ∈ G.

Most infinite groups that have emerged in cryptography are finitely gener-
ated residually-finite groups (e.g. free groups, groups of automorphisms of free
groups, braid groups, etc.). A group is residually-finite if the intersection of all
finite-index normal subgroups consists of only the identity. Here, we consider
a larger class of groups, finitely generated groups with infinitely many finite-
index subgroups. Finitely-generated residually-finite infinite groups belong to
this class.

Theorem 3. Let G be a finitely generated group with infinitely many finite-index
subgroups. Then the intersection of all finite-index subgroups of G is a subgroup
of G with infinite-index. Furthermore, G has no universally right-invariant prob-
ability measure.

Proof. For the proof, we use the following fact.
Fact 1. Let G be a finitely generated infinite group. Then, for any m ∈ IN, G
has only finitely many subgroups of index m.

Let H be the collection of all finite-index subgroups of G and H0 = ∩H∈HH.
Clearly H0 is a subgroup of G. Assume that [G : H0] = k is finite. Then any
H ∈ H has index k or less. By Fact 1, H is a finite set which contradicts to the
hypothesis. Therefore, [G : H0] is infinite.

Assume that P is a universally right-invariant probability measure on G.
Then for any x ∈ G and any H ∈ H,

P (H0x) ≤ P (Hx) = P (H) = [G : H]−1

by Corollary 2. Note that for any integer m there exists a finite-index subgroup
H such that [G : H] ≥ m by Fact 1 and by the hypothesis. Thus P (H0x) = 0.
Since H0 is an infinite-index subgroup of G, there exist x1, x2, . . . ∈ G such
that G is partitioned into H0x1,H0x2, So P (G) =

∑∞
i=1 P (H0xi) = 0 which

contradicts to P (G) = 1. Therefore, P cannot be universally right-invariant. �

Corollary 3. Any finitely-generated residually-finite infinite group has no uni-
versally right-invariant probability measure.

5.2 Alternatives

From Theorem 3, a question arises: what are weaker, yet practical alternatives
to the universally right-invariant probability measure? We approach this question

110 E. Lee

via random walk on a free group F = F (X), where X = {x1, . . . , xm}. It is
because any finitely generated infinite group is a homomorphic image of a finitely
generated free group, and random walk yields a natural probability measure on
F in the following sense: it generates all words of F with positive probability,
and the longer the word is, the lower its occurrence probability is.

On the other hand, Theorems 1 and 2 reduce finding such an alternative
measure to finding an atomic probability measure in an infinite group which is
close to the uniform distribution over the family of all right-cosets of any finite-
index subgroup. The latter has been studied independently in group theory for a
long time. So we attempt to search for alternatives in the results from this area.

For s ∈ (0, 1), let Ws be a no-return random walk on the Cayley graph
C(F,X) of F with respect to the generating set X. See Appendix for Cayley
graph. Ws starts at 1F and either does nothing with probability s, or moves
to one of the 2m adjacent vertices with equal probabilities 1−s

2m . If Ws is at a
vertex v �= 1F , it either stops at v with probability s, or moves with probability
1−s

2m−1 to one of the 2m−1 adjacent vertices lying away from 1F producing a new
freely reduced word vx±1

i . So Pr(|w| = k) = s(1− s)k and the resulting atomic
probability measure on F is

μs(w) =

{
s if w = 1F ,

s(1−s)|w|

2m(2m−1)|w|−1 otherwise.

Thus, μs(w) is the probability that the random walk Ws stops at w. From
the results of Woess [25] and Borovik, Myasnikov, and Remeslennikov [5], for
any finite-index subgroup H of F and any x ∈ F

lim
s→0

μs(Hx) = [F : H]−1.

On the other hand, for the case that we are working with only sufficiently
long words, let’s consider a variant of μs. For k ∈ IN, define

μ̄k(w) =

{
0 if w ∈ Bk,

μs(w)
μs(F\Bk) otherwise,

where Bk = {w ∈ F | |w| ≤ k} is a ball of radius k. Then μ̄k is a probability
measure on (F, 2F). From the results of Pak [18] and Borovik, Myasnikov, and
Shpilrain [6], for any finite-index normal subgroup H of F

1
2

∑
x̄∈F/H

∣∣∣μ̄k(x̄)− [F : H]−1
∣∣∣ = o(e−k). (4)

Discussion of Property of μs and μ̄k. Let (F,F) be a right-closed measur-
able space with [F : MF] <∞. Suppose that PF is the right-invariant probability
measure on (F,F). Then, by Proposition 1 and Theorem 1, μs has the following
property. For any E ∈ F

Right-Invariance: A Property for Probabilistic Analysis of Cryptography 111

|μs(E)− PF (E)| =
∣∣∣∣∣

t∑
i=1

μs(MFxi)− tPF (MF)

∣∣∣∣∣
≤

t∑
i=1

∣∣μs(MFxi)− [F : MF]−1
∣∣ → 0 as s→ 0,

where MFxi’s are distinct right-cosets of MF in F such that E = ∪t
i=1MFxi.

On the other hand, by the normality of H in (4), μ̄k has a slightly different
property, so that it can be used in two cases. In the first case, let (F,F) be
a both left- and right-closed measurable space with [F : MF] < ∞. Then, by
Corollary 1, MF is a normal subgroup of F . Suppose that PF is the right-
invariant probability measure on (F,F). Then, for any E ∈ F

|μ̄k(E)− PF (E)| ≤ 1
2

∑
x̄∈F/MF

∣∣μ̄k(x̄)− [F : MF]−1
∣∣ = o(e−k) (5)

for k →∞. The above inequality comes from the following fact.

Fact 2. Let Ω be a finite set, and let P1 and P2 be probability measures on
(Ω, 2Ω). Then,

max
E⊂Ω

|P1(E)− P2(E)| = 1
2

∑
ω∈Ω

|P1(ω)− P2(ω)|.

In the second case, let (F,F) be a right-closed measurable space such that
MF contains a finite-index normal subgroup N of F . Then, there exist distinct
cosets, Nx1, . . . ,Nxt, of N in F such that MF = ∪t

i=1Nxi. Let PF be the
right-invariant probability measure on (F,F). Then, from Fact 2, for any E ∈ F

|μ̄k(E)− PF (E)| ≤ 1
2

∑
MF x∈R

∣∣μ̄k(MFx)− [F : MF]−1
∣∣

≤ 1
2

∑
MF x∈R

t∑
i=1

∣∣μ̄k(Nxix)− [F : N]−1
∣∣ = o(e−k)

for k →∞, where R is the set of all right-cosets of MF in F .

Discussion of Alternatives. Given a group G, a good alternative to the uni-
versally right-invariant probability measure may be a probability measure P on
(G, 2G) such that for any right-invariant probability space (G,G, PG) and for any
E ∈ G, |P (E)−PG(E)| is very small. Here, we should be careful with the word,
“small”. Small in what? The factors which determine the value of |P (E)−PG(E)|
come from the characteristics of G, G, and P . Note that the group G is given,
the σ-algebra G is arbitrarily selected to some extent, and we are discussing the
measure P . So focusing on P , it seems more reasonable to view P not as a single
probability measure but as a family of probability measures indexed by factors
representing its characteristics. For example, μ = {μs}s∈(0,1) and μ̄ = {μ̄k}k∈IN.
From this point of view, let’s define our alternative in general terms.

112 E. Lee

Let P = {Pα}α∈A be a family of probability measures on (G, 2G) for an
index setA. And let some α0 be given. For any right-invariant probability
space (G,G, PG) and for any E ∈ G, P has the following property.

lim
α→α0

|Pα(E)− PG(E)| = 0

μ serves as a good example of this alternative. On the other hand, μ̄ can serve
as another example if (G,G, PG) is a both left- and right-invariant probability
space, or if (G,G, PG) is a right-invariant probability space and MG contains a
finite-index normal subgroup of G. In these cases, |Pα(E) − PG(E)| decreases
exponentially.

6 Applications

This section shows two basic examples of how to apply our theory to real situa-
tions via recent works. These works are based on braid groups. For a survey of
braid-group-based cryptography, see [14].

For n ≥ 2, the n-braid group Bn can be presented by (n− 1)-generators
σ1, . . . ,σn−1 and two kinds of relations: σiσj = σjσi for |i− j| > 1 and σiσjσi =
σjσiσj for |i−j| = 1. For the symmetric group Sn on n-letters, there is a natural
projection π : Bn → Sn sending σi to the transposition (i, i+ 1). π(x) is written
interchangeably with πx. Define Pn = ker(π) and call its elements pure braids.

6.1 The Case That Right-Invariance Is Not Allowable

Sibert, Dehornoy, and Girault [20] proposed entity authentication schemes using
braid groups: Schemes I, II, II’, III. As a two-pass scheme, Scheme I is perfectly
honest-verifier zero-knowledge. As three-pass protocols, the other schemes were
shown to be zero-knowledge under the assumption that the probability space is
right-invariant (to polynomial-time distinguishers). Their assumption was made
from some experiment over a certain finite subset of Bn.

This section discusses the security of Scheme II on the whole group Bn by
disproving the assumption for zero-knowledge. Analogous arguments apply to
Schemes II’, III. Let’s see Scheme II. Prover’s secrete key is z ∈ Bn, and public
key is (b, b′) ∈ B2

n, where b′ = zbz−1. Its three-pass process is given in Fig. 1.

Assumption for Perfect Zero-Knowledge. For perfect zero-knowledge of
Scheme II, it is assumed that the distributions of r and rz−1 are identical, where
r ∈R Bn. We show that they cannot be identical by defining a distinguisher A
as follows.

A : “On an input x ∈ Bn, output 1 if x = 1Bn
, and 0 otherwise.” (6)

Since verifying that any two braids are identical can be done very efficiently,
A is also efficient. Then the situation comparing the distributions of r and rz−1

by using the algorithm A yields the atomic σ-algebra 2Bn as the right-closed
σ-algebra in Bn. So, right-invariance is not allowable in this situation.

Right-Invariance: A Property for Probabilistic Analysis of Cryptography 113

Prover Verifier

r ∈R Bn

x = rbr−1 x−−−−→
ε←−−−− ε ∈R {0, 1}

y =
{

r if ε = 0,
rz−1 otherwise.

y−−−−→ x =
{

yby−1 if ε = 0,
yb′y−1 otherwise.

Fig. 1. Scheme II

Assumption for Computational Zero-Knowledge. For computational zero-
knowledge of Scheme II, it is assumed that the distributions of r and rz−1 are
computationally indistinguishable, where r ∈R Bn. This means that, for any
polynomial-time distinguisher A,

∣∣Pr[A(X) = 1]− Pr[A(Xz−1) = 1]
∣∣ is negligi-

ble. Here X is a random variable over Bn.
By using the algorithm (6), we show that it is not negligible in the word

length of the secrete key z with respect to the probability measure μs which is
defined on a free group F generated by {x1, . . . , xn−1}. Considering a natural
projection φ : F → Bn defined by xi �→ σi, let K = φ−1(1Bn

) and let the random
variable X have the probability distribution induced by μs. Then

Pr[A(X) = 1] = μs(K) ≥ μs(1F) = s.

Let � = minw∈φ−1(z) |w|, and let w0 ∈ φ−1(z) satisfy |w0| = �. Then

Pr[A(Xz−1) = 1] = μs(Kw0) =
∞∑

k=0

μs(Kw0 ∩ Ck) =
∞∑

k=0

s(1− s)k |Kw0 ∩ Ck|
|Ck|

,

where Ck = {w ∈ F | |w| = k}. Note that Kw0 ∩ Ck = ∅ for 0 ≤ k < �. Thus,

Pr[A(Xz−1)=1]=s(1−s)�
∞∑

k=0

(1−s)k |Kw0 ∩ C�+k|
|C�+k|

≤s(1−s)�
∞∑

k=0

(1−s)k = (1−s)�.

Therefore, Pr[A(X) = 1]− Pr[A(Xz−1) = 1] ≥ s− (1− s)�.

6.2 The Case That Right-Invariance Is Allowable

For notational convenience, this section assumes that n is even. Define B� (resp.
Bu) be a subgroup of Bn generated by σ1, . . . ,σn/2−1 (resp. σn/2+1, . . . ,σn−1).
Likewise, define S� (resp. Su) be a subgroup of the symmetric group Sn gener-
ated by (1, 2), . . . , (n

2 −1, n
2) (resp. (n

2 +1, n
2 +2), . . . , (n−1, n)). Then, any two

elements chosen from B� and Bu (resp. S� and Su) commute with each other. The
decisional Diffie-Hellman-type conjugacy problem in Bn is defined as follows.

Given (a,w−1
� aw�, w

−1
u awu, x

−1
u x−1

� ax�xu), distinguish x−1
u x−1

� ax�xu and
w−1

u w−1
� aw�wu, where a ∈ Bn, w�, x� ∈ B�, and wu, xu ∈ Bu.

114 E. Lee

(F, μ̄k)
φ−→ (B�Bu, P) π̃−→ S�Su

| | |
K �−→ H �−→ C

| | |
N �−→ P�Pu �−→ 1S�Su

Fig. 2. Correspondences among groups

This problem is used as an underlying problem of a public-key encryption [13],
pseudorandom number generator, and pseudorandom synthesizer [15]. Gennaro
and Micciancio [10] proposed how to solve it for some parameters. We supplement
their attack with quantifying the success probability of their adversary. The
adversary is described as follows.

A : “On an input (a, w−1
� aw�, w−1

u awu, x−1
u x−1

� ax�xu)
where a ∈ Bn\Pn, w�, x� ∈ B�, and wu, xu ∈ Bu,
1. find any θ ∈ S� such that θ−1πaθ = π(w−1

� aw�);
2. output 1 if π(x−1

u x−1
� ax�xu) = θ−1π(w−1

u awu)θ, and 0 otherwise.”

Define B�Bu = {xy | x ∈ B�, y ∈ Bu} and S�Su = {τω | τ ∈ S�, ω ∈ Su}.
Then they are subgroups of Bn and Sn, respectively. Let C = ZS�Su

(πa).
Since θ (at Step 1) can be easily and perfectly computed and such θ satisfies
θ−1π(w−1

u awu)θ = π(w−1
u w−1

� aw�wu), the success probability equals

Pr[A(a,w−1
� aw�, w

−1
u awu,X

−1aX) = 0] = Pr[π(X) �∈ Cπ(w�wu)], (7)

where X is a random variable over B�Bu.

Deciding Whether Right-Invariance Is Allowable or Not. Restricting π
defined on Bn to B�Bu induces another natural projection π̃ : B�Bu → S�Su.
Define H = π̃−1(C) and P�Pu = ker(π̃). See Fig. 2. Then H is a subgroup
of B�Bu, Pr[π(X) �∈ Cπ(w�wu)] = Pr[X �∈ Hw�wu], and P�Pu is a normal
subgroup of B�Bu contained in H. Define B as the σ-algebra in B�Bu generated
by all cosets of P�Pu. Then H ∈ B and B is both left- and right-closed. Since
[B�Bu : MB] = [B�Bu : P�Pu] = ((n

2)!)2 is finite, we can use right-invariance
property in order to compute the success probability Pr[X �∈ Hw�wu].

Computing the Success Probability. Let F = F ({x1, . . . , xn/2−1, xn/2+1, . . . ,
xn−1}) be a free group. Then, there is a natural projection φ : F → B�Bu de-
fined by xi �→ σi. Let K = φ−1(H) and N = φ−1(P�Pu). See Fig. 2. Let F be
the σ-algebra in F generated by all cosets of N . Since N is a finite-index normal
subgroup of F and MF = N , μ̄k can be used on (F,F) for right-invariance.

Define a set function P : B → [0, 1] by P (E) = μ̄k(φ−1(E)) for all E ∈ B.
Since F = {φ−1(E) | E ∈ B}, P is a probability measure on (B�Bu,B). Let the

Right-Invariance: A Property for Probabilistic Analysis of Cryptography 115

random variable X in (7) induce P . Then, Pr[X �∈ Hw�wu] = 1 − P (Hw�wu).
On the other hand, from the definition of P and (5)∣∣P (Hw�wu)− [B�Bu : H]−1

∣∣ = ∣∣μ̄k(Kφ−1(w�wu))− [K : N]/[F : N]
∣∣ = o(e−k).

Therefore, the success probability of the adversary is

1− [B�Bu : H]−1 − o(e−k) ≤ 1− P (Hw�wu) ≤ 1− [B�Bu : H]−1 + o(e−k).

Note that [B�Bu : H] = [S�Su : C] and C = ZS�Su(πa). So [B�Bu : H] can be
evaluated if πa is specified. For all a ∈ Bn\Pn, its upper bound is (n/2)!2, and
lower bound is n(n− 2)/8 for n ≥ 10 from the following theorem.

Theorem 4. If α ∈ Sn\{1Sn}, ZS�Su(α) is a proper subgroup of S�Su for n ≥ 6.
Precisely,

[S�Su : ZS�Su(α)] ≥
{n(n− 2)/8 for n ≥ 10,

3 for n = 8,
2 for n = 6.

Proof. Let α ∈ Sn, and let α1, . . . , αs be disjoint cycles in Sn such that

α = α1 · · ·αs and αi ∈

⎧⎨⎩S� for 1 ≤ i ≤ t�,
Sn\S�Su for t� < i ≤ tu,
Su for tu < i ≤ s,

for some 0 ≤ t� ≤ tu ≤ s. Let

α� =α1 · · ·αt�
∈S�, α̃=αt�+1 · · ·αtu

∈(Sn\S�Su)∪{1Sn
}, αu =αtu+1 · · ·αs∈Su.

For every 1 ≤ i ≤ s, let αi = (aki−1+1, . . . , aki
) with k0 = 0. Then

α = (a1, . . . , ak1)(ak1+1, . . . , ak2) · · · (aks−1+1, . . . , aks
).

Note that for any τ ∈ Sn, the cycle decomposition of τατ−1 is as follows.

τατ−1 = (τ(a1), . . . , τ(ak1))(τ(ak1+1), . . . , τ(ak2)) · · · (τ(aks−1+1), . . . , τ(aks))

Let τ ∈ ZS�Su(α). Then τα1τ
−1, . . . , ταsτ

−1 are disjoint cycles of α. If αi ∈
S�, αj ∈ Sn\S�Su, and αk ∈ Su, then ταiτ

−1 ∈ S�, ταjτ
−1 ∈ Sn\S�Su, and

ταkτ−1 ∈ Su for all i, j, k. So τα�τ
−1 = α�, τ α̃τ−1 = α̃, and ταuτ−1 = αu.

Namely, τ ∈ ZS�Su
(α�) ∩ ZS�Su

(α̃) ∩ ZS�Su
(αu). On the other hand, it is clear

that ZS�Su
(α�) ∩ ZS�Su

(α̃) ∩ ZS�Su
(αu) ⊂ ZS�Su

(α). So

ZS�Su
(α) = ZS�Su

(α�) ∩ ZS�Su
(α̃) ∩ ZS�Su

(αu).

Let α �= 1Sn
, and let τ = τ�τu ∈ S�Su mean that τ� ∈ S� and τu ∈ Su.

Case 1. α�αu �= 1Sn
: WLOG, let α� �= 1Sn

. Define �1 = |{1 ≤ i ≤ n/2 | α�(i) =
i}| and �i as the number of i-cycles of α� for 2 ≤ i ≤ n/2. Then

|ZS�
(α�)| =

n/2∏
i=1

i�i(�i)!.

116 E. Lee

Table 1. Maximum of |ZS�(α�)| and minimum of [S� : ZS�(α�)]

n
2 max. of |ZS�(α�)| min. of [S� : ZS�(α�)] number of cycles

3 3 2 �3 = 1, �k = 0 for k = 3
4 8 3 �2 = 2, �k = 0 for k = 2

≥ 5 2 × (n
2 − 2)! n

4 (n
2 − 1) �1 = n

2 − 2, �2 = 1, �k = 0 for k ≥ 3

Table 1 shows the maximum values of |ZS�
(α�)| and the corresponding val-

ues of [S� : ZS�
(α�)] over α� ∈ S�\{1Sn}. Since [S�Su : ZS�Su(α)] ≥ [S�Su :

ZS�Su(α�)] = [S� : ZS�
(α�)], for all α ∈ Sn such that α�αu �= 1Sn

[S�Su : ZS�Su
(α)] ≥

{
n(n− 2)/8 for n ≥ 10,
3 for n = 8,
2 for n = 6.

Case 2. α�αu = 1Sn : In this case, ZS�Su(α) = ZS�Su(α̃). Define

A� =
{

1≤ i ≤ n

2
| α̃(i) �= i

}
, Au =

{n
2
<i ≤ n | α̃(i) �= i

}
, N� = |A�|, Nu = |Au|.

WLOG, we assume 1 ≤ Nu ≤ N� ≤ n/2. Note that for any τ�τu ∈ ZS�Su(α̃),
{(i, τ�(i)) | i ∈ A�} is uniquely determined by {(i, τu(i)) | i ∈ Au}. So

|ZS�Su
(α̃)| ≤

(n
2
−N�

)
!
(n

2
−Nu

)
!Nu! ≤

{
(n/2− 1)!2 if Nu < n/2,
(n/2)! if Nu = n/2,

≤
{

(n/2− 1)!2 if n ≥ 8,
6 if n = 6.

Therefore, for all α ∈ Sn\{1Sn
} such that α�αu = 1Sn

[S�Su : ZS�Su
(α)] ≥

{
(n/2)2 if n ≥ 8,
6 if n = 6.

From Cases 1 and 2, the conclusion follows. �

7 Conclusions

We know that it is impossible to overestimate the role of the uniform distribution
in cryptography. However, no infinite group has such a nice distribution. Noticing
that this fact is an impediment to the use of infinite groups for cryptography, this
paper has formalized the notion of right-invariance on an infinite group which in
a sense corresponds to the uniform distribution on a finite set, and then shown
when and how this notion can be used for infinite-group-based cryptography.

Right-Invariance: A Property for Probabilistic Analysis of Cryptography 117

Our work is a first attempt to formalize and resolve probability-theoretic
problems arising in the process of using infinite groups for cryptography. Al-
though our work cannot resolve all the problems, we hope that it contributes to
widening the scope of what provably secure cryptosystems can be built on. We
close this paper with the following research topics.

– Find different types of alternatives to the universally right-invariant proba-
bility measure from ours.

– Find more various examples of practical problems which right-invariance can
resolve in cryptography.

– For complex problems (e.g. proving security of a cryptosystem), discover,
formalize, and solve its constituent problems other than right-invariance.

Acknowledgements

The author would like to thank Prof. Kouichi Sakurai and the anonymous ref-
erees for helpful remarks and suggestions.

References

1. D. Angluin and D. Lichtenstein, Provable Security of Cryptosystmes: A Survey,
Computer Science Department, Yale University, TR-288, 1983

2. I. Anshel, M. Anshel, B. Fisher, and D. Goldfeld, New Key Agreement Protocols
in Braid Group Cryptography, CT-RSA 2001, LNCS 2020, 13–27, 2001

3. S.R. Blackburn, Cryptanalysis of two cryptosystems based on group actions, ASI-
ACRYPT ’99, LNCS 1716, 52–61, 1999

4. M. Blum and S. Micali, How to Generate Cryptographically Strong Sequences of
Pseudorandom Bits, SIAM J. Comput. 13, 850–864, 1984

5. A.V. Borovik, A.G. Myasnikov, and V.N. Remeslennikov, Multiplicative Measures
on Free Groups, To appear in Internat. J. Algebra Comp.

6. A.V. Borovik, A.G. Myasnikov, and V. Shpilrain, Measuring Sets in Infinite
Groups, Contemporary Mathematics 298, 21–42, 2002

7. J.H. Cheon and B. Jun, A Polynomial Time Algorithm for the Braid Diffie-Hellman
Conjugacy Problem, CRYPTO 2003, LNCS 2729, 212–225, 2003

8. J. Feigenbaum, Locally Random Reductions in Interactive Complexity Theory, Ad-
vances in Computational Complexity Theory, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science 13, AMS, 73–98, 1993

9. M. Garzon and Y. Zalcstein, The Complexity of Grigorchuk Groups with Applica-
tion to Cryptography, Theoretical Computer Sciences 88, 83–88, 1991

10. R. Gennaro and D. Micciancio, Cryptanalysis of a Pseudorandom Generator Based
on Braid Groups, EUROCRYPT 2002, LNCS 2332, 1–13, 2002

11. D. Hofheinz and R. Steinwandt, A Practical Attack on Some Braid Group based
Cryptographic Primitives, PKC 2003, LNCS 2567, 187–198, 2003

12. J. Hughes, A Linear Algebraic Attack on the AAFG1 Braid Group Cryptosystem,
ACISP 2002, LNCS 2384, 176–189, 2002

13. K.H. Ko, S.J. Lee, J.H. Cheon, J.W. Han, J.S. Kang, and C. Park, New Public-key
Cryptosystem Using Braid Groups, CRYPTO 2000, LNCS 1880, 166–183, 2000

118 E. Lee

14. E. Lee, Braid Groups in Cryptology, IEICE Trans. Fund. E87-A, 986-992, 2004
15. E. Lee, S.J. Lee, and S.G. Hahn, Pseudorandomness from Braid Groups, CRYPTO

2001, LNCS 2139, 486–502, 2001
16. E. Lee and J.H. Park, Cryptanalysis of the Public-key Encryption based on Braid

Groups, EUROCRYPT 2003, LNCS 2565, 477–490, 2003
17. S. J. Lee and E. Lee, Potential Weaknesses of the Commutator Key Agreement

Protocol based on Braid Groups, EUROCRYPT 2002, LNCS 2332, 14–28, 2002
18. I. Pak, Random Walks on Finite Groups with Few Random Generators, Electronic

J. of Prob. 4, 1–11, 1999
19. P.W. Shor, Polynomial-time Algorithms for Prime Factorization and Discrete Log-

arithms on a quantum Computer, SIAM J. Comput. 26, 1484–1509, 1997
20. H. Sibert, P. Dehornoy, and M. Girault, Entity Authentication Schemes Using

Braid Word Reduction, Proceedings International Workshop on Coding and Cryp-
tography, March 24-28 2003, Versailles (France), 153–164

21. R. Siromoney and L. Mathew, A Public key Cryptosystem based on Lyndon Words,
Information Processing Letters 35, 33–36, 1990

22. A. Yamamura, Public-Key Cryptosystems Using the Modular Group, PKC ’98,
LNCS 1431, 203–216, 1998

23. A. Yamamura, A Functional Cryptosystem Using a Group Action, ACISP ’99,
LNCS 1587, 314–325, 1999

24. N.R. Wagner and M.R. Magyarik, A Public-key Cryptosystem based on the Word
Problem, CRYPTO ’84, LNCS 196, 19–36, 1984

25. W. Woess, Cogrowth of groups and simple Random Walks, Arch. Math. 41, 363–
370, 1983

Appendix: Cayley Graph

The Cayley graph C(G,X) of a group G with a generating set X is a graph such
that the vertices are in one-to-one correspondence with the group elements and
there is a (directed) edge from the vertex labelled by v to the vertex labelled by
vx for each v ∈ G and x ∈ X ∪ X−1. So if G is an infinite group, its Cayley
graph is also an infinite graph. The Cayley graph is a metric space by defining
the length of each edge to be the unit length. The distance between two vertices
v, w in the Cayley graph is exactly the shortest word-length of v−1w with respect
to the given generating set.

Practical Two-Party Computation Based
on the Conditional Gate

Berry Schoenmakers1,� and Pim Tuyls2

1 Dept. of Mathematics and Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

berry@win.tue.nl
2 Philips Research Labs,

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
pim.tuyls@philips.com

Abstract. We present new results in the framework of secure multi-
party computation based on homomorphic threshold cryptosystems. We
introduce the conditional gate as a special type of multiplication gate
that can be realized in a surprisingly simple and efficient way using just
standard homomorphic threshold ElGamal encryption. As addition gates
are essentially for free, the conditional gate not only allows for building
a circuit for any function, but actually yields efficient circuits for a wide
range of tasks.

1 Introduction

Homomorphic threshold cryptosystems provide a basis for secure multiparty
computation in the cryptographic model [FH96, JJ00, CDN01, DN03]. For a given
n-ary function f , one composes a circuit C of elementary gates that given encryp-
tions of x1, . . . , xn on its input wires, produces an encryption of f(x1, . . . , xn) on
its output wire. The elementary gates operate in the same fashion. The wires of
the entire circuit C are all encrypted under the same public key; the correspond-
ing private key is shared among a group of parties. It is customary to distinguish
addition gates and multiplication gates. Addition gates can be evaluated without
having to decrypt any value, taking full advantage of the homomorphic property
of the cryptosystem. Multiplication gates, however, require at least one thresh-
old decryption to succeed even for an honest-but-curious (passive) adversary.
To deal with a malicious (active) adversary, multiplication gates additionally
require the use of zero-knowledge proofs.

While the result of [FH96] covers the case of a passive adversary only, an inter-
esting feature is that it covers both the two-party case (n = 2) and the multiparty
case (n > 2) in a uniform way. The later papers [JJ00, CDN01, DN03] do cover
an active adversary, but only consider the multiparty case. In the present paper,
we are particularly interested in extending the use of homomorphic threshold

� Work done partly while visiting Philips Research Labs.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 119–136, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

120 B. Schoenmakers and P. Tuyls

cryptosystems to the two-party case. We observe that solutions based on ho-
momorphic threshold cryptosystems can be used just as well in the two-party
case. To cover fairness, however, an additional protocol is needed that allows two
parties to jointly decrypt the outputs in a gradual fashion. We present such a
protocol by showing how to adapt the decryption step of a homomorphic thresh-
old cryptosystem.

A major advantage of secure multiparty computation based on homomor-
phic threshold cryptosystems is the fact that it results in particularly efficient
solutions, even for active adversaries. The communication complexity, which is
the dominating complexity measure, is O(nk|C|) bits for [JJ00, CDN01, DN03],
where n is the number of parties, k is a security parameter, and |C| is the number
of gates of circuit C. A more detailed look at the performance of these solutions
reveals, however, that there is considerable room for improvement in several
respects.

It is assumed in [JJ00, CDN01, DN03] that the shared key for the homomor-
phic threshold cryptosystem used in the multiparty protocol is already given.
As a consequence, the communication complexity of O(nk|C|) bits does not
include the communication needed for the distributed key generation (DKG)
protocol of the underlying threshold cryptosystem. However, the performance
of the DKG protocol is an issue since we envision a system supporting ad hoc
contacts among a large group of peer users, where any pair of users may de-
cide to engage in a secure two-party computation for a dynamically agreed upon
function. For example, “profile matching” is an application in which two users
jointly test whether some function of their (personal) profiles exceeds a given
threshold, without divulging any further information on their profiles. In this
scenario, it is unreasonable to assume that each pair of users shares a specific
key pair for the underlying threshold cryptosystem. Instead, each time two users
want to perform a two-party computation, they would need to run the DKG
protocol first.

In this respect, an advantage of the Mix and Match approach of [JJ00] is its
applicability to any discrete log setting, whereas [CDN01, DN03] depend criti-
cally on an RSA-like setting (e.g., using Paillier’s cryptosystem). The advantage
is that DKG protocols for discrete log based cryptosystems are efficient and
relatively simple (see [Ped91, GJKR99]). In particular, DKG can be achieved
practically for free in the two-party case. This contrasts sharply with the known
protocols for distributed generation of a shared RSA modulus. Briefly, for the
two-party case (without a helper party), Gilboa [Gil99] reports a communica-
tion complexity of about 42MB (or 29MB for a slightly optimized version) for
generating a shared 1024-bit RSA modulus, while covering passive adversaries
only. And, for the multiparty case, the results of [ACS02] show what is currently
achievable, also covering passive adversaries only.

Interestingly, it is actually possible to combine the benefits of a discrete log
setting and an RSA-like setting, as demonstrated recently in [DJ03]. To this end,
one uses an amalgam of the ElGamal cryptosystem and the Paillier cryptosystem
(such a combination has also been presented in the full version of [CS02]). A

Practical Two-Party Computation Based on the Conditional Gate 121

system supporting ad hoc contacts may then be set up by jointly generating a
single RSA modulus (between as many parties as deemed necessary, e.g., using
a robust version of [ACS02]). A discrete log based DKG protocol will suffice
to generate a shared key between any two users. We do note however that the
security of the resulting system relies on both a discrete log related assumption
and a factoring related assumption, which is undesirable from a theoretical point
of view.

In this paper, we will focus on a solution for which the security depends
on the standard decisional Diffie-Hellman (DDH) assumption. As a consequence
our protocols can be implemented using elliptic curves, for which the security is
assumed to be exponential as a function of the security parameter rather than
sub-exponential (as for RSA, for example). The Mix and Match approach of
[JJ00] is also secure under DDH, but we note that the resulting protocol for
evaluating multiplication gates is—despite its conceptual simplicity—quite inef-
ficient. We will show how to evaluate multiplication gates in a much simpler way,
such that the computational effort decreases by at least one order of magnitude
(that is, a ten-fold speed-up is achieved, see Section 3.3). On the other hand, a
disadvantage of our approach is that, in general, the round complexity is O(nd)
for n parties and circuit depth d = d(C), versus O(n+d) for Mix and Match. For
two-party computation, however, the round complexity is O(d) in both cases,
and more generally for small n the gain in computational efficiency outweighs
the increased round complexity.

The basis of our approach is formed by the conditional gate, a special multipli-
cation gate which we show to be efficiently implementable under DDH. Basically,
a conditional gate allows us to efficiently multiply two encrypted values x and y,
as long as x is restricted to a two-valued domain, e.g., x ∈ {0, 1}. We emphasize
that the value of y is not restricted, e.g., we may have y ∈ Zq, where q is a large
prime. This property can be exploited when designing circuits for specific func-
tions. For example, from the formula (y′

0, y
′
1) = (y0−x(y0−y1), y1 +x(y0−y1)),

with x ∈ {0, 1}, one sees that a conditional swap gate, swapping any two values
in Zq depending on the value of x, can be obtained using a single conditional
gate. We will indicate that, using ElGamal, one cannot expect to achieve a mul-
tiplication gate for which both inputs are unrestricted. Note, however, that the
result of [CDN01] shows that multiplication of two unrestricted values can be
achieved efficiently under a factoring related assumption.

Overview. Throughout the paper we will describe the results in a general set-
ting of n-party computation, n ≥ 2, although we are mainly interested in the
two-party case. In Section 2, we review the basics for homomorphic threshold
ElGamal. In Section 3, we introduce the conditional gate as our elementary mul-
tiplication gate, and we show how it can be used to achieve xor-homomorphic
ElGamal encryption efficiently. In Section 4, we then consider the secure eval-
uation of arbitrary circuits, following [CDN01], which we extend with a new,
non-interactive protocol for achieving private outputs. Furthermore, we propose
an efficient protocol for achieving fairness in the two-party case. In Section 5,
we show that particularly efficient circuits can be built for basic operations such

122 B. Schoenmakers and P. Tuyls

as integer comparison, paying special attention to Yao’s well-known millionaires
problem in Section 5.2, for which we obtain a solution requiring 12m exponenti-
ations for m-bit integers. Finally, in Section 6, we conclude with future work and
give an example of a more advanced application which we call ‘profile matching’.

2 Preliminaries on Homomorphic Threshold ElGamal

Discrete Log Setting. Let G = 〈g〉 denote a finite cyclic (multiplicative) group of
prime order q for which the Decision Diffie-Hellman (DDH) problem is assumed
to be infeasible: given gα, gβ , gγ ∈R G, it is infeasible to decide whether αβ ≡ γ
(mod q). This implies that the Diffie-Hellman (DH) problem, which is to compute
gαβ given gα, gβ ∈R G, is infeasible as well. In turn, this implies that the Discrete
Log (DL) problem, which is to compute logg h = α given gα ∈R G, is infeasible.

Homomorphic ElGamal Encryption. For public key h ∈ G, a message m ∈ Zq

is encrypted as a pair (a, b) = (gr, gmhr), with r ∈R Zq. Encryption is addi-
tively homomorphic: given encryptions (a, b), (a′, b′) of messages m,m′, respec-
tively, an encryption of m + m′ is obtained as (a, b) � (a′, b′) = (aa′, bb′) =
(gr+r′

, gm+m′
hr+r′

).
Given the private key α = logg h, decryption of (a, b) = (gr, gmhr) is per-

formed by first calculating b/aα = gm, and then solving for m ∈ Zq. In general,
this is exactly the DL problem, which we assume to be infeasible. The way out
is to require that message m is constrained to a sufficiently small set M ⊆ Zq.1

In this paper, the cardinality of M will be very small, often |M | = 2.
Homomorphic ElGamal encryption is semantically secure assuming the in-

feasibility of the DDH problem. Throughout the paper, we use [[m]] to denote
the set of all ElGamal encryptions of m under some understood public key h,
and, frequently, we also use [[m]] to denote one of its elements. More formally,
using that [[0]] is a subgroup of G×G, [[m]] is the coset of [[0]] in G×G containing
encryption (1, gm). Hence, encryptions (a, b) and (a′, b′) belong to the same coset
iff logg(a/a′) = logh(b/b′). Lifting the operations on the direct product group
G × G to the cosets, we thus have, for x, y ∈ Zq, that [[x]] � [[y]] = [[x + y]], and
[[x]]y = [[xy]], where (a, b)c = (ac, bc) for c ∈ Zq. Hence, [[x]] � [[y]]−1 = [[x − y]].
Addition and subtraction over Zq and multiplication by a publicly known value
in Zq can thus be performed easily on encrypted values. These operations are
deterministic. Another useful consequence is that any encryption in [[x]] can be
transformed into a statistically independent encryption in [[x]] by multiplying it
with a uniformly selected encryption in [[0]]; this is often referred to as “random
re-encryption.”

Pedersen Commitment. Given h′ ∈ G, a Pedersen commitment to m ∈ Zq is a
value b = gmh′r, with r ∈R Zq. The commitment is opened by revealing m and r.

1 For intervals M , the Pollard-λ (“kangaroo”) method runs in O(
√

|M |) time using
O(1) storage.

Practical Two-Party Computation Based on the Conditional Gate 123

Pedersen’s scheme is unconditionally hiding and computationally binding, under
the assumption that logg h

′ cannot be determined. The commitment scheme
is also additively homomorphic, and we will sometimes use 〈〈m〉〉 to denote a
commitment to message m, where the randomization is suppressed.

Σ-Protocols. We briefly mention a few facts about Σ-protocols. A Σ-protocol
for a relation R = {(v, w)} is a three-move protocol between a prover and a
verifier, where the prover does the first move. Both parties get a value v as
common input, and the prover gets a “witness” w as private input, (v, w) ∈ R.
A Σ-protocol is required to be a proof of knowledge for relation R satisfying
special soundness and special honest-verifier zero-knowledge. See [CDS94] for
details.

We need some well-known instances of Σ-protocols. The simplest case is
Schnorr’s protocol for proving knowledge of a discrete log α, on common input
a = gα, and Okamoto’s variant for proving knowledge of α, β, on common input
a = gαhβ . Another basic case is Chaum-Pedersen’s protocol for proving knowl-
edge of α, on common input (a, b) = (gα, hα), which is a way to prove that
(a, b) ∈ [[0]] without revealing any information on α. Applying OR-composition
[CDS94], these basic protocols can be combined into, for instance, a Σ-protocol
for proving that (a, b) ∈ [[0]]∪[[1]], where the common input is an ElGamal encryp-
tion (a, b). The latter protocol thus proves that the message encrypted (which is
an element of Zq) actually is a “bit”, without divulging any further information
on the message.

For simplicity, we will use the non-interactive versions of these Σ-protocols,
which are obtained via the Fiat-Shamir heuristic, that is, by computing the
challenge as a hash of the first message (and possibly other inputs). The resulting
proofs are known to be secure in the random oracle model; in particular, we will
use that these proofs can be simulated.

Threshold ElGamal Decryption. We use a (t + 1, n)-threshold ElGamal cryp-
tosystem, 0 ≤ t < n, in which encryptions are computed using a common public
key h (as above) while decryptions are done using a joint protocol between
n parties P1, . . . , Pn. Each party Pi holds a share αi ∈ Zq of the private key
α = logg h, where the corresponding value hi = gαi is public. As long as more
than t parties take part, decryption will succeed, whereas t or less parties are
not able to decrypt successfully.

The parties initially obtain their shares αi by running a secure distributed
key generation protocol; see [Ped91, GJKR99] for details. We note that these
protocols are practical (the communication complexity is O(n2k) bits for security
parameter k, where the hidden constant is small). For the two-party case (t = 1,
n = 2), we briefly describe a (non-robust) distributed key generation protocol in
the spirit of [GJKR99]. The protocol consists of two steps. In the first step, party
Pi, i = 1, 2, broadcasts a Pedersen commitment bi = gαih′ri , with αi, ri ∈R Zq

along with a proof of knowledge for αi, ri. In the second step, party Pi, i = 1, 2,
broadcasts ri along with a proof of knowledge of logg hi, where hi = bi/h

′ri . The
joint public key is h = h1h2, with private key α = α1+α2. Clearly, this protocol is

124 B. Schoenmakers and P. Tuyls

very practical. In many cases, it may even be replaced by the trivial one-round
protocol in which both parties broadcast hi = gαi and a proof of knowledge
of αi. Although the trivial protocol allows one of the parties to influence the
distribution of the public key h slightly, this need not be a problem for the
application in which the key is used; see [GJKR03] for more details.

For decryption of (a, b), party Pi, i = 1, . . . , n, produces a decryption share
di = aαi along with a proof that loga di = logg hi. Assuming w.l.o.g. that parties
P1, . . . , Pt+1 produce correct decryption shares, the message can be recovered
from gm = b/aα, where aα is obtained from d1, . . . , dt+1 by Lagrange interpo-
lation. Assuming homomorphic ElGamal, m ∈ M will hold for some small set
M ; if such m cannot be found decryption fails. Also, if fewer than t + 1 parties
provide a correct decryption share, decryption fails.

For later use in the proof of Theorem 1, we note that the threshold decryption
protocol can be simulated for any input (a, b) ∈ [[m]], provided message m ∈ Zq

is given as well. Assume w.l.o.g. that parties P1, . . . , Pt are corrupted, hence col-
lectively form the adversary. The simulator first extracts the shares α1, . . . , αt

of the adversary, by rewinding the proofs of knowledge based on these shares.
(The parties prove knowledge of their shares during the distributed key gener-
ation protocol.) The simulator then computes aα = b/gm from b and m. The
simulator then computes the correct decryption shares for the corrupted parties
as aα1 , . . . , aαt , which enables the computation of the decryption shares for the
honest parties by Lagrange interpolation on aα, aα1 , . . . , aαt . The corresponding
proofs of correct decryption are simulated for the honest parties. For the cor-
rupted parties, the decryption shares and the proofs of correct decryption are
obtained from the adversary, running it as a black box; possibly some of these
shares are wrong and/or some of the proofs fail, but these values are included
in the output of the simulator anyway. The simulation is then completed by
recovering the message as in the real protocol, possible ending with a decryption
failure. As a result, the simulated transcript is consistent with the view of the
adversary and statistically indistinguishable of real transcripts.

3 Special Multiplication Protocols

The results of the previous section imply that a function f can be evaluated
securely in a multiparty setting if f can be represented as a circuit over Zq con-
sisting only of addition gates and simple multiplication gates. Here, an addition
gate takes encryptions [[x]] and [[y]] as input and produces [[x]] � [[y]] = [[x + y]]
as output, and a simple multiplication gate takes [[x]] as input and produces
[[x]]c = [[cx]] as output, for a publicly known value c ∈ Zq. To be able to handle
any function f , however, we need more general multiplication gates for which
both inputs are encrypted.

In this section, we consider two special multiplication gates. If no restric-
tions are put on x or y, a multiplication gate, taking [[x]] and [[y]] as input and
producing [[xy]] as output efficiently, cannot exist assuming that the DH problem

Practical Two-Party Computation Based on the Conditional Gate 125

is infeasible.2 Therefore, we consider two special multiplication gates, putting
some restrictions on the multiplier x. The first gate requires that the multiplier
x is private, which means that it is known by a single party. The second gate,
referred to as the conditional gate, requires that the multiplier x is from a di-
chotomous (two-valued) domain. As a direct application of the conditional gate,
we also consider xor-homomorphic encryption based on ElGamal encryption.

3.1 Multiplication with a Private Multiplier

We present a multiplication protocol where the multiplier x is a private input
rather than a shared input. That is, the value of x is known by a single party
P . No restriction is put on the multiplicand y. Multiplication with a private
multiplier occurs as a subprotocol in the protocol for the conditional gate and
in other protocols further on in the paper.

Given encryptions [[x]] = (a, b) = (gr, gxhr) and [[y]] = (c, d), where party
P knows r, x, party P computes on its own a randomized encryption [[xy]] =
(e, f) = (gs, hs) � [[y]]x, with s ∈R Zq, using the homomorphic properties. Party
P then broadcasts [[xy]] along with a proof showing that this is the correct output,
which means that it proves knowledge of witnesses r, s, x ∈ Zq satisfying a = gr,
b = gxhr, e = gscx, f = hsdx.

For later use, we need to be able to simulate the above protocol. The simulator
gets as input [[x]] and [[y]], and a correct output encryption [[xy]], but it does
not know x. As a result, the simulator only needs to add a simulated proof of
knowledge. The simulated transcript is statistically indistinguishable from a real
transcript.

Below, we will also use a variation of the above protocol, where the private
multiplier x is multiplied with several multiplicands yi at the same time. Fur-
thermore, we note that often a slight optimization is possible by using a Pedersen
commitment 〈〈x〉〉 = gxh′r instead of an ElGamal encryption [[x]] = (gr, gxhr) for
the multiplier.

3.2 Conditional Gate

Next, we consider a multiplication gate for which the multiplier x is from a
dichotomous (two-valued) domain, whereas the multiplicand y is unrestricted.
We call it the conditional gate, and show how to implement it by an efficient
protocol, using just homomorphic threshold ElGamal. We will formulate the
conditional gate for the dichotomous domain {−1, 1}.3

2 Given gx, gy we form encryptions [[x]], [[y]] and feed these into the multiplication gate.
The gate would return an encryption [[xy]], which would give gxy upon decryption.

3 Domain {0, 1} or any other domain {a, b}, a = b, can be used instead, as these
domains can be transformed into each other by linear transformations: x �→ a′ +
(b′ − a′)(x − a)/(b − a) maps {a, b} to {a′, b′}. These transformations can be applied
directly to homomorphic encryptions, transforming [[x]] with x ∈ {a, b} into [[x′]] with
x′ ∈ {a′, b′}.

126 B. Schoenmakers and P. Tuyls

Let [[x]], [[y]] denote encryptions, with x ∈ {−1, 1} ⊆ Zq and y ∈ Zq. The
following protocol enables parties P1, . . . , Pn, n ≥ 2, to compute an encryption
[[xy]] securely. For simplicity, we assume that these parties also share the private
key of the (t + 1, n)-threshold scheme [[·]], where t < n. The protocol consists of
two phases.

1. Let x0 = x and y0 = y. For i = 1, . . . , n, party Pi in turn takes [[xi−1]] and
[[yi−1]] as input, and broadcasts a commitment 〈〈si〉〉, with si ∈R {−1, 1}.
Then Pi applies the private-multiplier multiplication protocol to multiplier
〈〈si〉〉 and multiplicands [[xi−1]] and [[yi−1]], yielding random encryptions [[xi]]
and [[yi]], where xi = sixi−1 and yi = siyi−1. If Pi fails to complete this step
successfully it is discarded immediately.

2. The parties jointly decrypt [[xn]] to obtain xn. If decryption fails because
the number of correct shares is insufficient, the entire protocol is aborted. If
decryption fails because xn �∈ {−1, 1}, each party Pi is required to broadcast
a proof that si ∈ {−1, 1}. Parties failing to do so are discarded, and the
protocol is restarted (starting again at phase 1). Given xn and [[yn]], an
encryption [[xnyn]] is computed publicly.

The output of the protocol is [[xnyn]]. Clearly, if all parties are honest, xnyn =
(
∏n

i=1 si)2xy = xy.
Any party may disrupt the protocol for at most one run of phase 1 by picking

a value si outside the range {−1, 1}. Note that we do not need to require that
each si is in {−1, 1} in phase 1. For instance, parties P1 and P2 may cheat by
setting s1 = 2 and s2 = 1/2. Since s1s2 = 1, this type of “cheating” will go
unnoticed in phase 2 if all other parties are honest. However, the security of the
protocol is not affected by such “cheating.” For t < n/2, the protocol is robust,
allowing up to t failing parties in total (as the threshold decryption step tolerates
up to t failing parties). For n/2 ≤ t < n, the protocol is not robust, but we will
see from Theorem 1 below that the adversary does not get an advantage in this
case.

The protocol requires a single threshold decryption only. Since xn ∈ {−1, 1} is
required to hold, decryption is feasible for the homomorphic ElGamal encryption
scheme. As the value of xn is statistically independent of x, the value of xn does
not reveal any information on x. This is stated in the following theorem, which
holds for up to t < n corrupting parties.

Theorem 1. On input [[x]], [[y]] with x ∈ {−1, 1} ⊆ Zq and y ∈ Zq, the above
protocol produces [[xy]], without leaking any additional information on x and y.

Proof. The soundness of the proofs in phase 1 of the protocol ensures that xn =
x
∏n

i=1 si and yn = y
∏n

i=1 si Since it is checked in phase 2 that xn ∈ {−1, 1}, it
follows from x ∈ {−1, 1} that

∏n
i=1 si ∈ {−1, 1} as well. Therefore, xnyn = xy.

To argue that no additional information on x and y is leaked we present the
following simulation of the protocol. The simulation takes as input encryptions
[[x]], [[y]], and [[xy]]. Given this information, the simulator is able to generate a
complete transcript for the protocol, for which the distribution is exactly the
same as in real executions of the protocol. If [[xy]] is not available, it may be

Practical Two-Party Computation Based on the Conditional Gate 127

replaced by a random encryption in [[0]], as done in [CDN01–Theorem 1]. Since
the simulator below does not use the shares of the honest parties to simulate
decryptions, the simulated transcripts will be indistinguishable (under DDH)
from real transcripts for any adversary controlling up to t parties.

Assume that parties P1, . . . , Pt are corrupted, hence collectively form the ad-
versary (the simulator is easily adapted for other sets of corrupted parties). The
simulator lets the adversary run phase 1 of the protocol for parties P1, . . . , Pt,
each time rewinding the proofs of knowledge used in the private-multiplier mul-
tiplication protocol to extract the values s1, . . . , st; if a party fails to provide a
correct proof it is discarded. Subsequently, the simulator runs phase 1 for parties
Pt+1, . . . , Pn−1 as in the real protocol, leaving [[xn−1]], with xn−1 = s1 · · · sn−1x,
as intermediate encryption. For party Pn, however, the simulator picks s′

n ∈R

{−S, S}, where S =
∏t

i=1 si, and it computes a commitment 〈〈s′
nxn−1〉〉 and an

encryption [[s′
nxy]], from [[xn−1]] and [[xy]], respectively. Writing sn = s′

nxn−1, the
simulator then simulates the private multiplier multiplication protocol for mul-
tiplier 〈〈sn〉〉 and multiplicands [[xn−1]], [[yn−1]] and outputs [[s′

n]], [[s′
nxy]], which

are the correct outputs since s′
n = snxn−1 and s′

nxy = s′
nxn−1yn−1 = snyn−1.

The output of phase 1 consists of encryptions [[s′
n]] and [[s′

nxy]]. By construc-
tion, the simulator is able to perform the decryption in phase 2 itself, producing
s′

n ∈ {−S, S} as output. The simulator for the threshold decryption protocol
is used for encryption [[s′

n]] using s′
n as an additional input (see Section 2). If

decryption fails due to an insufficient number of correct decryption shares, the
simulation stops, as in the real protocol. If S �∈ {−1, 1}, decryption fails and a
proof that si ∈ {−1, 1} is generated for each party Pi, by letting the adversary
do this for parties P1, . . . , Pt (of which at least one fails), running the real pro-
tocol for parties Pt+1, . . . , Pn−1, and using a simulation for Pn. After discarding
the failing parties among P1, . . . , Pt, the simulation is continued by simulating
another run of phase 1.

Finally, the simulator computes the encryption [[s′
ns

′
nxy]] = [[xy]], which is

clearly the correct output. �

If the total number of parties is large compared to the total number of condi-
tional gates to be evaluated, an alternative way to guarantee robustness is to let
the parties use encryptions [[si]] instead of commitments 〈〈si〉〉 in phase 1. Again,
if xn �∈ {−1, 1} in phase 2, all parties are required to prove that si ∈ {−1, 1}.
Failing parties are discarded and their si values are decrypted to correct the
value of xn.

The performance of the protocol is as follows (analyzing the case that no
party is cheating). The performance is determined by the communication com-
plexity (in bits) and the round complexity. In phase 1 each party applies the
private-multiplier multiplication protocol, broadcasting about 10 values. For de-
cryption each party broadcasts 3 values at the most. Hence, the communication
complexity is O(nk) where the hidden constant is very small. In general, the
round complexity is O(n), which is high, but in case of two-party computation
it is O(1). Also, when many conditional gates are to be evaluated in parallel,

128 B. Schoenmakers and P. Tuyls

one may take advantage of the fact that the order in which parties P1, . . . , Pn

execute phase 1 of the conditional gate protocol can be chosen arbitrarily.

3.3 XOR-Homomorphic ElGamal Encryption

As a direct application of the conditional gate, we obtain an xor-homomorphic
ElGamal encryption scheme. (The converse problem of constructing (Zq,+)-
homomorphic schemes, q > 2, from xor-homomorphic schemes, such as the
Goldwasser-Micali cryptosystem [GM84], is considered in [KMO01].)

Given [[x]], [[y]] with x, y ∈ {0, 1}, [[x ⊕ y]] is computed as follows, using one
threshold decryption (cf. footnote 2):

1. Publicly convert [[x]] to [[x′]] with x′ = 2x− 1 ∈ {−1, 1}.
2. Apply the conditional gate to [[x′]] and [[y]] to obtain [[x′y]].
3. Publicly compute [[x− x′y]], which is equal to [[x⊕ y]].

The work per party is very limited, about 13 exponentiations for each con-
ditional gate. In contrast, the Mix and Match approach of [JJ00] would require
each party to mix the 4 rows of a truth table for x⊕ y in a verifiable way (Mix
step, requiring 24 exponentiations for blinding the entries and, say, 6 × 12 ex-
ponentiations for the correctness proof, using the efficient protocol of [Gro03]),
and perform on average 4 plaintext equality tests to find [[x⊕ y]] given [[x]] and
[[y]] (Match step, requiring 4 × 7 exponentiations). Hence, the conditional gate
provides approximately a ten-fold improvement, counting exponentations.

4 Circuit Evaluation

In this section, we briefly describe a protocol for evaluating a given circuit com-
posed of elementary gates. Recall that our elementary gates operate over Zq,
except that the first input of a conditional gate is required to belong to a two-
valued domain. It is clear that these elementary gates suffice to emulate any
Boolean circuit. Specifically, any operator on two bits x, y ∈ {0, 1} ⊆ Zq can
be expressed uniquely as a polynomial of the form a0 + a1x + a2y + a3xy with
coefficients in Zq. Hence, any binary operator can be expressed using at most
one conditional gate.

The protocol operates in much the same manner as the protocol for circuit
evaluation of, for instance, [CDN01]. For convenience, we assume that the parties
P1, . . . , Pn evaluating the circuit are exactly the same as the parties for which
the (t + 1, n)-threshold cryptosystem has been set-up, where t < n. The circuit
is then evaluated in three phases:

1. The parties encrypt their inputs using the homomorphic cryptosystem [[·]],
and the parties are required to provide a proof of knowledge for their inputs,
and possibly that the inputs belong to a dichotomous domain.

2. The parties then jointly evaluate the circuit gate-by-gate. Conditional gates
at the same depth of the circuit are evaluated in parallel.

3. Finally, the parties jointly decrypt the outputs of the circuit.

Practical Two-Party Computation Based on the Conditional Gate 129

As described in the previous section, parties failing at some stage in the
protocol are discarded immediately. As long as no more than t < n/2 parties
fail in total, the protocol will complete and all parties will learn the output. The
case of n/2 ≤ t < n will be discussed below.

The formal security analysis of [CDN01] can be adapted to show that our
protocol is secure against a static, active adversary corrupting at most t < n
parties, assuming the intractability of the DDH problem. This follows from the
fact that we are able to simulate the multiplication protocols of Section 3 in
a statistically indistinguishable manner, provided that the simulator for these
protocols is given encryptions of the correct output values. We thus achieve the
same level of security as [CDN01]. The important difference is that [CDN01]
incorporates a general multiplication gate, for which they need an RSA-like
cryptosystem such as Paillier’s cryptosystem to get an efficient multiplication
protocol, while we incorporate a restricted multiplication gate, for which we have
presented an efficient multiplication protocol using the ElGamal cryptosystem.

4.1 Private Outputs

In this section, we propose a new non-interactive protocol for achieving private
outputs in the context of secure multiparty computation based on homomorphic
threshold cryptosystems. Previous methods require the receiving parties to per-
form some blinding step, as part of the decryption protocol. For our method, it
suffices to know the public keys of the receiving parties.

We need a different method than [CDN01] to deal with private outputs any-
way, since their method would require us to decrypt an ElGamal encryption of
a random message in Zq. Suppose [[m]] is an encryption of a private output for
party Pj , that is, output m is intended for party Pj only. Briefly, the method of
[CDN01] is to let party Pj first blind encryption [[m]] by multiplying it with a
random encryption [[r]] for some r ∈R Zq. The encryption [[m+ r]] is then jointly
decrypted, resulting in the value m′ = m + r, from which (only) party Pj is
able to compute m = m′ − r. This method critically depends on the ability to
decrypt arbitrary messages. Using an RSA-like cryptosystem, such as Paillier’s
cryptosystem, this is no problem. Using ElGamal encryption, however, we can-
not decrypt [[m + r]] (see Section 2). A first way out is to adapt the ElGamal
decryption step to output gm+r instead of m+ r; the receiving party may divide
this value by gr to obtain gm from which m may be determined, assuming m is
from a small set.

We note however that in general it is undesirable that interaction with the
receiving parties is required to produce private outputs. Therefore, we present
a protocol for which no interaction with the receiving party is required. The
protocol runs as follows. Let (a, b) ∈ [[m]] be an output intended for party Pj

and let hj = gαj denote Pj ’s public key. Recall from Section 2 that threshold
decryption requires each party Pi to produce the value aαi along with a proof
of correctness. We modify this step as follows, by releasing aαi encrypted under
Pj ’s public key and adapting the proof of correctness accordingly:

130 B. Schoenmakers and P. Tuyls

1. Each party Pi outputs an encryption (ci, di) = (gri , hri
j aαi) with ri ∈R Zq

along with a proof that it knows ri, αi satisfying

hi = gαi , ci = gri , di = hri
j aαi .

2. For decryption, party Pj first uses Lagrange coefficients λi to compute the
following product for a set of t + 1 valid shares (ci, di):∏

i

(ci, di)λi = (g
∑

i λiri , h
∑

i λiri

j a
∑

i λiαi).

Then Pj decrypts this product using its private key αj to obtain a
∑

i λiαi =
aα. Party Pj then proceeds to recover gm = b/aα, from which it finds m
assuming that m belongs to a relatively small, known subset of Zq.

The protocol requires only a small amount of additional work compared to
the basic protocol for decrypting public outputs, where each party Pi outputs
aαi along with a proof of correctness (cf. step 1), from which anyone is then able
to recover a

∑
i λiαi = aα using t + 1 valid shares (cf. step 2).

4.2 Fairness

Recall that t denotes the maximum number of corrupted parties tolerated by the
circuit evaluation protocol. For t < n/2, that is, the case of a dishonest minority,
the protocol achieves robustness. We now extend the protocol to handle the
two-party case t = 1, n = 2 (which is a special case of a dishonest majority,
n/2 ≤ t < n).

For the two-party case we give up on robustness, since one cannot prevent
one of the parties from quitting the protocol prematurely. If a party chooses to
do so, however, it should not gain any advantage from it. If a protocol achieves
this property, the protocol is said to be fair.

An important observation for the above circuit evaluation protocol is that
neither party gains any advantage from quitting the protocol in phase 1 or
phase 2 of the protocol. In particular, consider the case that party P2, say,
chooses to quit during the threshold decryption step of a conditional gate, for
which party P1 has already produced its decryption share. In that case, only
P2 learns the decrypted value xn, but this value cannot possibly give P2 an
advantage, as follows from the simulation in the proof of Theorem 1.

Therefore, to achieve fairness, we only need to protect the decryption of
the output values. For this purpose, we will apply a protocol similar to that
of [BST01]. In [BST01], however, the protocol steps for achieving fairness are
intertwined with the original protocol steps, while in our protocol the additional
steps for achieving fairness are strictly limited to the decryption of the output
values.

Let an encryption (a, b) be given. Recall that (2, 2)-threshold decryption,
requires party Pi to provide di = aαi , i = 1, 2, along with a proof that this value
is correct w.r.t. the public key hi = gαi of party Pi. Instead of directly revealing
this value, we will release it gradually using the following protocol, where k is a

Practical Two-Party Computation Based on the Conditional Gate 131

security parameter, k < log2 q, and h ∈ 〈g〉 denotes an additional generator for
which logg h is unknown to parties P1, P2:

1. For i = 1, 2, party Pi chooses εij ∈R {0, 1}, αij ∈R Zq for j = 0, . . . , k − 1
subject to the condition that αi =

∑k−1
j=0 αij2j . Party Pi then broadcasts

the values dij = aαijhεij , j = 0, . . . , k − 1 along with a proof that each
εij ∈ {0, 1} and a proof that

∏k−1
j=0 d2j

ij = aαihε, where αi = logg hi, for some
value ε.

2. Set j = k − 1. Parties P1, P2 repeatedly execute the following step. For
i = 1, 2, party Pi broadcasts values αij , εij . If these values verify correctly
against dij , the value of j is decremented and the step is repeated if j > 0.

3. Once j = 0 both parties release εi0 along with a proof of knowledge for a
witness αi0 satisfying di0h

−εi0 = aαi0 .
4. Both parties are able to recover the missing value aαi , as follows:

aαi = di0h
−εi0a

∑k−1
j=1 αij2j

.

At each stage of the protocol, either party is at most one bit ahead of the
other party. If one sets k = 80, for instance, it is clearly infeasible for both parties
to compute the missing value aαi at step 1, as it requires a search over 2k possible
values for εi,k−1, . . . , εi0. At each later step, the search space is reduced in size
by a factor of two.

The protocol does not leak any information on αi beyond what is implied
by the output values aαi . The protocol can be run in parallel for decrypting
multiple outputs at the same time, and the protocol can be combined easily
with our protocol for private outputs presented above.

The above protocol achieves a basic level of fairness. In [Pin03] a strengthened
notion of fairness for two-party computation is considered, which also addresses
the case where one party may be considerably more powerful than the other
party; the timed commitments used to resolve this problem, however, critically
depend on the hardness of factoring. (The recent paper [GMY04b] describes a
way to cover fairness in a universally composable way, for static adversaries. In
particular, the result of [CDN01] is extended to cover fairness as well, using a
factoring related assumption to achieve timed commitments.) Apart from this
difference, the result of [Pin03] is comparable to our result. The difference is
that [Pin03] is based on Yao’s garbled circuit approach, while our approach is
based on homomorphic threshold cryptosystems. In both cases, however, the
changes to make the protocol fair are limited to the output stage, where some
form of gradual release is used in combination with a method to ensure that
commitments opened during gradual release indeed contain the correct output
of the computation.

5 Relational and Arithmetic Operators

In this section we apply our set of elementary gates over Zq to obtain efficient
circuits for basic operations such as integer comparison and integer addition. In

132 B. Schoenmakers and P. Tuyls

most cases, the inputs are required to be given by their binary representations.
We consider the general case, in which the circuits operate on encrypted inputs,
producing encrypted outputs, such that they can be used as building blocks in
constructing circuits for more elaborate functions, either in a two-party setting
or in a general multiparty setting.

5.1 sgn(x − y)

Below, we present an efficient protocol for comparing two (non-negative) in-
teger values x and y. The inputs are given as sequences of encrypted bits,
[[xm−1]], . . . , [[x0]] and [[ym−1]], . . . , [[y0]], with x =

∑m−1
i=0 xi2i, y =

∑m−1
i=0 yi2i.

The output of the protocol consists of an encryption [[sgn(x − y)]], where sgn
denotes the signum function:

sgn z =

⎧⎨⎩−1, z < 0,
0, z = 0,
1, z > 0.

Using that x2
i = xi and y2

i = yi for xi, yi ∈ {0, 1}, the general strat-
egy is now to examine the unique multilinear polynomial p over Zq satisfying
p(x0, . . . , xm−1, y0, . . . , ym−1) = sgn(x − y) for all x, y, 0 ≤ x, y < 2m. The
problem that remains is to find an efficient circuit (or, equivalently, an oblivious
evaluation order) for the polynomial p.

As a first step, we consider the evaluation p = s0 with

sm−1 = 0, si−1 = si + (1− s2
i)(xi − yi).

Clearly, this results in the correct output value. However, we cannot evaluate
the term s2

i by means of a conditional gate since si is three-valued
(si ∈ {−1, 0, 1}). This is easily resolved by introducing an auxiliary binary
sequence vi, with vi = 1− s2

i :

sm−1 = 0, si−1 = si + vi(xi − yi),
vm−1 = 1, vi−1 = vi − vi(xi − yi)2.

Now, it is easy to draw up a circuit using 3m − 2 conditional gates (using
that sm−1 = 0 and vm−1 = 1 are publicly known values, hence need not be
encrypted).

We note that the bits may also be traversed in the opposite direction, starting
at the least significant bit. This results in the following sequence, with s′

m as
output:

s′
0 = 0, s′

i+1 = (1− (xi − yi)2)s′
i + xi − yi.

This method only needs 2m − 2 conditional gates: per iteration, one condi-
tional gate to compute xiyi and one to subsequently compute (1− (xi − yi)2)s′

i

with 1− (xi− yi)2 as dichotomous multiplier. Here we take full advantage of the
fact that the conditional gate does not put any constraints on the multiplicand:
whereas a Boolean circuit for sgn(x − y) requires all intermediate values to be
binary, our circuit uses non-binary intermediate values, such as the ternary s′

i’s.

Practical Two-Party Computation Based on the Conditional Gate 133

5.2 x > y

The output of x > y consists of one bit only, which is set to 1 if x > y and to 0
otherwise. Starting at the least significant bit, the output is given by tm, where

t0 = 0, ti+1 = (1− (xi − yi)2)ti + xi(1− yi).

This method requires 2m−1 conditional gates. (For comparison we note that
the best known circuit using only logical gates requires 5m binary gates, e.g. us-
ing the circuit for Biggerk(X,Y) of [KO02]. Similarly, for computing Max(X,Y)
given Biggerk(X,Y), 2m additional gates are required in [KO02], while we can
compute the bits of z = max(x, y) by setting zi = yi − tm(xi + yi), using only
m additional conditional gates.)

We now specialize this solution for x > y to obtain a solution for Yao’s basic
millionaires problem [Yao82]. In this case, the protocol is run by two parties, pro-
viding x and y respectively as private inputs. This allows for a much more efficient
solution, as the conditional gates can all be replaced by the private-multiplier
gates of Section 3.1. The private-multiplier gates can be even optimized slightly
by using Pedersen commitments instead of ElGamal encryptions, and using that
the multipliers are binary.

The total computational cost of our solution to Yao’s millionaires problem,
including the cost of the distributed key generation and the decryption of the
result, is dominated by the cost of about 2m private-multiplier gates (computing
[[yiti]] and [[xi(ti−2yiti−yi)]] as intermediate values), which require 6 exponenti-
ations each, hence 12m exponentiations in total (starting at the least significant
bit). To the best of our knowledge, this is the most efficient solution to date.
Here, we cover the malicious case (unlike many other papers on the millionaires
problem, that only deal with the semi-honest case, e.g., [Fis01, NN01, IG03]), but
we do not cover fairness. We also note that we do not need an auxiliary trusted
party, as in [Cac99], although that paper achieves fairness as well at a relatively
low cost. Finally, while most other solutions rely on an RSA-like assumption,
our solution is secure under the standard DDH assumption. This is also true
for the solution of [KO02], but their solution is much less efficient because their
circuits are evaluated using the expensive Mix and Match gates of [JJ00].

5.3 x = y

For testing equality of x and y, the following sequence can be used, where the
output um = 0 iff x = y:

u0 = 0, ui+1 = (1− (xi − yi)2)ui + (xi − yi)2.

The order in which the bits are processed is actually irrelevant. This method
requires 2m− 1 conditional gates, returning the output bit in encrypted form.

The socialist millionaires problem, a variant introduced by [JY96], is to eval-
uate x = y for a two-party setting, where x, y ∈ Zq are the respective pri-
vate inputs, and the output may be public. The currently best solution is due
to [BST01], using only O(1) exponentiations, hence without using the binary
representations of x and y. We obtain a solution in a similar vein as follows. The

134 B. Schoenmakers and P. Tuyls

parties broadcast [[x]] and [[y]], resp., and jointly form [[r]], where r ∈R Zq and
neither of the parties knows r. Using the private multiplier gate, the parties then
compute [[(x − y)r]], which is jointly decrypted to obtain g(x−y)r (rather than
obtaining (x− y)r). If g(x−y)r = 1, then w.v.h.p. x = y, otherwise x �= y.

5.4 x + y and x ∗ y

Given [[x]], [[y]], one obtains [[x + y]] directly using the homomorphic property.
A nice application of the conditional gate is that [[xy]] can also be computed
efficiently, if we assume that x is given in binary form.

Given [[xm−1]], . . . , [[x0]] and [[y]], where y ∈ Zq, one computes [[xy]] using that
xy =

∑m−1
i=0 xi(y2i). This method requires only m conditional gates, whereas a

standard Boolean circuit would require O(m2) bit multiplications.

6 Concluding Remarks

We envision a practical system supporting ad hoc contacts among a large group
of peer users. Since efficient DKG protocols for (2, 2)-threshold ElGamal are
easily achieved, our results show that any pair of users is able to engage in a two-
party computation for evaluating some dynamically agreed upon function. For
example, the circuits of the previous section lead to solutions for tasks of practical
interest, such as profile matching, allowing two users with profiles (length m bit
vectors) x and y, resp., to evaluate Δ(x, y) > T , where Δ(x, y) =

∑m
i=1 xiyi is

an example similarity measure and T is a threshold.
Further research is required for a full comparison with some recent approaches

to secure (two-party) computation. For instance, an interesting approach is pre-
sented in [GMY04a], which is based on committed oblivious transfer instead of
homomorphic threshold encryption. The amount of work per gate is comparable
to the work for a conditional gate, but the hidden constants for their approach
are larger than in our case. This is partly due to the fact that their solution
is designed to be universally composable, but remains true if their solution is
‘downgraded’ to a protocol for static adversaries; per gate, one party uses 5 bit
commitments and proves a number of relations for these commitments, followed
by a

(4
1

)
oblivious transfer. For a full comparison with [GMY04a], our solution

needs to be ‘upgraded’ to a universally composable one, e.g., following the ap-
proach of [DN03]. This would provide an interesting alternative, as the extension
of [GMY04a] to the multiparty case requires each pair of parties to run their ba-
sic two-party protocol for each multiplication gate, while with our approach the
parties run a single joint protocol for each conditional gate.

A well-known alternative to the gate-by-gate approach, is Yao’s garbled cir-
cuit approach for two-party computation. The Fairplay system is designed to
evaluate the practical merits of the garbled circuit approach, including some op-
timizations that will pay off for sufficiently large circuits [MNPS04]. We expect
a trade-off showing that the garbled circuit approach is best for large circuits
whereas a gate-by-gate approach is best for small circuits, or rather circuits for
which the number of inputs is proportional to the total number of gates.

Practical Two-Party Computation Based on the Conditional Gate 135

Acknowledgements. We thank the anonymous referees for their helpful com-
ments.

References

[ACS02] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation mod-
ulo a shared secret with application to the generation of shared safe-prime
products. In Advances in Cryptology—CRYPTO ’02, volume 2442 of Lec-
ture Notes in Computer Science, pages 417–432, Berlin, 2002. Springer-
Verlag.

[BST01] F. Boudot, B. Schoenmakers, and J. Traoré. A fair and effcient solution to
the socialist millionaires’ problem. Discrete Applied Mathematics, 111(1–
2):23–36, 2001. Special issue on Coding and Cryptology.

[Cac99] C. Cachin. Efficient private bidding and auctions with an oblivious third
party. In 6th ACM Conference on Computer and Communications Secu-
rity, pages 120–127. ACM press, 1999.

[CDN01] R. Cramer, I. Damg̊ard, and J.B. Nielsen. Multiparty computation
from threshold homomorphic encryption. In Advances in Cryptology—
EUROCRYPT ’01, volume 2045 of Lecture Notes in Computer Science,
pages 280–300, Berlin, 2001. Springer-Verlag.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Advances in
Cryptology—CRYPTO ’94, volume 839 of Lecture Notes in Computer Sci-
ence, pages 174–187, Berlin, 1994. Springer-Verlag.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Advances in
Cryptology—EUROCRYPT ’02, volume 2332 of Lecture Notes in Com-
puter Science, pages 45–64, Berlin, 2002. Springer-Verlag.

[DJ03] I. Damg̊ard and M. Jurik. A length-flexible threshold cryptosystem with
applications. In ACISP 2003, volume 2727 of Lecture Notes in Computer
Science, pages 350–364, Berlin, 2003. Springer-Verlag.

[DN03] I. Damg̊ard and J.B. Nielsen. Universally composable efficient multiparty
computation from threshold homomorphic encryption. In Advances in
Cryptology—CRYPTO ’03, volume 2729 of Lecture Notes in Computer
Science, pages 247–264, Berlin, 2003. Springer-Verlag.

[FH96] M. Franklin and S. Haber. Joint encryption and message-efficient secure
computation. Journal of Cryptology, 9(4):217–232, 1996.

[Fis01] M. Fischlin. A cost-effective pay-per-multiplication comparison method
for millionaires. In Progress in Cryptology – CT-RSA 2001, volume 2020 of
Lecture Notes in Computer Science, pages 457–471, Berlin, 2001. Springer-
Verlag.

[Gil99] N. Gilboa. Two party RSA key generation. In Advances in Cryptology—
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
116–129, Berlin, 1999. Springer-Verlag.

[GJKR99] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed
key generation for discrete-log based cryptosystems. In Advances in
Cryptology—EUROCRYPT ’99, volume 1592 of Lecture Notes in Com-
puter Science, pages 295–310, Berlin, 1999. Springer-Verlag.

136 B. Schoenmakers and P. Tuyls

[GJKR03] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure applications of
Pedersens distributed key generation protocol. In Cryptographers’ Track
RSA 2003, volume 2612 of Lecture Notes in Computer Science, pages 373–
390, Berlin, 2003. Springer-Verlag.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984.

[GMY04a] G. Garay, P. MacKenzie, and K. Yang. Efficient and universally compos-
able committed oblivious transfer and applications. In Proc. 1st Theory
of Cryptography Conference (TCC 2004), volume 2951 of Lecture Notes
in Computer Science, pages 297–316, Berlin, 2004. Springer-Verlag.

[GMY04b] J. Garay, P. MacKenzie, and K. Yang. Efficient and secure multi-party
computation with faulty majority and complete fairness, 2004. Submitted.
Available at http://eprint.iacr.org/2004/009/.

[Gro03] J. Groth. A verifable secret shuffle of homomorphic encryptions. In Public
Key Cryptography—PKC ’03, volume 2567 of Lecture Notes in Computer
Science, pages 145–160, Berlin, 2003. Springer-Verlag.

[IG03] I. Ioannidis and A. Grama. An efficient protocol for Yao’s millionaires’
problem. In Proceedings of the 36th Annual Hawaii International Confer-
ence on System Sciences (HICSS’03), page 6 pages. IEEE, 2003.

[JJ00] A. Juels and M. Jakobsson. Mix and match: Secure function evaluation
via ciphertexts. In Advances in Cryptology—ASIACRYPT ’00, volume
1976 of Lecture Notes in Computer Science, pages 162–177, Berlin, 2000.
Springer-Verlag.

[JY96] M. Jakobsson and M. Yung. Proving without knowing: On oblivious,
agnostic and blindfolded provers. In Advances in Cryptology—CRYPTO
’96, volume 1109 of Lecture Notes in Computer Science, pages 186–200,
Berlin, 1996. Springer-Verlag.

[KMO01] J. Katz, S. Myers, and R. Ostrovsky. Cryptographic counters and applica-
tions to electronic voting. In Advances in Cryptology—EUROCRYPT ’01,
volume 2045 of Lecture Notes in Computer Science, pages 78–92, Berlin,
2001. Springer-Verlag.

[KO02] K. Kurosawa and W. Ogata. Bit-slice auction circuit. In ESORICS 2002,
volume 2502 of Lecture Notes in Computer Science, pages 24–38, Berlin,
2002. Springer-Verlag.

[MNPS04] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party
computation system. In Proceedings of Usenix Security 2004, August 9–13,
2004. To appear.

[NN01] M. Naor and K. Nissim. Communication complexity and secure func-
tion evaluation. In Mixer II, October 9, 2001, NEC Research Institute,
Princeton, New Jersey, DIMACS Mixer Series, 2001.

[Ped91] T. Pedersen. A threshold cryptosystem without a trusted party. In Ad-
vances in Cryptology—EUROCRYPT ’91, volume 547 of Lecture Notes in
Computer Science, pages 522–526, Berlin, 1991. Springer-Verlag.

[Pin03] B. Pinkas. Fair secure two-party computation. In Advances in
Cryptology—EUROCRYPT ’03, volume 2656 of Lecture Notes in Com-
puter Science, pages 87–105, Berlin, 2003. Springer-Verlag.

[Yao82] A. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symposium
on Foundations of Computer Science (FOCS ’82), pages 160–164. IEEE
Computer Society, 1982.

Privacy in Non-private Environments�

Markus Bläser1,��, Andreas Jakoby2,
Maciej Lískiewicz2,� � �, and Bodo Manthey2,†

1 Institut für Theoretische Informatik, ETH Zürich, Switzerland
mblaeser@inf.ethz.ch

2 Institut für Theoretische Informatik, Universität zu Lübeck, Germany
{jakoby, liskiewi, manthey}@tcs.uni-luebeck.de

Abstract. We study private computations in information-theoretical
settings on networks that are not 2-connected. Non-2-connected networks
are “non-private” in the sense that most functions cannot privately be
computed on them. We relax the notion of privacy by introducing lossy
private protocols, which generalize private protocols. We measure the
information each player gains during the computation. Good protocols
should minimize the amount of information they lose to the players.
Throughout this work, privacy always means 1-privacy, i.e. players are
not allowed to share their knowledge. Furthermore, the players are honest
but curious, thus they never deviate from the given protocol.

By use of randomness by the protocol the communication strings a
certain player can observe on a particular input determine a probability
distribution. We define the loss of a protocol to a player as the logarithm
of the number of different probability distributions the player can ob-
serve. For optimal protocols, this is justified by the following result: For
a particular content of any player’s random tape, the distributions the
player observes have pairwise fidelity zero. Thus the player can easily
distinguish the distributions.

The simplest non-2-connected networks consists of two blocks that
share one bridge node. We prove that on such networks, communication
complexity and the loss of a private protocol are closely related: Up to
constant factors, they are the same.

Then we study 1-phase protocols, an analogue of 1-round communi-
cation protocols. In such a protocol each bridge node may communi-
cate with each block only once. We investigate in which order a bridge
node should communicate with the blocks to minimize the loss of infor-
mation. In particular, for symmetric functions it is optimal to sort the
components by increasing size. Then we design a 1-phase protocol that
for symmetric functions simultaneously minimizes the loss at all nodes
where the minimum is taken over all 1-phase protocols.

Finally, we prove a phase hierarchy. For any k there is a function such
that every (k − 1)-phase protocol for this function has an information
loss that is exponentially greater than that of the best k-phase protocol.

� The full version of this work appeared as Rev. 1 of Report 03-071, ECCC, 2003.
�� Work done while at the Institut für Theoretische Informatik, Universität zuLübeck.

� � � On leave from Instytut Informatyki, Uniwersytet Wroc�lawski, Poland.
† Supported by DFG research grant RE 672/3.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 137–151, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

138 M. Bläser et al.

1 Introduction

Consider a set of players, each knowing an individual secret. They want to com-
pute some function depending on their secrets. But after the computation, no
player should know anything about the other secrets except for what he is able
to deduce from his own secret and the function value. This is the aim of pri-
vate computation (also called secure multi-party computation). To compute the
function, the players can send messages to each other using secure links.

An example for such a computation is the “secret voting problem”: The
members of a committee wish to decide whether the majority votes for yes or
no. But after the vote nobody should know anything about the opinions of the
other members, not even about the exact number of yes and no votes, except for
whether the majority voted for yes or no.

If no group of at most t players can infer anything about the input bits that
cannot be inferred from the function value and their own input bits, we speak
of t-privacy.

Any Boolean function can privately (in the following we identify privately
with 1-privately) be computed on any 2-connected network. Unfortunately, there
are many Boolean functions, even simple ones like parity or disjunction, that
cannot privately be computed if the underlying network is not 2-connected [5].

However, many real-world networks are not 2-connected and private compu-
tation is not possible. If the players in the network have to compute something
but do not trust each other, there is a natural interest of the players in privacy.
What can we do? We relax the notion of privacy: One cannot require that any
player learns only what he is able to deduce from his own secret and the function
value. Instead we require that any player learns as little as possible about the
secrets of the other players (in an information-theoretical sense) while it is still
possible to compute the function.

Bridge nodes are important when considering non-2-connected networks. For
all non-bridge players we can guarantee that they do not learn anything except
for what they can deduce from their own bit and the function value. Thus, the
bridge players are the only players that are able to learn something more. The
question is now, how much the bridge players need to learn such that the function
can be computed. The simplest setting is a network of two blocks with one bridge
node in common. (A block is a maximal 2-connected subnetwork.) This reminds
one of communication complexity with a man in the middle: Alice (one block)
and Bob (another block) want to compute a function depending on their in-
put while preventing Eve (the bridge node) from learning anything about their
input. Unfortunately, Eve listens to the only communication channel between
Alice and Bob. In terms of communication complexity, this problem had been
examined by Modiano and Ephremedis [13, 14] and Orlitsky and El Gamal [17]
under cryptographic security. In contrast, we deal with information-theoretical
security, i.e. the computational power of the players is unrestricted. Furthermore,
we are not interested in minimizing communication but in minimizing the infor-
mation learned by any player. It turns out that there is a close relation between
communication and privacy, at least in this special case.

Privacy in Non-private Environments 139

1.1 Previous Results

Private computation was introduced by Yao [20]. He considered the problem
under cryptographic assumptions. Private Computation with information-theo-
retical security has been introduced by Ben-Or et al. [3] and Chaum et al. [6].
Kushilevitz et al. [12] proved that the class of Boolean functions that have a
circuit of linear size is exactly the class of functions that can privately be com-
puted using only a constant number of random bits. Kushilevitz [10] and Chor
et al. [7] considered private computations of integer-valued functions. They ex-
amined which functions can privately be computed by two players. Franklin
and Yung [9] used directed hypergraphs for communication and described those
networks on which every Boolean function can privately be computed.

While all Boolean functions can privately be computed on any undirected 2-
connected network, Bläser et al. [5] completely characterized the class of Boolean
functions that can still privately be computed, if the underlying network is con-
nected but not 2-connected. In particular, no non-degenerate function can pri-
vately be computed if the network consists of three or more blocks. On networks
with two blocks, only a small class of functions can privately be computed.

Chaum et al. [6] proved that any Boolean function can privately be computed,
if at most one third of the participating players are dishonest, i.e. they are
cheating. We consider the setting that all players are honest, i.e. they do not
cheat actively but try to acquire knowledge about the input bits of the other
players only by observing their communication. For this model, Ben-Or et al. [3]
proved that any n-ary Boolean function can be computed

⌊
n−1

2

⌋
-private. Chor

and Kushilevitz [8] showed that if a function can be computed at least n
2 -private,

then it can be computed n-private as well.
The idea of relaxing the privacy constraints has been studied to some extend

in a cryptographic setting. Yao [20] examined the problem where it is allowed
that the probability distributions of the messages seen by the players may differ
slightly for different inputs, such that in practice the player should not be able
to learn anything. Leakage of information in the information-theoretical sense
has been considered only for two parties yet. Bar-Yehuda et al. [2] studied the
minimum amount of information about the input that must be revealed for
computing a given function in this setting.

1.2 Our Results

We study the leakage of information for multi-party protocols, where each player
knows only a single bit of the input. Our first contribution is the definition of lossy
private protocols, which is a generalization of private protocols in an information-
theoretical sense (Section 2.2). Here and in the following, private always means
1-private. Throughout this work, we restrict ourselves to non-2-connected (in the
sense of non-2-vertex-connected) networks that are still 2-edge-connected. Every
block in such a network has size at least three and private computation within
such a block is possible. We measure the information any particular player gains
during the execution of the protocol in an information-theoretical sense. This
is the loss of the protocol to the player. The players are assumed to be honest

140 M. Bläser et al.

but curios. This means that they always follow the protocol but try to derive as
much information as possible.

We divide lossy protocols into phases. Within a phase, a bridge player may
exchange messages only once with each block he belongs to. Phases correspond
to rounds in communication complexity but they are locally defined for each
bridge player.

In the definition of lossy protocols, the loss of a protocol to a player is merely
the logarithm of the number of different probability distributions on the com-
munication strings a player can observe. We justify this definition in Section 3:
For a protocol with minimum loss to a player P and any particular content of
P ’s random tape, the support of any two probability distributions is disjoint.
Thus, in order to gain information, P can distinguish the distributions from the
actual communication he observes and does not need to sample.

The simplest non-2-connected network consists of two blocks that share one
bridge node. In Section 4 we show that the communication complexity of a
function f and the loss of a private protocol for f are intimately connected: Up
to constant factors, both quantities are equal.

Then we study 1-phase protocols. We start with networks that consist of
d blocks that all share the same bridge player P . In a 1-phase protocol, P
can communicate only once with each block he belongs to. However, the loss
of the protocol may depend on the order in which P communicates with the
blocks. In Section 5, we show that the order in which P should communicate
with the blocks to minimize the loss equals the order in which d parties should
be ordered on a directed line when they want to compute the function with
minimum communication complexity. Particularly for symmetric functions, it
is optimal to sort the components by increasing size. Then we design a 1-phase
protocol (Theorem 4), which has the remarkable feature, that it achieves minimal
loss at any node for symmetric functions. Hence, it simultaneously minimizes the
loss for all nodes where the minimum is taken over all 1-phase protocols.

In Section 6, we prove a phase hierarchy. For any k there is a function for
which every (k−1)-phase protocol has an exponentially greater information loss
than that of the best k-phase protocol.

1.3 Comparison of Our Results with Previous Work

One of the important features of the two-party case is that at the beginning each
party has knowledge about one half of the input. In the multi-party case each
player knows only a single bit of the input.

Kushilevitz [10] examined which integer-valued functions can privately be
computed by two players. He showed that requiring privacy can result in expo-
nentially larger communication costs and that randomization does not help in
this model. Chor et al. [7] considered multi-party computations of functions over
the integers. They showed that the possibility of privately computing a function
is closely related to its communication complexity, and they characterized the
class of privately computable Boolean functions on countable domains. Neither
Kushilevitz [10] nor Chor et al. [7] examined the problem how functions that

Privacy in Non-private Environments 141

cannot privately be computed can still be computed while maintaining as much
privacy as possible.

Leakage of information in the information-theoretical sense has been consid-
ered only for two parties, each holding one n-bit input of a two-variable function.
Bar-Yehuda et al. [2] investigated this for functions that are not privately com-
putable. They defined measures for the minimum amount of information about
the individual inputs that must be learned during the computation and proved
tight bounds on these costs for several functions. Finally, they showed that sac-
rificing some privacy can reduce the number of messages required during the
computation and proved that at the costs of revealing k extra bits of informa-
tion any function can be computed using O(k · 2(2n+1)/(k+1)) messages.

The counterpart of the two-party scenario in the distributed setting that we
consider is a network that consists of two complete networks that share one node
connecting them. Simulating any two-party protocol on such a network allows the
common player to gain information depending on the deterministic communica-
tion complexity of the function that should be evaluated. Hence and in contrast
to the two-party case, increasing the number of bits exchanged does not help
to reduce the knowledge learned by the player that is part of either block. An
important difference between the two-party scenario, where two parties share
the complete input, and a network consisting of two 2-connected components
connected via a common player (the bridge player) is that in the latter we have
somewhat like a “man in the middle” (the bridge player) who can learn more
than any other player, since he can observe the whole communication.

2 Preliminaries

For i, j ∈ N, let [i] := {1, . . . , i} and [i..j] := {i, . . . , j}. Let x = x1x2 . . . xn ∈
{0, 1}n be a string of length n. We often use the string operation xi←a defined
for any i ∈ [n] and a ∈ {0, 1} by x1 . . . xi−1 a xi+1 . . . xn. For a function f :
{0, 1}n → {0, 1}, an index i ∈ [n], and a ∈ {0, 1}, fi←α : {0, 1}n−1 → {0, 1}
denotes the function obtained from f by specialising the position i to the value
given by a, i.e. for all x = x1x2 . . . xn−1 ∈ {0, 1}n−1,

fi←a(x) = f(x1, . . . , xi−1, a, xi, . . . xn−1) .

An undirected graph G = (V,E) is called 2-connected, if the graph obtained
from G by deleting an arbitrary node is still connected. For a set U ⊆ V , let
G|U := (U, E|U) be the graph induced by U . A subgraph G|U is called a block,
if G|U is 2-connected and no proper supergraph G|U is 2-connected. A block of
size two is called an isthmus. A graph is called 2-edge-connected if after removal
of one edge, the graph is still connected. A graph is 2-edge-connected if it is
connected and has no isthmi. A node belonging to more than one block is called
a bridge node. The other nodes are called internal nodes. The blocks of a graph
are arranged in a tree structure. For more details on graphs, see e.g. Berge [4].

A Boolean function is symmetric, if the function value depends only on the
number of 1s in the input. See Wegener [19] for a survey on Boolean functions.

142 M. Bläser et al.

2.1 Private Computations

We consider the computation of Boolean functions f : {0, 1}n → {0, 1} on a
network of n players. In the beginning, each player knows a single bit of the
input x. Each player has a random tape. The players can send messages to
other players using secure links where the link topology is an undirected graph
G = (V,E). When the computation stops, all players should know the value
f(x). The goal is to compute f(x) such that no player learns anything about the
other input bits in an information-theoretical sense except for the information
he can deduce from his own bit and the result. Such a protocol is called private.

Definition 1. Let Ci be a random variable of the communication string seen by
player Pi. A protocol A for computing a function f is private with respect to
player Pi if for any pair of input vectors x and y with f(x) = f(y) and xi = yi,
for every c, and for every random string Ri provided to Pi,

Pr[Ci = c|Ri, x] = Pr[Ci = c|Ri, y] ,

where the probability is taken over the random strings of all other players. A
protocol A is private if it is private with respect to all players.

In the following, we use a strengthened definition of privacy: We allow only
one player, say Pi, to know the result. The protocol has to be private with
respect to Pi according to Definition 1. Furthermore, for all players Pj �= Pi, for
all inputs x, y with xj = yj , and for all random strings Rj we require Pr[Cj =
c|Rj , x] = Pr[Cj = c|Rj , y]. Thus, all other players do not learn anything. This
definition does not restrict the class of functions computable by private protocols
according to Definition 1. To achieve this additional restriction, Pi generates a
random bit r. Then we use a private protocol for computing r ⊕ f(x).

2.2 Information Source

The definition of privacy basically states the following: The probability that a
player Pi sees a specific communication string during the computation does not
depend on the input of the other players. Thus, Pi cannot infer anything about
the other inputs from the communication he observes.

If private computation is not possible since the graph is not 2-connected, it is
natural to weaken the concept of privacy in the following way: We measure the
information player Pi can infer from seeing a particular communication string.
This leads to the concept of lossy private protocols. The less information any
player can infer, the better the protocol is.

In the following, c1, c2, c3, . . . denotes a fixed enumeration of all communica-
tion strings seen by any player during the execution of A.

Definition 2. Let Ci be a random variable of the communication string seen by
player Pi while executing A. Then for a, b ∈ {0, 1} and for every random string
Ri provided to Pi, define the information source of Pi on a, b, and Ri as

SA(i, a, b, Ri) := {(μx(c1), μx(c2), . . .) | x ∈ {0, 1}n ∧ xi = a ∧ f(x) = b}

Privacy in Non-private Environments 143

where μx(ck) := Pr[Ci = ck|Ri, x] and the probability is taken over the random
strings of all other players.

Basically SA(i, a, b, Ri) is the set of all different probability distributions on
the communication strings observed by Pi when the input x of the players varies
over all possible bit strings with xi = a and f(x) = b. The loss of a protocol A
on a, b with respect to player Pi is

� = max
Ri

log |SA(i, a, b, Ri)| .

Thus the protocol looses � bits of information to Pi. We call such a protocol
�-lossy on a, b with respect to Pi.

If a uniform distribution of the input bits is assumed, then the self-informa-
tion of an assignment to the players P1, . . . , Pi−1, Pi+1, . . . , Pn is n − 1 [18]. In
this case the maximum number of bits of information that can be extracted by
Pi is n−1. If A is 0-lossy for all a, b ∈ {0, 1} with respect to Pi, then we say that
A is lossless with respect to Pi. A is lossless to Pi iff A is private to Pi. Thus
the notion of lossy private protocols generalizes the notion of private protocols.

Definition 3. A protocol A computing a function f in a network G is �A-lossy,
with �A : [n] × {0, 1}2 → R

+
0 , if �A(i, a, b) = maxRi

log |SA(i, a, b, Ri)|. Let f be
an n-ary Boolean function. Then for every network G = (V,E) with |V | = n,
define �G : [n]× {0, 1}2 → R

+
0 by

�G(i, a, b) := min
A
{ �A(i, a, b) | A is an �A-lossy protocol for f in G} .

The loss of a protocol A is bounded by λ ∈ N, if �A(i, a, b) ≤ λ for all i,
a, and b. �G(i, a, b) is obtained by locally minimizing the loss to each player Pi

over all protocols. It is a priori not clear whether there is one protocol with
�G(i, a, b) = �A(i, a, b) for all i, a, b. We show that this is the case for symmetric
functions and 1-phase protocols (as defined in Section 2.3).

We also use the size of the information source, defined by sA(i, a, b, Ri) =
|SA(i, a, b, Ri)| and sA(i, a, b) = maxRi sA(i, a, b, Ri) for a given protocol A. By
definition, �A(i, a, b) = log sA(i, a, b). If the underlying protocol is clear from
the context, we omit the subscript A. Let f be an n-ary Boolean function. For
a network G = (V,E) with |V | = n, we define sG(i, a, b) := minA sA(i, a, b).
If a player Pi is an internal node of the network, then it is possible to design
protocols that are lossless with respect to Pi (see Section 3). Players Pi that are
bridge nodes are in general able to infer some information about the input.

2.3 Phases in a Protocol

We say that a player Pq who corresponds to a bridge node makes an alternation
if he finishes the communication with one block and starts to communicate with
another block. During such an alternation, information can flow from one block
to another. We partition a communication sequence c = d1d2 . . . of Pq into a
minimal number of disjoint subsequences (d1, . . . , di1), (di1+1, . . . , di2), . . . such

144 M. Bläser et al.

that each subsequence is alternation-free (i.e. Pq makes no alternation during the
corresponding interval). To make such a partition unique assume that each subse-
quence (maybe except for the first one) starts with a non-empty message. We call
these subsequences block sequences of c and define blockj(c) := (dij−1+1, . . . , dij)
with i0 = 0. Next we partition the work of Pq into phases as follows. Pq starts at
the beginning of the first phase and it initiates a new phase when, after an alter-
nation, it starts to communicate again with a block it already has communicated
with previously in the phase.

A protocol A is a k-phase protocol for a bridge node Pq if for every input
string and contents of all random tapes, Pq works in at most k phases. A is
called a k-phase protocol if it is a k-phase protocol for every bridge node.

The start and end round of each phase does not need to be the same for each
player. Of particular interest are 1-phase protocols. In such a protocol, each bridge
player may only communicate once with each block he belongs to. Such protocols
seem to be natural, since they have a local structure. Once the computation is
finished in one block, the protocol will never communicate with this block again.

For k-phase protocols we define �k
G(i, a, b) and sk

G(i, a, b) in a similar way as
�A and sG in the general case, but we minimize over all k-phase protocols.

During each phase a player communicates with at least two blocks. The order
in which the player communicates within a phase can matter. The communica-
tion order σq of a bridge node Pq specifies the order in which Pq communicates
with the blocks during the whole computation. Formally, σq is a finite sequence
of (the indices of) blocks Pq belongs to and the length of σq is the total number
of alternations made by Pq plus one. We say that a protocol is σq-ordered for Pq

if for all inputs and all contents of the random tapes, the communication order of
Pq is consistent with σq. Let Pq1 , . . . , Pqk

with q1 < q2 < . . . < qk be an enumer-
ation of all bridge players of a network G and σ = (σq1 , . . . ,σqk

) be a sequence of
communication orders. We call a protocol σ-ordered if it is σqj -ordered for every
Pqj

. Finally, define sG(i, a, b,σ) := min{sA(i, a, b) | A is σ-ordered for f on G}.

2.4 Communication Protocols

For comparing the communication complexity with the loss of private protocols,
we need the following definitions. Let f : {0, 1}m1 × {0, 1}m2 → {0, 1} be a
Boolean function and B be a two-party communication protocol for computing
f . Let y1 ∈ {0, 1}m1 and y2 ∈ {0, 1}m2 be two strings as input for the two parties.
Then CCB(y1, y2) is the total number of bits exchanged by the two parties when
executing B.

CC(B) is the maximum number of bits exchanged by executing B on any
input. Analogously, CS(B) is the number of different communication strings that
occur. (We simply concatenate the messages sent.) Finally, we define CC(f) =
minB for f CC(B) and CS(f) = minB for f CS(B).

CC(f) and CS(f) are the communication complexity and communication
size, respectively, of the function f . CC(B) and CS(B) are the communication
complexity and communication size for a certain protocol B. The communication
size is closely related to the number of leaves in a protocol tree, usually denoted

Privacy in Non-private Environments 145

by CP (B). In the definition of CS, we do not care about who has sent any bit,
since we concatenate all messages. In a protocol tree however, each edge is labeled
by the bit sent and by its sender. The bits on a path from the root to a leaf form
a communication string. Usually, the messages sent in a communication protocol
are assumed to be prefix-free. In this case, we can reconstruct the sender of any
bit from the communication string. If this is not the case, then we can make a
particular communication protocol prefix-free by replacing the messages sent in
each round by prefix-free code words. The complexity is at most doubled.

We also consider multi-party communication with a referee. Let f : {0, 1}m1×
{0, 1}m2 × . . . × {0, 1}mk → {0, 1} be a function. Let A1, . . . , Ak be k parties
and R be a referee, all with unlimited computational power. For computing f
on input x1, . . . ,xk, the referee cooperates with A1, . . . , Ak as follows:

– Initially, x1, . . . ,xk are distributed among A1, . . . , Ak, i.e. Ai knows xi. The
referee R does not have any knowledge about the inputs.

– In successive rounds, R exchanges messages with A1, . . . , Ak according to a
communication protocol. In each round R can communicate (i.e. receive or
send a message) only with a single party.

– After finishing the communications, R eventually computes the result of f .

Let B be a communication protocol for computing f . Denote by cR
B (x1, . . . ,xk)

the whole communication string of R after protocol B has been finished. More
precisely, cR

B (x1, . . . ,xk) is a concatenation of messages sent (to or from R) on
input x1, . . . ,xk with additional stamps describing the sender and the receiver
of each message. For b ∈ {0, 1} let

CSR
B (b) = {cR

B (x1, . . . ,xk) | ∀i ∈ [k] : xi ∈ {0, 1}mi and f(x1, . . . ,xk) = b} ,
CSR(B) = CSR

B (0) ∪ CSR
B (1) ,

CSR
B (b) = |CSR

B (b)| , CSR(B) = |CSR(B)| ,
CSR(f, b) = minB for f CSR

B (b) , and CSR(f) = minB for f CSR(B) .

3 The Suitability of the Model

We observe that it suffices to consider bridge players when talking about the loss
of a protocol. More precisely, any protocol can be modified such that the loss to
all internal players is zero, while the loss to any bridge player does not increase.

All Boolean functions can be computed by using only three players [3]. Thus,
it is possible to compute functions privately within any block, since the networks
we consider are isthmus-free. This holds even if some of the players know a subset
of the input bits and the result consists of a binary string.

Finally, in optimal protocols, the probability distributions observed by any
player have pairwise fidelity 0. Thus, any player can easily distinguish the dif-
ferent probability distributions he observes.

We consider arbitrary 1-connected networks. Let f be a Boolean function
and A be a protocol for computing f on a 1-connected network G. Let Pq be a
bridge player of G, a, b ∈ {0, 1}, and Rq be the random string provided to Pq.

146 M. Bläser et al.

We define X := {x ∈ {0, 1}n | xq = a ∧ f(x) = b} and, for any communication
string c, ψ(c) := {x ∈ X | μx(c) > 0}, where μx(c) = Pr[Cq = c|Rq, x]. For every
communication string c that can be observed by Pq on some input x ∈ X, Pq

can deduce that x ∈ ψ(c). If sA(q, a, b) = sG(q, a, b) = 1, then we have either
ψ(c) = X or ψ(c) = ∅. Thus Pq does not learn anything in this case.

Theorem 1. If sG(q, a, b) > 1, then for any protocol A and every communica-
tion string c that can be observed by Pq on x ∈ X, ψ(c) is a non-trivial subset
of X, i.e. ∅ �= ψ(c) � X, and there exist at least sG(q, a, b) different such sets.

Hence, from seeing c on x ∈ X, Pq always gains some information and there
are at least sG(q, a, b) different pieces of information that can be extracted by
Pq on inputs from X. To prove this, we show that for each distribution we can
find one representative string that can be used in the communication protocol.

The next result says that sG(q, a, b) is a tight lower bound on the number of
pieces of information: the lower bound is achieved when performing an optimal
protocol on G. Let μ and μ′ be two probability distributions over the same set
of elementary events. The fidelity is a measure for the similarity of μ and μ′ (see
e.g. Nielsen and Chuang [15]) and is defined by F (μ, μ′) =

∑
c

√
μ(c) · μ′(c).

Theorem 2. If A is an optimal protocol for Pq on a and b, i.e. sA(q, a, b) =
sG(q, a, b), then for all random strings Rq and all probability distributions μ �= μ′

in SA(q, a, b, Rq) we have F (μ, μ′) = 0.

4 Communication Complexity and Private Computation

In this section, we investigate the relations between deterministic communication
complexity and the minimum size of an information source in a network with
one bridge node. To distinguish protocols in terms of communication complexity
and protocols in terms of private computation, we will call the former commu-
nication protocols. From the relation between CP and CC (see e.g. Kushilevitz
and Nisan [11–Sec. 2.2]), we get 1

2 log(CS(f)) ≤ CC(f) ≤ 3 · log(CS(f)). Making
a communication protocol prefix-free yields the extra factor 1

2 .
Now we investigate the relations between communication size and the size of

an information source on graphs that consist of two blocks sharing one bridge
node Pq. In the model of private computation the input bits are distributed
among n players whereas the input bits in a communication protocol are dis-
tributed among the two parties. Alice and Bob correspond to the first and second
block, respectively, while both know the bridge player’s bit.

Theorem 3. If a function f has communication complexity c then there exists
a protocol for computing f with loss bounded by 2c. On the other hand, if f
can be computed by a protocol with loss bounded by λ, then the communication
complexity of f is bounded by 6λ + O(1).

We can generalize the results obtained for the relation two-party commu-
nication and private computation to obtain similar results for the relation of
multi-party communication with a referee and private computation as follows:
For a, b ∈ {0, 1} we have sG(q, a, b) = CSR(fq←a, b).

Privacy in Non-private Environments 147

5 1-Phase Protocols

We start our study of 1-phase protocols with considering networks that consist
of one bridge player who is incident with d blocks. For the case that the order
in which the bridge player communicates with the blocks is fixed for all inputs,
we show a relationship between the size of the information source of 1-phase
protocols and communication size of multi-party 1-way protocols. Furthermore,
we prove that for every symmetric Boolean function 1-phase protocols can mini-
mize the loss of information when the bridge player sorts the blocks by increasing
size. Then we present a simple 1-phase protocol on arbitrarily connected net-
works that is optimal for every symmetric function.

5.1 Orderings

A natural extension of the two-party scenario for 1-way communication is a
scenario in which the parties use a directed chain for communication: d parties
A1, . . . , Ad are connected by a directed chain, i.e. Ai can only send messages
to Ai+1. For a communication protocol B on G and i ∈ [d] let S �→

i (B) be the
number of possible communication sequences on the subnetwork of A1, . . . , Ai.
Each communication protocol B can be modified without increasing S �→

i (B) in
the following way: Every party Ai first sends the messages it has received from
Ai−1 to Ai+1 followed by the messages it has to send according to B. In the
following we restrict ourselves to communication protocols of this form.

If the network G consists of d blocks Bi with i ∈ [d] and one bridge player Pq

we consider a chain of d parties A1, . . . , Ad. For a σ-ordered 1-phase protocol A,
we assume that the enumeration of the blocks reflects the ordering σ. We have
to determine the input bits of the parties in the chain according to the input bits
of the players in the protocol. In the following we will assume that Ai knows the
input bits of the players in Bi. Thus, each party Ai has to know the input bit
xq of the bridge player Pq. Therefore, we will investigate the restricted function
fq←a whenever we analyse the communication size of a communication protocol.

For a σ-ordered protocol A define S [i]
A (q, a, b, Rq) = {μ̂x | xq = a ∧ f(x) = b},

where μ̂x(ĉk) denotes the sum of the probabilities Pr[Cq = c | Rq, x] over all c
with ĉk = block1(c) . . .blocki(c) and ĉ1, ĉ2, ĉ3, . . . is a fixed enumeration of all
strings describing the communication of Pq in the first i block sequences.

Lemma 1. Let A be a σ-ordered 1-phase protocol for computing f on a network
as described above. Then for every a ∈ {0, 1} and every content Rq of Pq’s
random tape there exists a 1-way communication protocol B for computing fq←a

such that for all i ∈ [d− 1], we have

S �→
i (B) ≤ |S [i]

A (q, a, 0, Rq) ∪ S [i]
A (q, a, 1, Rq)| .

Let us now focus on the structure of the possible communication sequences of
an optimal communication protocol on a chain. In such a protocol, the message
sent from Ai to Ai+1 has to specify the subfunction obtained by specifying the
input bits of the first i blocks according to their input. Hence, the number of

148 M. Bläser et al.

possible communication sequences on the network A1, . . . , Ad is at least the
number of different sequences of subfunctions that can be obtained in this way.

The knowledge about these sequences must also be provided to the bridge
player. Hence, for every fixed Rq and b ∈ {0, 1} the number of distributions in
S [d−1]

A (q, a, b, Rq) is at least the number of different sequences f1,x, . . . , fd−1,x for
inputs x with xq = a and f(x) = b. This implies the following lemma.

Lemma 2. For a ∈ {0, 1}, let B be a communication protocol for computing
fq←a on a chain network. Then there exists a σ-ordered 1-phase protocol A for
f such that for all i ∈ [d−1] and every content Rq of Pq’s random tape, we have

S �→
i (B) = |S [i]

A (q, a, 0, Rq) ∪ S [i]
A (q, a, 1, Rq)| .

Furthermore, for any b ∈ {0, 1}: If we restrict the inputs to x ∈ {0, 1}n−1 with
fq←a(x) = b, the number of possible communication sequences on the subnetwork
A1, . . . , Ai+1 is |S [i]

A (q, a, b, Rq)|.

We can show that there exist functions, for which no ordered 1-phase protocol
minimizes the size of the bridge players’ information source. Thus, we generalize
the class of ordering that we consider to achieve such a property.

We call a protocol A quasi-ordered if for every a, b ∈ {0, 1}, for every content
Rq for Pq’s random tape, and for every distribution μ ∈ SA(q, a, b, Rq) there
exists a 1-phase ordering σ such that every communication string c with μ(c) > 0
the string c is σ-ordered. Note that this ordering is not necessarily the same for
all inputs. However, given any input, the ordering is fixed.

We can prove that among all 1-phase protocols for a given function, there
always exists a quasi-ordered protocol that minimizes the loss to Pq.

5.2 Orderings for Symmetric Functions

For symmetric Boolean functions, we can show even more. Arpe et al. [1] have
proved the following for symmetric Boolean functions with a fixed partition of
the input bits: for all i, S �→

i (B) is minimal, if the number of bits known by the
parties in the chain corresponds to the position of the party, i.e. the first party
knows the smallest number of input bits, the second party knows the second
smallest number, and so on. This observation also holds, if we count the number
of communication sequences in a chain network for inputs x with f(x) = 1 and
the number of communication sequences in a chain network for inputs x with
f(x) = 0. Together with Lemma 2, we obtain the following: Let G be a connected
network with one bridge player Pq and d blocks. Let σ be a one phase ordering
that enumerates the blocks of G according to their size. Then for every ordered
1-phase protocol A′ there exists a σ-ordered 1-phase protocol A such that for
all a, b ∈ {0, 1}, for all i ≤ d − 1, and every content Rq of P ′

q random tape

|S [i]
A (q, a, b, Rq)| ≤ |S [i]

A′(q, a, b, Rq)|.
This result can be generalized to networks with more than one bridge player.

Let G1, . . . , Gk be the connected subgraphs obtained by deleting the bridge
player Pq with |Gi| ≤ |Gi+1|. We say that Pq works in increasing order, if

Privacy in Non-private Environments 149

it starts communicating with G1, then with G2 and so on. We call a 1-phase
protocol A increasing-ordered, if every bridge player works in increasing order.

For a graph G let G = {G1 = (V1, E1), . . . , Gh = (Vh, Eh)} be the set of blocks
and Q = {q1, . . . , qk} be the set of bridge nodes of G. Every graph G induces a
tree TG = (VG, EG) defined as follows: VG = VQ ∪ VG with VQ = {u1, . . . , uk}
and VG = {v1, . . . , vh} and EG = {{ui, vj} | qi ∈ Vj}.

For every 1-phase communication order σ = (σq1 , . . . ,σqk
) and every bridge

node qi the order σqi
defines an ordering of the nodes vj ∈ VG adjacent to the

tree-node ui. Let Gσqi
(1), . . . , Gσqi

(ki) denote the ordering of blocks adjacent to qi

with respect to σqi and rootσ(ui) := vσqi
(ki). If σ is an increasing communication

order, then there exists a single tree-node vj ∈ VG , such that vj = rootσ(ui) for
all ui ∈ VQ adjacent to vj . Let us call this node the root of TG. For a tree-node
w ∈ VG let TG[w] denote the subtree of TG rooted by w and let V [w] denote the
nodes of G located in the blocks Gj with vj ∈ TG[w].

For computing a symmetric function f we use the following protocol. Let
σ be an increasing communication order. Then for an input x every bridge
player qi computes a sequence of strings y1, . . . ,yki−1 as follows: Let Xj =⋃

e∈[j] V [vσqi
(e)] and �j = |Xj |. Then yj ∈ {0, 1}�j such that for all j ≤ ki − 1

the function obtained from f by specialising the positions in Xj to yj is equal
to the function obtained from f by specialising the positions to xXj

, where
xI for I ⊆ [n] denotes the input bits with indices in I. Finally, a node of the
block that corresponds to the root of TG computes the result f(x). This can
be implemented such that no player gains any additional information except for
y1, . . . ,yki−1 learned by the bridge nodes qi.

Theorem 4. Let G be a 2-edge-connected network and f be a symmetric Bool-
ean function. Then for every 1-phase protocol A′ computing f on G there exists
an increasing-ordered 1-phase protocol A for f on G such that for every player
Pi and for all a, b ∈ {0, 1}, we have sA(i, a, b) ≤ sA′(i, a, b).

Thus, the protocol presented in this section is optimal for 1-phase computa-
tions of symmetric functions with respect to the size of the information source.

6 A Phase Hierarchy

In this section we show that there are functions for which the size of the infor-
mation source of some player for a (k− 1)-phase protocol is exponentially larger
than for a k-phase protocol. The natural candidate for proving such results is
the pointer jumping function pj : Our network G has two blocks A and B, one
of size n log n and the other of size n log n + 1, sharing one bridge player Pi.
For simplicity we assume that A and B are complete subgraphs. The input bits
represent two lists of n pointers, each of length logn bits. The input bit of Pi

belongs to the list of the smaller component. Starting with some predetermined
pointer of A, the task is to follow these pointers, find the jth pointer and output
the parity of the bits of the jth pointer. Define CSj and CCj in the same manner

150 M. Bläser et al.

as CS and CC, but by minimizing over j-round communication protocols instead
of arbitrary communication protocols.

Theorem 5. For any protocol A for computing p2k−1, we have sk−1
A (i, a, b) =

2Ω(n/(k log k)) for all a, b. For p2k−1, sk
G(i, a, b) = 2O(k log n) for all a, b.

The lower bound follows from work by Nisan and Wigderson [16].

7 Conclusions and Open Problems

We have considered distributed protocols in “non-private” environments: net-
works that are connected but not 2-connected. Since private computation of
arbitrary Boolean functions is impossible on such networks, we have introduced
a measure for the information that can be inferred by any player and discussed
some general properties of protocols with respect to this measure. A natural
question is finding optimal protocols for some concrete functions.

For threshold (fn0(x1, . . . , xn) = 1 iff
∑n

i=1 xi ≥ n0) and counting modulo p
(gp(x1, . . . , xn) = 1 iff

∑n
i=1 xi ≡ 0 (mod p)), the information loss to any player

does not depend on the ordering in which a 1-phase protocol computes any of
these functions, if each block has size at least n0 and p, respectively. If we have
blocks of less than p−1 nodes, there can be a slight difference in the size of Pq’s
information source depending on the order.

In general, the size of the information source while communicating in one
order can be exponentially larger than the size obtained by communication in
another order. This holds even in case of symmetric functions.

For 1-phase protocols for symmetric Boolean functions, we have been able to
minimize the number of bits a player learns for all players simultaneously. An
obvious question concerns minimizing the loss of more than one bridge player
simultaneously for general functions. For 1-phase protocols, the answer is neg-
ative: There are functions, for which no protocol exists that minimizes the loss
to all players simultaneously.

It is open whether there exist functions and networks that do not allow to
minimize the loss to each bridge player simultaneously. For such functions, we
have to generalize our measure. Two simple examples one might want to examine
is the sum of the loss to each player and the maximum loss to any player.

References

1. Jan Arpe, Andreas Jakoby, and Maciej Lískiewicz. One-way communication com-
plexity of symmetric boolean functions. In A. Lingas and B. J. Nilsson, editors,
Proc. of the 14th Int. Symp. on Fundamentals of Computation Theory (FCT), vol-
ume 2751 of Lecture Notes in Computer Science, pages 158–170. Springer, 2003.

2. Reuven Bar-Yehuda, Benny Chor, Eyal Kushilevitz, and Alon Orlitsky. Privacy,
additional information, and communication. IEEE Transactions on Information
Theory, 39(6):1930–1943, 1993.

Privacy in Non-private Environments 151

3. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Proc. of the 20th
Ann. ACM Symp. on Theory of Computing (STOC), pages 1–10. ACM Press, 1988.

4. Claude Berge. Graphs. North-Holland, 1991.
5. Markus Bläser, Andreas Jakoby, Maciej Lískiewicz, and Bodo Siebert. Private

computation — k-connected versus 1-connected networks. In M. Yung, editor,
Proc. of the 22nd Ann. Int. Cryptology Conf. (CRYPTO), volume 2442 of Lecture
Notes in Computer Science, pages 194–209. IACR, Springer, 2002.

6. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols. In Proc. of the 20th Ann. ACM Symp. on Theory of Computing
(STOC), pages 11–19. ACM Press, 1988.

7. Benny Chor, Mihály Geréb-Graus, and Eyal Kushilevitz. Private computations
over the integers. SIAM Journal on Computing, 24(2):376–386, 1995.

8. Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. SIAM
Journal on Discrete Mathematics, 4(1):36–47, 1991.

9. Matthew Franklin and Moti Yung. Secure hypergraphs: Privacy from partial broad-
cast. In Proc. of the 27th Ann. ACM Symp. on Theory of Computing (STOC),
pages 36–44. ACM Press, 1995.

10. Eyal Kushilevitz. Privacy and communication complexity. SIAM Journal on Dis-
crete Mathematics, 5(2):273–284, 1992.

11. Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

12. Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear size
circuits in terms of privacy. Journal of Computer and System Sciences, 58(1):129–
136, 1999.

13. Eytan H. Modiano and Anthony Ephremides. Communication complexity of secure
distributed computation in the presence of noise. IEEE Transactions on Informa-
tion Theory, 38(4):1193–1202, 1992.

14. Eytan H. Modiano and Anthony Ephremides. Communication protocols for se-
cure distributed computation of binary functions. Information and Computation,
158(2):71–97, 2000.

15. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information, chapter 9. Cambridge University Press, 2000.

16. Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited.
SIAM Journal on Computing, 22(1):211–219, 1993.

17. Alon Orlitsky and Abbas El Gamal. Communication with secrecy constraints.
In Proc. of the 16th Ann. ACM Symp. on Theory of Computing (STOC), pages
217–224. ACM Press, 1984.

18. Claude Elwood Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3, 4):379–423 & 623–656, 1948.

19. Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.
20. Andrew Chi-Chih Yao. Protocols for secure computations. In Proc. of the 23rd

Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pages 160–164.
IEEE Computer Society, 1982.

Asynchronous Proactive Cryptosystems
Without Agreement
(Extended Abstract)�

Bartosz Przydatek1 and Reto Strobl2

1 Department of Computer Science, ETH Zürich, Switzerland
2 IBM Research, Zurich Research Laboratory, Switzerland

Abstract. In this paper, we present efficient asynchronous protocols that allow to
build proactive cryptosystems secure against a mobile fail-stop adversary. Such
systems distribute the power of a public-key cryptosystem among a set of servers,
so that the security and functionality of the overall system is preserved against an
adversary that crashes and/or eavesdrops every server repeatedly and transiently,
but no more than a certain fraction of the servers at a given time. The building
blocks of proactive cryptosystems — to which we present novel solutions — are
protocols for joint random secret sharing and for proactive secret sharing.

The first protocol provides every server with a share of a random value unpre-
dictable by the adversary, and the second allows to change the shared represen-
tation of a secret value. Synchronous protocols for these tasks are well-known,
but the standard method for adapting them to the asynchronous model requires
an asynchronous agreement sub-protocol. Our solutions are more efficient as they
go without such an agreement sub-protocol. Moreover, they are the first solutions
for such protocols having a bounded worst-case complexity, as opposed to only a
bounded average-case complexity.

1 Introduction

Threshold cryptography addresses the task of distributing a cryptosystem among n
servers such that the security and functionality of this distributed system is guaran-
teed even if an adversary corrupts up to t servers [2] (see [3] for a survey). Threshold
cryptosystems are realized by sharing the key of the underlying cryptosystem among
all servers using a (t + 1)-out-n sharing scheme [4], and by accomplishing the cryp-
tographic task through a distributed protocol. If this task involves the choice of secret
random values, then the distribution of the task involves so-called joint random secret
sharing (JRSS) [5], which allow the servers to jointly generate a (t + 1)-out-n sharing
of a random value unpredictable by the adversary.

Proactive cryptosystems use threshold cryptosystems as the basis, but drastically
reduce the assumption concerning failures [6] (see [7] for a survey). They operate in a
sequence of time periods called phases and tolerate a mobile adversary, which corrupts
the servers transiently and repeatedly, and is only restricted to corrupt at most t servers

� The full version of this paper is available as an IBM Technical Report [1].

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 152–169, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Asynchronous Proactive Cryptosystems Without Agreement 153

during every phase. Technically, proactive cryptosystems are threshold cryptosystems
that change the representation of the shared secret key from one phase to another using
proactive secret sharing (PSS) [8], so that the representations are independent; the old
representation has to be erased.

The key to efficient proactivization of many public key cryptosystems for signing and
encryption lies in efficient solutions for JRSS and for PSS. In the synchronous network
model with broadcast channels, such solutions exist [5, 8]. Although such synchrony
assumptions are justified in principle by the existence of clock synchronization and
broadcast protocols, this approach may lead to rather expensive solutions in practice, for
example when deployed in wide-area distributed systems with only loosely synchronized
clocks. Furthermore, such systems are vulnerable to timing attacks.

These issues can be eliminated by considering an asynchronous network in the first
place. However, the standard approach to building asynchronous protocols for JRSS and
PSS requires an asynchronous agreement sub-protocol, which substantially contributes
to the overall complexity of such solutions; see for example [9].

Contributions. In this paper, we provide the first solutions for asynchronous JRSS
and for asynchronous PSS, which do not rely on an agreement sub-protocol. Avoiding
agreement results in two main advantages. On one hand, we are able to bound the
worst-case complexity of our protocols. For previous protocols, one could only bound
their average case complexity; such protocols therefore could (at least theoretically) run
forever. On the other hand, our protocols have a worst-case latency of only six rounds,
whereas the best known previous solution of Cachin et al. [9] has an expected latency of
17 rounds (this comparison takes into account that [9] can be optimized in our model).

Our protocols tolerate a fail-stop adversary who may adaptively and repeatedly eaves-
drop and crash up to t servers in every two subsequent phases, where t < n/3. We stress
that assuming a fail-stop adversary (as opposed to a fully Byzantine adversary) does not
make the problem of avoiding agreement trivial: the main reason why the standard solu-
tions for asynchronous JRSS and PSS require agreement is the fact that a crashed server
cannot be distinguished from a slow server, and this problem also occurs for a fail-stop
adversary. Note that in principle our protocols can be extended to tolerate Byzantine
adversaries without affecting the resilience of t < n/3, using known techniques for
asynchronous verifiable secret sharing [9] and zero-knowledge proofs [10]. Further-
more, as shown in [11–Chapter 7], our protocols remain secure even under arbitrary
composition.

The cost of our approach is a higher communication complexity. Specifically, if k
is the security parameter of the system, our protocols transmit a total of O(kn4) bits
across the network using O(n3) messages, whereas the (optimized) solution of Cachin
et al. [9] transmits only O(kn3) bits using also O(n3) messages. However, in a practical
setting, this additional overhead is of little concern as the size of n is typically very small
relative to k (e.g. 10 vs. 1024).

Technically, the key to our solutions is a novel proactive pseudorandomness (PPR)
scheme [12], with an additional property that we call constructibility. Such a scheme
provides at every phase to every serverPi a random value pr i which remains hidden from
the adversary. Additionally, it enables the honest servers to jointly reconstruct any such
value pr i. We then build our JRSS and PSS schemes such that a server Pi derives all its

154 B. Przydatek and R. Strobl

random choices from its value pr i by using it as a seed to a pseudorandom function [13].
This allows the honest servers to reproduce the steps of a (possibly) faulty server in
public, instead of agreeing on a set of such servers and then excluding them from the
computation (as it is done by previous work).

Related Work. As mentioned previously, Cachin et al. [9] implemented asynchronous
proactive protocols using an agreement subprotocol as a building block, which results in
a relatively high round complexity. Zhou [14] proposed to build proactive cryptosystems
on a weaker notion of PSS, which can be implemented without agreement. In this weaker
PSS protocol, every server computes in every phase a list of candidate shares such that
one of these candidates is the fresh share of the secret. Zhou shows that this suffices to
implement a proactive version of RSA signatures exploiting the fact that RSA signatures
are unique in the sense that for any public key and any message, there exists only one
signature on the given message valid under the given public key. Unfortunately, the
approach of Zhou [14] cannot be applied to proactivize discrete-logarithm signature
schemes such as ElGamal [15] or DSS [16], as these schemes are not unique in the
above sense. The only known technique for proactivizing these signature schemes are
protocols for JRSS and for PSS in the sense we introduced them before.

Organization. In the next section we introduce our system model, and recall the defi-
nitions of cryptographic tools we use in the proposed solutions. In Section 3 we give an
overview of our constructions. Section 4 presents an efficient secret sharing protocol,
which will be useful in our constructions. In Section 5 we present our solution for an
asynchronous proactive pseudorandomness scheme. In Sections 6 and 7, we describe our
solutions to asynchronous proactive secret sharing, and to asynchronous joint random
secret sharing, respectively. In Section 8 we sketch how these protocols can be used to
proactivize public-key signature schemes, considering Schnorr’s signature scheme [17]
as an example. Finally, in Section 9 we conclude the paper.

2 Asynchronous Proactive System Model

Motivation. Proactive cryptosystems are threshold cryptosystems that operate in a
sequence of phases. At the beginning of every phase, the servers refresh the shares of
the underlying threshold system such that the new shares are independent of the old
shares (except for the fact that they define the same secret). This prevents an adversary
from learning the shared key, assuming that she corrupts no more than t servers in every
phase. Such an assumption can be justified if every phase lasts some limited amount
of real time, the idea being that it takes the adversary a certain amount of real time to
corrupt a server, and that corruptions are transient, i.e., do not last forever [6].

This idea maps onto a synchronous network in a straightforward way: one can
define phases with respect to a common clock accessible to every server and implement
refresh using a synchronous protocol [8]. The drawback of this approach is that syn-
chronous protocols proceed in rounds, i.e., messages are sent on a clock “tick”, and are
received at the next “tick”. This may lead to slow protocols in practice, as the duration
of a communication round must account for maximal message delays and maximal shifts

Asynchronous Proactive Cryptosystems Without Agreement 155

among local clocks of the servers. Moreover, as the security of synchronous protocols
relies on the timely delivery of messages, this approach is also vulnerable to timing
attacks, which are often easy to launch.

Cachin et. al [9] suggest to avoid these issues by implementing refresh using an
asynchronous protocol. Such protocols are message-driven, i.e., proceed as soon as
messages arrive. This allows a server to terminate a refresh and proceed with the next
phase as soon as it has received enough information. Moreover, such protocols do not rely
on upper bounds on message delays or clock shifts, i.e., they are as fast as the network.
Timing attacks will only slow down such protocols, but not affect their security.

However, in a purely asynchronous network servers would not have access to a
common clock for defining phases. Therefore, Cachin et al. [9] suggest to define phases
locally to every server in terms of a single time signal, or clock tick, that occurs locally
for a server and only indicates the start of a phase. The idea is to model systems where
the time signals come from a local clock, say every day at 0:00 UTC, and where the local
clocks are loosely synchronized, say they agree on which day and hour it is. Hence, the
model is partially synchronous with long stretches of asynchrony. Such a setting implies
an upper bound on the real time available to an adversary for corrupting servers in a
certain phase, which justifies the assumption that an adversary corrupts only t servers in
the same local phase [6].

The formal model of [9] does not further constrain the synchronization of phases,
i.e., it leaves the scheduling of phases up to the adversary. This is to ensure that the
security of a protocol does not rely on any synchrony assumptions, and hence, is not
affected by timing attacks.

Network and Adversary. We adopt the basic system model from [9], which is param-
eterized by a security parameter k; a function ε(k) is called negligible if for all c > 0
there exists a k0 such that ε(k) < 1

kc for all k > k0. The network consists of n servers
P1, . . . , Pn and an adversary which are all probabilistic interactive Turing machines
(PITM) [10] that run in polynomial time in k. The random tape of a server is initialized
at the beginning of the computation, and we assume that the servers can erase informa-
tion. There is also an initialization algorithm run by a trusted dealer before the system
starts. On input k, n, t, and further parameters, it generates the state information used to
initialize the servers.

Every server operates in a sequence of m(k) local phases, where m(k) is a poly-
nomial. The phases are defined with respect to dedicated input actions of the form
(in, clock tick), scheduled by the adversary. The local phase of a server is defined as the
number of such input actions it has received.

The servers are connected by a proactive secure asynchronous network that allows
every pair of servers to communicate authentically and privately whenever they are
in the same local phase. The scheduling of the communication is determined by the
adversary. Formally, we model such a network as follows. There exists a global set of
messagesM, whose elements are identified by a label (s, r, l, τ) denoting the sender
s, the receiver r, the length l of the message, and the phase τ when the message has
been sent. The adversary sees the labels of all messages inM, but not their contents. All
communication is driven by the adversary, and proceeds in steps as follows. Initially,M
is empty. At each step, the adversary performs some computation, chooses a server Pi,

156 B. Przydatek and R. Strobl

and selects some message m ∈ M with label (s, i, l, τ), where Pi must be currently in
local phase τ . The messagem is then removed fromM, andPi is activated withm on its
communication input tape. When activated, Pi reads the contents of its communication
input tape, performs some computation, and generates one or more response messages,
which it writes to its communication output tape. Then, the response messages are added
toM, and control returns to the adversary. This step is repeated arbitrarily often until
the adversary halts. We view this sequence of steps as logical time, and sometimes use
the phrase “at a certain point in time” to refer to such a step. Such proactive secure
asynchronous networks can be implemented based on a secure co-processor [18], or on
the assumption that the network itself is authentic during short periods of time, allowing
the exchange of fresh communication keys [19].

We assume an adaptive mobile fail-stop adversary. The adversary may corrupt a
server Pi at any point in time by activating it on a special input action. After such an
event, she may read the entire internal state of Pi, which includes its random tape but
not previously erased information. Furthermore, she may observe all messages being
received, until she leaves the server. During such a period of time, we call a server
corrupted; at every other point in time, a server is called honest. The adversary may also
cause a corrupted server to stop executing a protocol. We call an adversary t-limited if
for any phase τ , she corrupts at most t servers that are in a local phase τ or τ + 1.

Protocol Execution and Notation. In our model, protocols are invoked by the adversary.
Every protocol instance is identified by a unique string ID , which is chosen by the
adversary when it invokes the instance. For a protocol instance ID , we model the specific
input and output actions of a server in terms of messages of the form (ID , in, . . .)
and (ID , out, . . .) that a server may receive and produce, respectively. Messages that
servers send to each other over the network on behalf of an instance ID have the form
(ID , type, . . .), where type is defined by the protocol. We call a message associated
with a protocol instance ID if it is of the form (ID , . . .).

We describe a protocol in terms of transition rules that are executed in parallel. Such
a transition rule consists of a condition on received messages and other state variables,
and of a sequence of statements to be executed in case the condition is satisfied. We
define parallel execution of transition rules as follows. When a server is activated and
the condition of one or more transition rule is satisfied, one such rule is chosen arbitrarily
and the corresponding statements are executed. This is repeated until no more conditions
of transition rules are satisfied. Then, the activation of the server is terminated.

A protocol instance may also invoke another protocol instance by sending it a suit-
able input action and obtain its output via an output action. We assume that there is an
appropriate server-internal mechanism which creates the instance for the sub-protocol,
delivers the input message, and passes the produced output message to the calling pro-
tocol. Furthermore, we assume that upon termination of a protocol instance, all internal
variables associated with this instance are erased.

Efficiency Measures and Termination. We define the message complexity of a protocol
instance as the number of all associated messages produced by honest servers. It is
a family of random variables that depend on the adversary and on k. Similarly, the
communication complexity of a protocol instance is defined as the bit length of all

Asynchronous Proactive Cryptosystems Without Agreement 157

associated messages, and is also a family of such random variables. To define the latency
(round complexity) of a protocol, we follow the approach of [20], where informally
speaking the latency of an execution is the absolute duration of the execution divided
by a longest message delay in this execution, where both times are as measured by an
imaginary external clock. The latency of a protocol is a latency of a worst-case execution.
(For details see the full version of [20], page 6.)

These quantities define a protocol statistic X , i.e., a family of real-valued, non-
negative random variables {XA(k)}, parameterized by the adversary A and the security
parameter k, where each XA(k) is a random variable induced by running the system
with A. We call a protocol statistic uniformly bounded if there exists a fixed polynomial
p(k) such that for all adversaries A, the probability Pr[XA(k) > p(k)] is negligible.

As usual in asynchronous networks, we require liveness of a protocol, i.e., that “some-
thing good” eventually happens, only to the extent that the adversary delivers in every
phase all associated messages among the servers that remain honest during this phase.
As in [21], we define termination as the combination of liveness and an efficiency con-
dition, which requires a protocol to have uniformly bounded message complexity, i.e.,
the number of messages produced by the protocol is independent of the adversary.

Cryptographic Assumptions. Our constructions are based on the assumption that there
exists pseudo-random functions [13] defined as follows (sketch): LetFk denote the set of
functions from {0, 1}k → {0, 1}k, and let e ∈R Dom denote the process of choosing an
element e uniformly at random from domain Dom . Finally, let Df denote the execution
of an algorithm D when given oracle access to f , where f is a random variable overFk.
We say that D with oracle access distinguishes between two random variables ψ and
g over Fk with gap s(k), if |Pr[Dψ(1k) = 1] − Pr[Dg(1k) = 1]| = s(k). We say a
random variable ψ overFk is s(k)-pseudorandom, if no polynomial time in k algorithm
D with oracle access distinguishes ψ from g ∈R Fk with gap s(k).

A function family Ψk = {ψl}l∈{0,1}k (with ψl ∈ Fk) is called s(k)-pseudorandom,
if the random variable ψl for l ∈R {0, 1}k is s(k)-pseudorandom. If s(k) is negligible,
the collection {Ψk}k∈N is called pseudorandom. We consider pseudorandom collections
which are efficiently constructible, i.e., there exists a polynomial time algorithm that on
input l, x ∈ {0, 1}k outputs ψl(x).

Pseudorandom function families can be constructed from any pseudorandom gener-
ator [13], which in turn could be constructed from any one-way function [22]. Alterna-
tively, one could trust and use much simpler constructions based on AES or other widely
available cryptographic functions.

In our protocols we make use also of distributed pseudorandom functions (DPRF),
as introduced by Naor et al. [23]. In a DPRF the ability to evaluate the function is
distributed among the servers, such that any authorized subset of the servers can evaluate
the function, while no unauthorized subset gets any information about the function. For
example, in a threshold DPRF the authorization to the evaluation of the functions is
determined by the cardinality of the subset of the servers. In the sequel, we denote
by Φk = {ϕl}l∈{0,1}k a family of efficiently constructible distributed pseudorandom
functions. Moreover, we assume that if Φk denotes a DPRF with threshold κ, and if
every server holds a polynomial κ-out-n share ri of a seed r (where all ri’s are from
the same domain as r) then ϕr(x) can be efficiently computed from any set of κ values

158 B. Przydatek and R. Strobl

ϕri
(x) for any position x ∈ {0, 1}k. Threshold DPRFs with this property are also called

non-interactive. Nielsen [24] showed how to construct efficiently such non-interactive
threshold DPRFs based on the decisional Diffie-Hellman assumption [25].

3 Technical Roadmap

Hybrid Secret Sharing. A basic tool we need is aκ-out-n hybrid secret sharing scheme:
it allows a dealer to share a secret value among all other servers, such that every server
receives an additive n-out-n share of the secret, as well as a κ-out-n backup share of
every other server’s additive share (t+1 ≤ κ ≤ n). Moreover, it guarantees to terminate
for any server if the dealer is honest; otherwise, it either terminates for none or for all
honest servers. Details of our scheme are given in Section 4.

Reconstructible Proactive Pseudorandomness (PPR). The key to our solutions for
proactive secret sharing and for joint random secret sharing is a reconstructible PPR
scheme. Such a scheme provides at every phase τ to every server Pi a secret value prτ,i

which looks completely random to the adversary. Furthermore, any set of n− t servers
must be able to reconstruct the value prτ,j of any other server Pj without affecting the
secrecy of the random value prτ ′,j computed by this server in another phase τ ′ �= τ .

Our implementation assumes a trusted dealer that provides in the first phase every
server Pi with a random key ri, and with a (n − t)-out-n backup share rji of every
other server’s key rj . The idea is to compute prτ,i as ϕri(c), where {ϕl} is a DPRF
with threshold (n− t), and c is some constant (pseudorandomness and constructibility
of prτ,i then follows by the properties of DPRFs). This approach requires the servers to
refresh in every phase their keys ri (and shares r1i, . . . , rni) such that the fresh keys of
honest servers are unknown to the adversary. This can be done as follows.

In a first step, Pi shares the pseudorandom value ψri
(a) (where a denotes some

public constant) among all other servers using a (n − t)-out-n hybrid secret sharing
scheme, where it derives all random choices using its current key ri as a seed to a
pseudorandom function. It then computes its new key r′

i as the sum of the additive
shares provided by all these hybrid secret sharing schemes (the new shares r′

1i, . . . , r
′
ni

are computed as the sum of all provided backup shares). To do this, Pi waits until n− t
servers have completed their sharing scheme as a dealer; for every other server Pj , it
reveals the share rji. It can now simply wait until either Pj’s sharing scheme terminates,
or until it receives enough shares rjl from other servers Pl to reconstruct rj and derive
the missing shares thereof; since a sharing scheme terminates either for none or for all
servers, one of the two cases eventually happens.

Notice that the servers need not agree on whether to derive the missing shares from
the sharing schemes, or from the reconstructed key rj , as both ways provide the same
values. Our protocol ensures that there is at least one honest server whose sharing scheme
is not reconstructed. This ensures secrecy of the new keys r′

i.

Proactive Secret Sharing (PSS). Suppose that at the beginning of the computation, a
trusted dealer shares a secret s among the servers. To prevent a mobile adversary from
learning s, the servers have to compute fresh shares of s whenever they enter a new
phase. This can be done using a proactive secret sharing scheme.

Asynchronous Proactive Cryptosystems Without Agreement 159

Our implementation for PSS relies on an underlying PPR scheme (initialized by the
dealer). Furthermore, it assumes that the trusted dealer initially provides every server
with an additive share of the secret s, and with a (t + 1)-out-n backup share of every
other server’s additive share.

In an epoch τ , the servers refresh their shares of the secret by first re-sharing their
additive share of s using a (t+1)-out-n hybrid sharing scheme; in this step, every server
Pi derives all its random choices by using the current random value prτ,i (provided by
the PPR scheme) as a seed to a pseudorandom function.

As in the PPR scheme, every server then computes its fresh additive share of s as the
sum of the additive shares provided by all re-sharing protocols (the backup shares are
computed analogously). It therefore waits for n− t re-sharing schemes to terminate, and
reconstructs the remaining schemes in public. This can be done by reconstructing for
every corresponding dealer Pj the random value prτ,j as well as Pj’s current additive
share of the secret. Reconstructing prτ,j can be done using the reconstruction mechanism
of the PPR scheme, whereas Pj’s additive share can be reconstructed by revealing the
corresponding backup shares.

Joint Random Secret Sharing (JRSS). The goal of a JRSS protocol is to provide
every server with a (t + 1)-out-n share of a random value e unknown by the adversary.
It can be executed repeatedly during the phases. Our implementation works exactly as
the above protocol for refreshing a sharing, except for the following differences. In an
instance with tag ID of protocol JRSS, a server Pi derives its random choices from the
(pseudo)random value ϕri

(ID) (as opposed to prτ,i = ϕri
(c)), where ri and {ϕl} is

the current key of Pi and the DPRF, respectively, used by the underlying PPR scheme. It
then shares a random value ei and proceeds as above. If the sharing scheme of a server
Pj needs to be reconstructed, the servers reconstruct only the corresponding randomness
ϕrj

(ID).Adding up all backup shares provided by the sharing schemes yields the desired
(t + 1)-out-n share of the random value e = e1 + · · ·+ en.

Building Proactive Cryptosystems. Our protocols for PSS and for JRSS allow to build
proactive versions of a large class of discrete logarithm-based cryptosystems without
the use of expensive agreement sub-protocols. The idea is to share the key of the cryp-
tosystem using our PSS protocol, and to accomplish the cryptographic operation using
a distributed protocol. Such a protocol can be derived by combining our JRSS protocol
with known techniques from threshold cryptography. We illustrate this idea in Section 8,
considering Schnorr’s signature scheme [17] as example.

4 Hybrid Secret Sharing

In this section, we describe the syntax and security properties of our protocol for hy-
brid secret sharing, HybridShareκ, which will serve as a basic tool in our subsequent
constructions. A description and analysis of the protocol is given in [1].

Intuitively, our hybrid secret sharing protocol allows a dealer to share a secret s
among n servers in such a way that every server Pi computes an additive share si

of the secret, and a κ-out-n backup share sji of every other server’s additive share,
where t + 1 ≤ κ ≤ n (the idea of backing up additive shares is inspired by [26]).

160 B. Przydatek and R. Strobl

Our specification treats the randomness r used by the dealer as an explicit parameter,
and requires that the share of every server is a deterministic function of s and r. This
constructibility of the shares will be essential for our purposes.

Formally, our sharing protocol HybridShareκ has the following syntax. Let Fq be an
arbitrary finite field, denoting the domain of secrets. There is a distinguished server Pd

called the dealer which activates an instance ID .d of HybridShareκ upon receiving an
input of the form (ID .d, in, share, s, r), where s ∈ Fq and r ∈ {0, 1}k; if this happens,
we also say the dealer shares s over Fq using randomness r through ID .d. Every other
server activates ID .d upon receiving a message (ID .d, in, share). A server terminates
ID .d when it produces an output of the form (ID .d, out, shared, si, s1i, . . . , sni), where
si, s1i, . . . , sni ∈ Fq.

Our protocol HybridShareκ has message complexity ofO(n2), communication com-
plexity ofO(kn3) bits, and round complexity equal four. Furthermore, for any t-limited
adversary where t < n

3 , the following holds: Whenever a dealer shares a secret s over
Fq using randomness r through an instance ID .d of HybridShareκ, it holds that:

Liveness: If the dealer is honest throughout ID .d, then all honest servers terminate
ID .d, provided all servers activate ID .d in the same phase τ , and the adversary
delivers all messages among servers honest during phase τ .

Agreement: If one honest server terminates ID .d, then all honest servers terminate
ID .d, provided all servers activate ID .d in the same phase τ , and the adversary
delivers all messages among servers honest during phase τ .

Correctness: The values s and r uniquely define n polynomials fj(x) ∈ Fq[x] for
j ∈ [1, n] of degree κ, such that s =

∑n
j=1 fj(0), and the following holds: If a

server Pi outputs si, s1i, . . . , sni, then fi(0) = si and fj(i) = sji for j ∈ [1, n].
Privacy: If the dealer is honest throughout ID .d, and s and r are uniformly distributed

in Fq and {0, 1}k, respectively, then the adversary cannot guess s with probability
significantly better than 1/|Fq|.

Efficiency: The message complexity of ID .d is uniformly bounded.

5 Asynchronous Reconstructible Proactive Pseudorandomness

In this section we give a definition for an asynchronous reconstructible PPR scheme
along the lines of [12], and describe our implementation. The security proof of the
scheme is contained in the full version of the paper.

5.1 Definition

Let l(k) be a fixed polynomial. An asynchronous reconstructible proactive pseudoran-
domness scheme consists of a probabilistic setup algorithm σ, a proactive pseudoran-
domness protocol π, and a reconstruction protocol ρ. An instance of such a scheme has
an associated tag ID and works as follows.

The setup algorithm σ produces the initial state information state0,i and the initial
random value pr0,i of every server Pi. It is executed at the beginning of the compu-
tation by a trusted dealer. At the beginning of every phase τ ∈ [1,m(k)], the servers
execute an instance ID |ppr.τ of π to compute a fresh pseudorandom value for phase

Asynchronous Proactive Cryptosystems Without Agreement 161

τ . The input action for server Pi carries the state information stateτ−1,i of the previ-
ous phase, and has the form (ID |ppr.τ , in, stateτ−1,i). The output action comprises the
pseudorandom value prτ,i and the updated state information stateτ,i. It has the form
(ID |ppr.τ , out, prτ,i, stateτ,i). IfPi does not produce an output in phase τ (which could
be the case if the server was corrupted and halted in the previous phase) then its input
stateτ,i to the subsequent instance of π is the empty input ⊥.

In every phase τ ∈ [1,m(k)], the servers may execute an instance ID |recj .τ of
protocolρ to reconstruct the current pseudorandom value of serverPj . The corresponding
input and output actions have the form (ID |recj .τ , in, stateτ,i), and (ID |recj .τ , out, zi),
respectively, where stateτ,i denotes the current state information of Pi. We say a server
reconstructs a value zi for Pj , if it outputs a message (ID |recj .τ , out, zi).

As in [12], we define the security requirements with respect to the following on-line
attack: The scheme is run in the presence of a t-limited adversary for m(k) phases. At
every phase τ , the adversary may also instruct the servers to reconstruct the value prτ,i

of any server. At a certain phase l (chosen adaptively by the adversary), the adversary
chooses an honest server Pj whose value prτ,j is not reconstructed at that phase. She
is then given a test value v, and the execution of the scheme is resumed for phases
l+ 1, . . . ,m(k). (Our definition will require that the adversary is unable to say whether
v is Pj’s output at phase l, or a random value.)

For an instance ID of a PPR scheme and an adversary A, let A(ID ,PR) denote the
output of A after an on-line attack on ID , when v is indeed the output of Pj ; similarly,
let A(ID , R) denote the corresponding output when v is a random value.

Definition 1. Let σ, π, and ρ be given as above. We call (σ,π, ρ) a t-resilient asyn-
chronous reconstructible proactive pseudorandomness scheme if for every instance ID ,
and every t-limited adversary A the following properties hold:

Liveness: Every server Pi honest throughout a phase τ ∈ [1,m(k)] terminates in-
stance ID |ppr.τ in phase τ , provided that in every phase τ ′ ∈ [1, τ], the adversary
activates each server honest throughout τ ′ on ID |ppr.τ ′, and delivers all associated
messages among servers honest during phase τ ′. Furthermore, if every such server
Pi subsequently activates ID |recj .τ for some j ∈ [1, n], it reconstructs some value
zi for Pj , provided the adversary delivers all associated messages among servers
honest during phase τ .

Correctness: If a server Pj outputs (ID , out, prτ,j , stateτ,j) in some phase τ ∈
[1,m(k)], and another server Pi reconstructs zi for Pj in phase τ , then zi = prτ,j .

Pseudorandomness: |Pr[A(ID ,PR) = 1]− Pr[A(ID , R) = 1]| is negligible.

Efficiency: The message complexity of an instance of π is uniformly bounded.

5.2 Implementation

Let Φk = {ϕi}i∈{0,1}k denote a DPRF with threshold n− t, and a,b,c denote distinct
arbitrary constants in the domain ofΦk. For convenience, we view elements from {0, 1}k
as elements from F2k (and conversely), according to some fixed bijective map from
{0, 1}k to F2k . All computations are done over F2k .

The Setup Algorithm σppr. The setup algorithm provides to every server Pi a ran-
dom value ri ∈ F2k , and a (t + 1)-out-n share rji ∈ F2k of the random value

162 B. Przydatek and R. Strobl

of every other server. It therefore chooses n random polynomials fi(x) ∈ F2k [x]
of degree t for i ∈ [1, n]. The initial state information of a server Pi is defined as
state0,i � (fi(0), f1(i), . . . , fn(i)). The initial pseudorandom value is computed as
pr0,i ← ϕfi(0)(c).
The Reconstruction Protocol ρppr. Let ri, r1i, . . . , rni denote Pi’s local input to an
instance ID |recj .τ of protocol ρppr. Reconstructing the pseudorandom value prτ,j of
server Pj is straightforward. Every server Pi computes prτ,ji ← ϕrji(c), and sends
it to every other server. Using the reconstruction mechanism of Φk, every server can
compute prτ,j upon receiving n− t “shares” prτ,jm from other servers Pm.

The Asynchronous Proactive Pseudorandomness Protocol πppr. Let ri, r1i, . . . , rni

denote server Pi’s local input stateτ−1,i to instance ID |ppr.τ of πppr. To refresh this
sharing, and to compute fresh pseudorandom values {prτ,i}, every server Pi executes
the following transition rules in parallel.

Share: When Pi invokes the protocol with non-empty input, it shares the pseudo-
random value ϕri(a) over F2k using randomness ϕri(b) through an instance
ID |ppr.τ |share.i of protocol HybridSharen−t.

Share-Termination: Whenever Pi terminates a sharing protocol ID |ppr.τ |share.j,
it stores the corresponding output in the local variables d̄ji, d̄j1i, . . . , d̄jni. If the
(n − t)’th such sharing protocol has terminated and Pi has received non-empty
input before, it sends to all servers a reveal message containing the values ϕrmi(a)
and ϕrmi(b) for servers Pm whose sharing protocol did not terminate yet.

Reconstruct: Whenever Pi receives n−t values ϕrmi
(a), ϕrmi

(b) for a server Pm, it
reconstructs ϕrm

(a) and ϕrm
(b) using the reconstruction mechanism of Φk. It then

computes the values d̄mi, d̄m1i, . . . , d̄mni as the i’th share when sharing a secret
ϕrm(a) using randomness ϕrm(b) according to protocol HybridSharen−t.

Combine: When Pi has computed values d̄ji, d̄j1i, . . . , d̄jni for every j ∈ [1, n], it
computes its local output values prτ,i and stateτ,i � (r′

i, r
′
1i, . . . , r

′
ni) as r′

i ←∑n
j=1 d̄ji, r′

mi ←
∑n

j=1 d̄jmi for m ∈ [1, n], and prτ,i ← ϕr′
i
(c).

The scheme guarantees pseudorandomness because the pseudorandom valuesϕrh
(a)

and ϕrh
(b) of at least one honest server remain hidden from the adversary. This is

guaranteed because all honest servers together reveal at most (n− t)t “shares” ϕrij (a)
and ϕrij (b). But to reconstruct ϕri(a) and ϕri(b) of all (n − t) honest servers, the
adversary needs at least (n− t)(n− 2t) ≥ (n− t)(t+ 1) such shares, as the threshold
of Ψk is (n− t).

The reason why the scheme avoids an agreement (while preserving constructibility)
is the following: if an honest server Pi terminates the protocol ID |ppr.τ |share.j and
computes the tuple (d̄ji, d̄j1i, . . . , d̄jni), then this is the same tuple it would compute by
first reconstructing the randomness rj of Pj from backup shares, and then reproducing
the computations of Pj in the sharing protocol ID |ppr.τ |share.j. Hence, the servers do
not have to agree whether to compute their share of Pj’s sharing protocol by the Share-
Termination or the Reconstruct transition rule, respectively, as both rules provide
the same share. We prove the following theorem in [1].

Asynchronous Proactive Cryptosystems Without Agreement 163

Theorem 1. (σppr,πppr, ρppr) is a t-resilient asynchronous reconstructible proactive
pseudorandomness scheme for t < n/3. It has a latency of five rounds, uses O(n3)
messages, and has a communication complexity of O(kn4) bits.

6 Refreshing a Sharing

In this section we define an asynchronous PSS scheme along the lines of [9], and sketch
our implementation. The security proof of the scheme can be found in [1].

6.1 Definition

Let K denote the domain of possible secrets, S denote the domain of possible shares,
and l(k) a fixed polynomial. An asynchronous proactive secret sharing scheme consists
of a setup algorithm σ, a proactive refresh protocol π, and a reconstruction protocol ρ.
An instance of a PSS has a tag ID and works as follows.

The setup algorithm produces for each server Pi the initial state information state0,i

and the initial share s0,i ∈ S of the secret. It is executed at the beginning of the computa-
tion by the trusted dealer. At the beginning of every phase τ ∈ [1,m(k)] the servers exe-
cute an instance ID |ref.τ of protocol π to refresh the old share sτ−1,i, and to update the
state stateτ−1,i. The corresponding input and output actions of server Pi have the form
(ID |ref.τ , in, sτ−1,i, stateτ−1,i) and (ID |ref.τ , out, sτ,i, stateτ,i), respectively, where
sτ−1,i and stateτ−1,i equal ⊥ in case Pi did not produce an output in phase τ − 1.

In every phase τ ∈ [1,m(k)], the servers may execute an instance ID |rec.τ of
protocol ρ to reconstruct the secret. The input and output actions for server Pi have
the form (ID |rec.τ, in, sτ,i), and (ID |rec.τ, out, zi), respectively, where sτ,i denotes the
current share as computed by the instance ID |ref.τ . We say that a server reconstructs a
value zi, when it outputs a message (ID |rec.τ, out, zi).

Definition 2. Let σ,π, and ρ be given as above. We call (σ,π, ρ) a t-resilient asyn-
chronous proactive secret sharing scheme, if for every instance ID , and every t-limited
adversary the following properties hold:

Liveness: Every serverPi honest throughout a phase τ ∈ [1,m(k)] terminates instance
ID |ref.τ in phase τ , provided that in every phase τ ′ ∈ [1, τ], the adversary activates
every server honest throughout phase τ ′ on ID |ref.τ ′, and delivers all associated
messages among servers honest during phase τ ′. Further, if every such Pi subse-
quently activates ID |rec.τ , it reconstructs some value zi, provided the adversary
delivers all associated messages among servers honest during phase τ .

Correctness: After initialization, there exists a fixed value s ∈ K. Moreover, if an
honest server reconstructs a value zi, then zi = s.

Privacy: As long as no honest server activates an instance of ρ, the adversary cannot
guess s with probability significantly better than 1/|K|.

Efficiency: The message complexity of π and ρ is uniformly bounded.

We stress that the security of the sharing does not depend on the timely delivery of
messages. Even if the adversary fails to deliver the messages within prescribed phase,
the privacy of the shared secret is not compromised.

164 B. Przydatek and R. Strobl

6.2 Implementation

Our implementation of the PSS scheme is a suitable example to illustrate how the PPR
scheme introduced in the previous section can be used to avoid the need for agreement
even if it seems to be inherently necessary. We therefore briefly recall the standard
solution [9] for PSS that depends on agreement. Here, every server initially receives
a (t + 1)-out-n share of the secret. To refresh the shares, every server provides every
other server with a (t + 1)-out-n sub-share of its own share, using a suitable sharing
scheme. The servers then agree on a set of at least t+1 servers whose re-sharing scheme
terminates for all honest servers, and compute the new share as the linear combination
of the received sub-shares (with Lagrange coefficients).

We follow the same approach (see Section 3), but avoid agreement by reconstructing
the re-sharing schemes of the slowest (possibly crashed) servers in public. However,
this approach only works if the publicly reconstructed sub-shares are identical to the
ones which the re-sharing scheme would produce. Otherwise, the servers would again
have to agree on which sub-shares to reconstruct, and which to take from the re-sharing
schemes. This is where the PPR scheme comes in handy, as it allows to reconstruct the
random choices made by a server when it is re-sharing its share. The technical details
are given below. Let the domain of possible secrets be a field Fq where q ≤ 2k. All
computations are in Fq or F2k , as is clear from the context.

The Setup Algorithm σpss. The setup algorithm provides every server with an additive
share si of a randomly chosen secret, and with a (t + 1)-out-n share sji of every other
server’s additive share. It therefore chooses n random polynomials fi(x) ∈ Zq[x] of
degree t for i ∈ [1, n] (the secret is defined as s =

∑n
i=1 si). The initial share of server

Pi is defined as s0,i � (si, s1i, . . . , sni), where si = fi(0) and sji = fj(i).
Additionally, the setup algorithm provides every server with the initial state informa-

tion needed to initialize a PPR scheme. It therefore runs the setup algorithm σppr, and
computes the initial state information state0,i of server Pi as the tuple (stateppr

0,i , pr0,i)

The Reconstruction Protocol ρpss. The reconstruction protocol is straight forward.
Every server Pi sends its input sτ,i � (si, s1i, . . . , sni) to every other server. Upon
receiving t+1 such values the server interpolates all missing shares sj from the received
sub-shares sji by Lagrange interpolation, and computes the secret as s =

∑n
j=1 sj .

The Refresh Protocol πpss. Let (si, s1i, . . . , sni) and (stateppr
τ−1,i, prτ−1,i) denote

server Pi’s local input sτ−1,i and stateτ−1,i, respectively, to instance ID |ref.τ . To com-
pute a fresh share (s′

i, s
′
1i, . . . , s

′
ni) and updated state information (stateppr

τ,i , prτ,i), every
server Pi executes the following transition rules in parallel:

Share: When Pi invokes the protocol, it activates an instance ID |ppr.τ of protocol
πppr with input stateppr

τ−1,i to compute (stateppr
τ,i , prτ,i). Furthermore, if Pi received

non-empty input, it shares its share si over Fq using randomness prτ−1,i through
an instance ID |ref.τ |share.i of protocol HybridSharet+1.

Share-Termination: Whenever Pi terminates an instance ID |ref.τ |share.j of a shar-
ing protocol , it stores the corresponding output in the local variables ēji,
ēj1i, . . . , ējni. If for n− t servers Pj the corresponding protocols ID |ref.τ |share.j

Asynchronous Proactive Cryptosystems Without Agreement 165

have terminated, it sends the indices of all servers whose sharing protocol did not
terminate yet to every other server in a missing message.

Reveal: If for some index m, Pi receives (n− t) missing messages from other servers
containing this index and has received non-empty input before, it sends a reveal
message to every other server containing the backup share smi and the index m.
Next, it activates the instance ID |recm.τ of protocol ρppr with input stateppr

τ−1,i to
reconstruct the randomness prτ−1,m of Pm.

Reconstruct: Whenever Pi receives (t + 1) reveal messages for the same index m
and reconstructs the value prτ−1,m for Pm, it computes the share sm from the
received backup shares by Lagrange interpolation. It then computes the tuple (ēmi,
ēm1i, . . . , ēmni) as the i’th share when sharing sm using randomness prτ−1,m.

Combine: When Pi has computed values (ēmi, ēm1i, . . . , ēmni) for all m ∈ [1, n],
it computes the new share (s′

i, s
′
1i, . . . , s

′
ni) as follows: s′

i ←
∑n

j=1 ēji, s′
mi ←∑n

j=1 ējmi for m ∈ [1, n].

Notice that the protocol has the same message flow as the pseudorandomness protocol
πppr, except for the additional missing messages. They ensure the secrecy of the share sh

of at least one honest server Ph, and are needed because the servers hold a (t+1)-out-n
hybrid sharing of the secret s. We remark that for refreshing a (n − t)-out-n hybrid
sharing, the servers could omit waiting for t + 1 such messages, and could execute the
Reveal rule directly at the end of the Share-Termination rule. This would save one
communication round. The proof of the following theorem can be found in [1].

Theorem 2. The tuple (σpss,πpss, ρpss) is a t-resilient asynchronous proactive secret
sharing scheme for t < n/3. The refresh protocol πpssusesO(n3) messages, has latency
of six rounds and communication complexity of O(kn4).

7 Asynchronous Proactive Joint Random Secret Sharing

The goal of an asynchronous proactive joint random secret sharing scheme is to enable
the servers to repeatedly generate (t+1)-out-n sharings of random values, such that the
random values remain hidden from the adversary. Due to lack of space, we only sketch
the definition and implementation.

Definition. An asynchronous proactive joint random secret sharing (JRSS) scheme
consists of a setup algorithm σ, a proactive update protocol π, a joint random secret
sharing protocol γ, and a reconstruction protocol ρ. An instance of such a scheme has a
tag ID and works as follows.

At the beginning of the computation, a trusted dealer executes the setup algorithm σ
and provides every server with its initial state information state0,i. At the beginning of
every phase τ ∈ [1,m(k)], the servers execute protocol π to update the state information
{stateτ−1,i}. During every phase τ ∈ [1,m(k)], the servers can repeatedly execute
protocol γ to generate a sharing of a random value zc in a domain K. Every such
instance has a unique tag ID |genc. For every server Pi, it takes the current state infor-
mation stateτ,i as input, and produces as output a share sc,i of the random value zc. These

166 B. Przydatek and R. Strobl

shares may serve as input to the reconstruction protocol ρ with tag ID |recc, which
produces for every server Pi a value zc,i as output.

For a JRSS scheme to be secure, we require that when the first server completes an
instance ID |genc, there is a fixed value zc such that the following holds: (Correctness) If
a server Pi terminates ID |recc and outputs zc,i, then zc,i = zc. Furthermore, (Privacy) as
long as no honest server activates ID |recc, the adversary cannot guess zc with probability
significantly better than 1/|K|.
Implementation. Our implementation builds on our PPR scheme (σppr,πppr, ρppr). Let
Φk = {ϕi} denote the DPRF family used by the PPR scheme,a andb denote two distinct
constants, and H : {0, 1}∗ → {0, 1}k denote a collision resistant hash function (it is
well-known how to construct such functions from standard computational assumptions
such as the hardness of the discrete-logarithm problem).

The state information {stateτ,i} of our JRSS scheme comprises only the state in-
formation of our PPR scheme, i.e., stateτ,i � (ri, r1i, . . . , rni). Protocols σjrss and
πjrss for setting up and refreshing this state, respectively, consist only of calling the
protocols σppr and πppr. The protocol γjrss for generating sharings of random values
in {0, 1}k works as follows. Given input stateτ,i � (ri, r1i, . . . , rni) to an instance
ID |genc of γjrss, every server Pi performs the following steps (all computations are done
in F2k).

Share: When Pi invokes the protocol with non-empty input, it shares
ϕri

(H(ID |genc|a)) over F2k through an instance of protocol HybridSharet+1 with
tag ID |genc|share.i using randomness ϕri

(H(ID |genc|b)).
Share-Termination: Whenever Pi terminates a sharing protocol ID |genc|share.j, it

stores the corresponding output in local variables ēji, ēj1i, . . . , ējni. Once n − t
sharing protocols have terminated and Pi has received non-empty input before,
it sends to all servers a reveal message containing values ϕrmi

(H(ID |genc|a))
and ϕrmi

(H(ID |genc|b)) for servers Pm whose sharing protocol did not terminate
yet.

Reconstruct: Upon receiving n− t reveal messages for the same index m, Pi recon-
structs values ϕrm

(H(ID |genc|a)) and ϕrm
(H(ID |genc|b)) (using the threshold

evaluation property of Φk) and derives the missing sub-share ēmi, ēm1i, . . . , ēmni.
Combine: When Pi has computed values (ēmi, ēm1i, . . . , ēmni) for every m ∈ [1, n], it

computes sc,i � (si, s1i, . . . , sni) as follows: si ←
∑n

j=1 ēji, smi ←
∑n

j=1 ējmi

for m ∈ [1, n].

The shared secret value zc is never reconstructed but equals
∑n

i=1 si. The protocol
has a latency of five rounds, a message complexity of O(n3), and a communication
complexity of O(kn4) bits.

An instance ID |recc of the reconstruction protocol ρjrss works as follows. Every
server i sends its share sc,i � (si, s1i, . . . , sni) — which it receives as input — to every
other server. Upon receiving t+1 such values, Pi derives all values sj from the received
sub-shares sjm by Lagrange interpolation and computes the secret as zc =

∑n
j=1 sj .

Asynchronous Proactive Cryptosystems Without Agreement 167

8 A Simple Proactive Secure Signature Scheme

Our protocols for PSS and JRSS can be used to proactivize a large class of discrete-
logarithm based public-key cryptosystems for signing and encryption. In this section,
we sketch how this can be done considering Schnorr’s signature scheme as an example.

Let p denote a large prime, and 〈g〉 denote a multiplicative subgroup of Z∗
p of prime

order q such that q|p− 1. In the regular centralized Schnorr signature scheme, the secret
key x of the signer is a random element from Zq, and the public key is y = gx. To sign
a message m ∈ {0, 1}∗, the signer picks a random number r ∈ Zq, and computes the
signature (ρ,σ) as ρ← gr mod p and σ ← r+H(m||ρ)x mod q. A signature (ρ,σ)
on a message m can then be verified by checking that gσ = ρyH(m||ρ) mod p.

In a proactive signature scheme, the power to sign a message is distributed among
the servers such that in every epoch, only a set of at least t + 1 servers can generate
valid signatures, whereas any smaller set can neither compute a signature nor prevent the
overall system from operating correctly. For a formal treatment of proactive signature
schemes we refer to [12].

Proactivizing Schnorr’s signature scheme in the above sense can be done as follows.
First, a trusted dealer chooses the values p, q, g, x as in the standard Schnorr scheme,
and initializes a PSS scheme with a sharing of x. It also initializes a JRSS scheme,
and announces the public parameters p, q, g and y. To compute a signature (ρ,σ) on a
message m, every server i performs the following steps:

generate ρ = gr:
(1) Use the underlying JRSS scheme to compute a (t+1)-out-n share ri of a random
value r ∈ Zq.
(2) Reveal the value ρi = gri mod p to all other servers.
(3) Upon receiving t+1 values ρj , compute ρ from the values ρj by using Lagrange

interpolation in the exponent, i.e., ρ ←
∏

i∈Q ρ
λj

j mod p. Here, Q denotes the
indices of the received values ρi, and λi the Lagrange interpolation coefficient for
the set Q and position 0.

generate σ = r +H(m||ρ)x:
(1) Reveal the value σi = ri + H(m||ρ)xi mod q to all other servers; here, xi

denotes server i’s current share of x as computed by the underlying PSS scheme.
(2) Upon receiving t+1 values σj , compute σ by using Lagrange interpolation, i.e.,
σ ←

∑
j∈S λjσj mod q. Here, S denotes the indices of the received values σj ,

and λj the Lagrange coefficients for the set S and position 0.

Verification of the computed signature can be done exactly as in the centralized
Schnorr scheme. One can show that this proactive signature scheme is as secure as the
centralized Schnorr scheme in the following sense: If there exists a t-limited mobile
adversary against the proactive signature scheme that can forge a signature (under an
adaptively chosen message attack), then there exists an adversary against the centralized
Schnorr scheme that can forge signatures (under an adaptively chosen message attack).

Proactivizing other discrete-logarithm signature schemes such as ElGamal [15] or
DSS [16] can be done in a similar way (to solve the inversion problem that occurs in
DSS, one can use the approach of [27]).

168 B. Przydatek and R. Strobl

9 Conclusions and Open Problems

In this paper, we have presented the first asynchronous schemes for proactive secret
sharing and proactive joint random secret sharing with a bounded worst case complexity.
Moreover, our solutions run three times faster (in terms of latency) than the best known
previous solutions.

The technical novelty of our schemes is that they do not rely on an agreement sub-
protocol. The fact that agreement can be avoided is surprising on its own, as all known
previous techniques for implementing such schemes require the servers to have at some
point a common view of which servers have been crashed.

A natural open problem is to enhance our techniques to tolerate a Byzantine adversary.
Here, the main difficulty lies in designing a verifiable version of our hybrid secret sharing
scheme. In such a scheme, the dealer must be committed to a random value (of the same
size as the secret), such that every server can verify that the dealer has indeed computed
the shares by using this random value as a seed to a pseudorandom function. In principle,
this can be done using the technique of general zero-knowledge proofs [10]. We suggest
it as an open research problem to construct a pseudorandom function together with
efficient zero-knowledge proofs for this task.

References

1. Przydatek, B., Strobl, R.: Asynchronous proactive cryptosystems without agreement. Tech-
nical Report RZ 3551, IBM Research (2004)

2. Desmedt,Y.: Society and group oriented cryptography:A new concept. In: Proc. CRYPTO ’87.
(1987)

3. Desmedt, Y.: Threshold cryptography. European Transactions on Telecommunications 5
(1994) 449–457

4. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979) 612–613
5. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure key generation for discrete-log

based cryptosystems. In: Proc. EUROCRYPT ’99. (1999) 295–310
6. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proc. 10th ACM

Symposium on Principles of Distributed Computing (PODC). (1991) 51–59
7. Canetti, R., Gennaro, R., Herzberg, A., Naor, D.: Proactive security: Long-term protection

against break-ins. RSA Laboratories’ CryptoBytes 3 (1997)
8. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or how to cope

with perpetual leakage. In: Proc. CRYPTO ’95. (1995) 339–352
9. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Aysnchronous verifiable secret sharing

and proactive cryptosystems. In: Proc. 9th ACM CCS. (2002)
10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-

systems. In: Proc. 17th ACM STOC. (1985) 291–304
11. Strobl, R.: Distributed Cryptographic Protocols for Asynchronous Networks with Universal

Composability. PhD thesis, ETH (2004)
12. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults. In: Proc.

CRYPTO ’94. (1994) 425–438
13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. Journal of the

ACM 33 (1986) 792–807
14. Zhou, L.: Towards fault-tolerant and secure on-line services. PhD thesis, Cornell Univ. (2001)

Asynchronous Proactive Cryptosystems Without Agreement 169

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Info. Theory IT 31 (1985)

16. National Institute for Standards, Technology: Digital signature standard (DSS). Technical
Report 169 (1991)

17. Schnorr, C.P.: Efficient signature generation by smart cards. J. of Cryptology 4 (1991)
161–174

18. Backes, M., Cachin, C., Strobl, R.: Proactive secure message transmission in asynchronous
networks. In: Proc. 21th ACM PODC. (2003)

19. Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication in the pres-
ence of break-ins. J. of Cryptology 13 (2000) 61–106

20. Canetti, R., Rabin, T.: Fast asynchronous Byzantine agreement with optimal resilience. In:
Proc. 25th ACM STOC. (1993) full version at www.research.ibm.com/security/cr-ba.ps.

21. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast
protocols (extended abstract). In: Proc. CRYPTO 01. (2001) 524–541

22. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any
one-way function. SIAM Journal on Computing 28 (1999) 1364–1396

23. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In:
Proc. EUROCRYPT ’99. (1999) 327–346

24. Nielsen, J.B.: A threshold pseudorandom function construction and its applications. In: Proc.
CRYPTO ’02. (2002) 401–416

25. Boneh, D.: The decision Diffie-Hellman problem. In: Third Algorithmic Number Theory
Symposium. Volume 1423 of LNCS. (1998) 48–63

26. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Proc. CRYPTO ’98.
(1998)

27. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold
cryptosystems. In: Proc. CRYPTO ’99. (1999)

Lattice-Based Threshold-Changeability for
Standard Shamir Secret-Sharing Schemes

Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk

Dept. of Computing, Macquarie University, North Ryde, Australia
{rons, hwang, josef}@ics.mq.edu.au
http://www.ics.mq.edu.au/acac/

Abstract. We consider the problem of increasing the threshold param-
eter of a secret-sharing scheme after the setup (share distribution) phase,
without further communication between the dealer and the sharehold-
ers. Previous solutions to this problem require one to start off with a
non-standard scheme designed specifically for this purpose, or to have
communication between shareholders. In contrast, we show how to in-
crease the threshold parameter of the standard Shamir secret-sharing
scheme without communication between the shareholders. Our technique
can thus be applied to existing Shamir schemes even if they were set up
without consideration to future threshold increases.

Our method is a new positive cryptographic application for lattice
reduction algorithms, inspired by recent work on lattice-based list decod-
ing of Reed-Solomon codes with noise bounded in the Lee norm. We use
fundamental results from the theory of lattices (Geometry of Numbers)
to prove quantitative statements about the information-theoretic secu-
rity of our construction. These lattice-based security proof techniques
may be of independent interest.

Keywords: Shamir secret-sharing, changeable threshold, lattice reduc-
tion, geometry of numbers.

1 Introduction

Background. A (t, n)-threshold secret-sharing scheme is a fundamental crypto-
graphic scheme, which allows a dealer owning a secret to distribute this secret
among a group of n shareholders in such a way that any t shareholders can
reconstruct the secret, but no subset of less than t shareholders can gain infor-
mation on the secret. Classical constructions for (t, n) secret-sharing schemes
include the polynomial-based Shamir scheme [18] and the integer-based Chinese
Remainder Theorem (CRT) scheme [2].

A common application for (t, n) secret-sharing schemes is for achieving ro-
bustness of distributed security systems. A distributed system is called robust
if system security is maintained even against an attacker who manages to break
into/eavesdrop up to a certain number of components of the distributed system.
For example, access control to a system can be enforced using a secret shared

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 170–186, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Lattice-Based Threshold-Changeability 171

among n system servers using a (t, n)-threshold secret-sharing scheme, while
maintaining security if less than t servers are compromised. In such applica-
tions, the threshold parameter t must be determined by a security policy, based
on an assessment which is a compromise between the value of the protected sys-
tem and attacker capabilities on the one hand (which require as high a threshold
as possible) and user convenience and cost on the other hand (which require as
low a threshold as possible). In many settings, the system value and attacker
capabilities are likely to change over time, thus requiring the security policy
and hence threshold parameter t to vary over time. In particular, an increase
in system value or attacker capabilities after the initial setup with a relatively
low threshold parameter t, will require an increase in the threshold parameter
to a higher value t′ > t. The longer the lifetime of the system, the more likely
that such a change will be needed. Note that we assume that shareholders will
cooperate honestly in making the transition to the larger threshold t′ > t, since
the attacker in our setting is an outsider.

Previous Solutions. A trivial solution to the problem of increasing the threshold
parameter of a (t, n)-threshold secret-sharing scheme to t′ > t is for the share-
holders to discard their old shares and for the dealer to distribute new shares of
a (t′, n) secret-sharing scheme to all shareholders. However, this solution is not
very attractive, since it requires the dealer to be involved after the setup stage
and moreover requires communication between the dealer and each shareholder
(such communication may be difficult to establish after the initial setup stage).

A much better solution would allow the threshold to be changed at any time
without any communication between the dealer and shareholders after the setup
stage. We say that such schemes allow dealer-free threshold changeability. A
trivial dealer-free threshold changeable scheme can be constructed as follows:
the dealer initially sets up n − t + 1 threshold schemes for each possible future
threshold t′ ∈ {t, t + 1, . . . , n}, and gives to each shareholder n − t + 1 shares
of the secret. Namely, for each t′ ∈ {t, . . . , n}, the shareholder receives a share
of the secret for a (t′, n)-threshold scheme. Such a trivial scheme may not be
applicable because of the following drawbacks:

(1) Non-standard Initial Scheme: The dealer must plan ahead for future thresh-
old increases by initially setting up a non-standard (t, n)-threshold scheme
designed specifically for threshold-changeability, whose shares consist of n−
t+1 shares corresponding to the n−t+1 underlying (t′, n)-threshold schemes.
Hence the trivial scheme cannot be applied to increase the threshold of ex-
isting standard Shamir (t, n)-schemes which were not originally designed for
threshold changeability and in which each shareholder has only a single share
of one Shamir (t, n)-scheme.

(2) Large Storage/Communication Requirements for Shareholders: Each share-
holder must receive and store n − t + 1 shares, where each share is as long
as the secret (assuming that perfect security is desired). Hence the trivial
scheme cannot be applied when storage or communication costs for n− t+1
shares are prohibitive.

172 R. Steinfeld, H. Wang, and J. Pieprzyk

Other ‘dealer-free’ solutions to the threshold increase problem have been
proposed in the literature (see related work below), but they all suffer from at
least one of the two drawbacks above, or they require communication between
the shareholders.

Our Contributions. In this paper, we present a new method for increasing the
threshold of the standard Shamir (t, n)-threshold secret-sharing scheme[18], which
does not have any of the drawbacks discussed above. In particular, and in con-
trast to previous solutions, our method does not require communication between
the dealer and shareholders after the initial setup stage nor between sharehold-
ers, and can be applied to existing Shamir schemes even if they were set up
without consideration to future threshold increase. Storage and communication
costs are the same as for the standard Shamir scheme.

The basic idea of our method is the following: to increase the threshold from
t to t′ > t, the shareholders add an appropriate amount of random noise to
their shares (or delete a certain fraction of the bits of their share) to compute
subshares which contain partial information about (e.g. half the most-significant
bits of) the original shares. Since the subshares contain only partial information
about the original shares, a set of t subshares may no longer be sufficient to
reconstruct the secret uniquely, but if one observes a sufficiently larger number
t′ > t of subshares then one can expect the secret to be uniquely determined by
these t′ subshares (e.g. if the subshares contain only half the information in the
original shares then one can expect that t′ = 2t subshares will uniquely determine
the secret)1. By replacing the share combiner algorithm of the original (t, n)-
threshold secret-sharing with an appropriate ‘error-correction’ algorithm which
can uniquely recover the secret from any t′ subshares, we obtain the desired
threshold increase from t to t′, leaving the secret unchanged.

Our efficient ‘error-correction’ combiner algorithm for the Shamir secret-
sharing scheme is constructed using lattice basis reduction techniques. Thus,
our method is a new positive cryptographic application for lattice reduction
algorithms. Furthermore, we make use of fundamental tools from the theory
of lattices (Geometry of Numbers) to prove quantitative statements about the
information-theoretic security and correctness of our construction. These lattice-
based security proof techniques may be of independent interest.

Although our threshold-increase method does not yield a perfect (t′, n) secret-
sharing scheme, we obtain a useful result about the information-theoretic secu-
rity of our method, which we believe suffices for many applications. Roughly
speaking, we prove that for any desired ε > 0, our method can be used to change
the threshold to t′ > t (meaning that any t′ subshares can be used to recover
the secret) such that any ts < t′− (t′/t) observed subshares leak to the attacker
at most a fraction ε of the entropy of the secret, where ε can be made as small
as we wish by an appropriate choice of security parameter.

1 We remark that this intuitive reasoning is not rigorous, and indeed there exist ex-
amples for which it is incorrect. However, our results show that it is approximately
true for the Shamir scheme.

Lattice-Based Threshold-Changeability 173

Interestingly, our lattice-based methods can be adapted also to change the
threshold of the standard integer-based Chinese Remainder Theorem (CRT)
secret-sharing scheme[2]. We provide full details of this result in a companion
paper [22].

Related Work. Several approaches to changing the parameters of a threshold
scheme in the absence of the dealer have been proposed in the literature. The
technique of secret redistribution[5, 16] involves communication among the share-
holders to ‘redistribute’ the secret with the a threshold parameter. Although this
technique can be applied to standard secret-sharing schemes, its disadvantage is
the need for secure channels for communication between shareholders. Methods
for changing threshold which do not require secure channels have been studied
in [4, 14, 15, 13], but they all require the initial secret-sharing scheme to be a
non-standard one, specially designed for threshold increase (as a simple example
of such a non-standard scheme, the dealer could provide each shareholder with
two shares of the secret: one share for a (t, n) scheme and one share for a (t′, n)
scheme).

Our scheme uses a lattice-based ‘error-correction’ algorithm which is a slight
variant of an algorithm for ‘Noisy Polynomial Approximation’ with noise bounded
in the Lee norm [20]. This algorithm in turn is one of a large of body of recent
work on ‘list decoding’ of Reed-Solomon and Chinese Remainder codes [9, 19, 6,
21]. We remark also that although the correctness proof of our scheme is based
on the work of [20], our security proof is new and the lattice-based techniques
used may be of independent interest.

Organization of This Paper. Section 2 presents notations, known results on lat-
tices, and a counting lemma that we use. In Section 3, we provide definitions
of changeable-threshold secret-sharing schemes and their correctness/security
notions. In Section 4 we present the original Shamir (t, n)-threshold secret shar-
ing scheme, and our threshold-changing algorithms to increase the threshold to
t′ > t. We then provide concrete proofs of the correctness and security proper-
ties of our scheme. Section 5 concludes the paper. Due to page limitations, some
proofs have been omitted. They are included in the full version of this paper,
available on the authors’ web page.

2 Preliminaries

2.1 Notation

Vectors and Polynomials. For a vector v ∈ IRn, we write v = (v[0], . . . ,v[n−1]),
where, for i = 0, . . . , n − 1, v[i] denotes the ith coordinate of v. Similarly for
a polynomial a(x) = a[0] + a[1]x + . . . + a[t − 1]xt−1, we let a[i] denote the
coefficient of xi. For a ring R, we denote the set of all polynomial of degree at
most t with coefficients in the ring R by R[x; t].

Lee and Infinity Norm. For a prime p and an integer z we denote Lee norm
of z modulo p as ‖z‖L,p = mink∈ZZ |z − kp|. Similarly, for a vector v ∈ ZZn, we

174 R. Steinfeld, H. Wang, and J. Pieprzyk

define the Lee norm of v modulo p by ‖v‖L,p = max0≤i≤n−1 ‖v[i]‖L,p. For a
vector z = (z1, . . . , zn) ∈ IRn, we denote the infinity norm of z by ‖z‖∞ =
max1≤i≤n |zi|. For integers a and p, we denote a mod p by 	a
p. For real z we
define Int(z) = #z$ − 1 as the largest integer strictly less than z.

Sets. For a set S, we denote by #S the size of S. For any set S and integer n,
we denote by Sn the set of all n-tuples of elements from S and by D(Sn) the
set of all n-tuples of distinct elements from S. For integer n, we denote by [n]
the set {1, 2, . . . , n}.
Entropy. We denote by log(.) the logarithm function with base 2. For a discrete
random variable s with probability distribution Ps(.) on a set S, we denote by
H(s ∈ S) =

∑
x∈S Ps(x) log(1/Ps(x)) the Shannon entropy of s. Let t be any

other random variable on a set T , and let u denote any element of T . Let Ps(.|u)
denote the conditional probability distribution of s given the event t = u. We
denote by H(s ∈ S|u) =

∑
x∈S Ps(x|u) log(1/Ps(x|u)) the conditional entropy

of s given the event t = u.

2.2 Lattices

Here we collect several known results that we use about lattices, which can be
found in [8, 10, 7]. Let {b1, . . . ,bn} be a set of n linearly independent vectors in
IRn. The set

L = {z: z = c1b1 + . . . + cnbn, c1, . . . , cn ∈ ZZ}

is called an n-dimensional (full-rank) lattice with basis {b1, . . . ,bn}. Given a
basis B = (b1, . . . ,bn) ∈ IRn for a lattice L, we define the associated basis
matrix ML,B to be the (full-rank) n × n matrix whose ith row is the ith basis
vector bi for i = 1, . . . , n. The quantity |det(ML,B)| is independent of B. It is
called the determinant of the lattice L and denoted by det(L).

Given a basis for lattice L, the problem of finding a shortest non-zero vector in
L is known as the shortest vector problem, or SVP. An algorithm is called an SVP
approximation algorithm with ‖·‖∞-approximation factor γSV P if it is guaranteed
to find a non-zero lattice vector c such that ‖c‖∞ ≤ γSV P minv∈L\0 ‖v‖∞.
The celebrated LLL algorithm of Lenstra, Lenstra and Lovász [12] is a fully
polynomial time SVP approximation algorithm with ‖·‖∞-approximation factor
γLLL = n1/22n/2. Also, as shown in[1, 11], there exists an SVP approximation
algorithm with ‖ · ‖∞-approximation factor γex = n1/2 which polynomial time
in the size of elements of McL but not in dimension of L.

In this paper we actually need to solve a variation of SVP called the closest
vector problem (CVP): given a basis of a lattice L in IRn and a “target” vector t ∈
IRn, find a lattice vector c such that ‖c−t‖∞ is minimized. An algorithm is called
a CVP approximation algorithm with ‖ · ‖∞-approximation factor γCV P if it is
guaranteed to find a lattice vector c such that ‖c−t‖∞ ≤ γCV P minv∈L ‖v−t‖∞.
Babai[3] has shown how to convert the LLL algorithm into a fully polynomial
CVP approximation algorithm with ‖·‖∞-approximation factor γBab = n1/22n/2.

Lattice-Based Threshold-Changeability 175

In our proof of security we use several fundamental theorems from the theory
of lattices (‘Geometry of Numbers’). The original theorems are quite general,
but the restricted versions stated below suffice for our purposes. First, we need
the following definition of successive Minkowski minima of a lattice.

Definition 1 (Minkowski Minima). Let L be a lattice in IRn. For i = 1, . . . , n,
the ith succesive Minkowski minimum of L, denoted λi(L), is the smallest real
number such that there exists a set {b1, . . . ,bi} of i linearly-independent vectors
in L with ‖bj‖∞ ≤ λi(L) for all j = 1, . . . , i.

Note that λ1(L) is just the shortest infinity-norm over all non-zero vectors in
L. Next, we state Minkowski’s ‘first theorem’ in the geometry of numbers.

Theorem 1 (Minkowski’s First Theorem). Let L be a lattice in IRn and
let λ1(L) denote the first Minkowski minimum of L (see Def. 1). Then λ1(L) ≤
det(L)

1
n .

We will use the following point-counting variant of Minkowski’s ‘first theo-
rem’, which is due to Blichfeldt and van der Corput(see [8]).

Theorem 2 (Blichfeldt-Corput). Let L be a lattice in IRn and let K denote
the origin-centered box {v ∈ IRn : ‖v‖∞ < H} of volume V ol(K) = (2H)n.
Then the number of points of the lattice L contained in the box K is at least
2 · Int

(
V ol(K)

2n det(L)

)
+ 1, where for any z ∈ IR, Int(z) denotes the largest integer

which is strictly less than z.

Finally, we will also make use of Minkowski’s ‘second theorem’ [8].

Theorem 3 (Minkowski’s Second Theorem). Let L be a full-rank lattice
in IRn and let λ1(L),. . . ,λn(L) denote the n Minkowski minima of L (see Defi-
nition 1). Then λ1(L) · · ·λn(L) ≤ 2n det(L).

2.3 An Algebraic Counting Lemma

The following is a fundamental lemma that we use, interestingly, for both the
correctness and security proofs of our construction. Fix a prime p defining the
finite field ZZp, positive integer parameters (n̂, t̂, Ĥ), and an arbitrary set Â of
polynomials of degree at least 1 and at most t̂ over ZZp. The lemma gives us an
upper bound on the probability that, for n̂ randomly chosen elements α1, . . . , αn̂

of ZZp, there will exist a polynomial a(x) ∈ Â which has ‘small’ absolute value
modulo p (less than Ĥ) at all the points α1, . . . , αn̂

. We remark that a similar
(and more general) lemma was used in the analysis of a polynomial approxima-
tion algorithm [20]. Note that the lemma does not hold in general if we allow
Â to contain constant polynomials, since these polynomials may have constant
coefficient smaller than Ĥ.

Lemma 1. Fix a prime p, positive integers (n̂, t̂, Ĥ), and a non-empty set Â
of polynomials of degree at least 1 and at most t̂ with coefficients in ZZp. Let

176 R. Steinfeld, H. Wang, and J. Pieprzyk

E(n̂, t̂, Ĥ, Â) ⊆ ZZn̂
p denote the set of vectors α = (α1, . . . , αn̂

) ∈ ZZn̂
p for which

there exists a polynomial a ∈ Â such that ‖a(αi)‖L,p < Ĥ for all i = 1, . . . , n̂.
The size of the set E(n̂, t̂, Ĥ, Â) is upper bounded as follows:

#E(n̂, t̂, Ĥ, Â) ≤ #Â · (2Ĥ t̂)n̂.

Proof. Suppose that α = (α1, . . . , αn̂
) ∈ ZZn̂

p is such that there exists a polyno-
mial a ∈ Â such that

‖a(αi)‖L,p < Ĥ for i = 1, . . . , n̂. (1)

It follows that there exist n̂ integers r1, . . . , rn̂
such that, for each i = 1, . . . , n̂,

we have a(αi) − ri ≡ 0 (mod p) with |ri| < Ĥ and hence αi is a zero of the
polynomial gi(x) = a(x)−ri over ZZp. But for each i, gi is a polynomial of degree
at least 1 and at most t̂ over ZZp and hence has at most t̂ zeros in ZZp. So for
each possible value for (r1, . . . , rn) ∈ (−Ĥ, Ĥ)n̂ and a ∈ Â, there are at most t̂n̂

‘bad’ values for α = (α1, . . . , αn̂
) in (ZZp)n̂ such that (1) holds. Using the fact

that there are less than (2Ĥ)n̂ possible values for (r1, . . . , rn̂
) and less than #Â

possible values for a, the claimed bound follows. �

3 Definition of Changeable-Threshold Secret-Sharing
Schemes

We will use the following definition of a threshold secret-sharing scheme, which
is a slight modification of the definition in [17].

Definition 2 (Threshold Scheme). A (t, n)-threshold secret-sharing scheme
TSS = (GC,D,C) consists of three efficient algorithms:

1. GC (Public Parameter Generation): Takes as input a security parameter k ∈
N and returns a string x ∈ X of public parameters.

2. D (Dealer Setup): Takes as input a security/public parameter pair (k, x) and
a secret s from the secret space S(k, x) ⊆ {0, 1}k+1 and returns a list of
n shares s = (s1, . . . , sn), where si is in the ith share space Si(k, x) for
i = 1, . . . , n. We denote by

Dk,x(., .) : S(k, x)×R(k, x)→ S1(k, x)× · · · × Sn(k, x)

the mapping induced by algorithm D (here R(k, x) denotes the space of ran-
dom inputs to the probabilistic algorithm D).

3. C (Share Combiner): Takes as input a security/public parameter pair (k, x)
and any subset sI = (si : i ∈ I) of t out of the n shares, and returns a
recovered secret s ∈ S(k, x). (here I denotes a subset of [n] of size #I = t).

Lattice-Based Threshold-Changeability 177

The correctness and security properties of a (t, n)-threshold secret-sharing
scheme can be quantified by the following definitions, which are modifications
of those in [17].

Definition 3 (Correctness, Security). A (t, n) threshold secret-sharing
scheme TSS = (GC,D,C) is said to be:

1. δc-correct: If the secret recovery fails for a ’bad’ set of public parameters of
probability pf at most δc. Precisely, pf is the probability (over x = GC(k) ∈
X) that there exist (s, r) ∈ S(k, x) ×R(k, x) and I ⊆ [n] with #I = t such
that Ck,x(sI) �= s, where s = Dk,x(s, r) and sI

def= {si : i ∈ I}.
We say that TSS is asymptotically correct if, for any δ > 0, there exists
k0 ∈ N such that TSS is δ-correct for all k > k0.

2. (ts, δs, εs)-secure with respect to the secret probability distribution Pk,x on
S(k, x): If, with probability at least 1−δs over the choice of public parameters
x = GC(k), the worst-case secret entropy loss for any ts observed shares is
at most εs, that is

|Lk,x(sI)| def= |H(s ∈ S(k, x))−H(s ∈ S(k, x)|sI)| ≤ εs,

for all s ∈ S1(k, x) × · · · × Sn(k, x) and I ⊆ [n] with #I ≤ ts. We say that
TSS is asymptotically ts-secure with respect to Pk,x if, for any δ > 0 and
ε > 0 there exists k0 ∈ N such that TSS is (ts, δ, ε · k)-secure with respect to
Pk,x for all k > k0.

The following definition of the Threshold Changeability without dealer assis-
tance for a secret sharing scheme is a modification of the definition in [15].

Definition 4 (Threshold-Changeability). A (t, n)-threshold secret-sharing
scheme TSS = (GC,D,C) is called threshold-changeable to t′ with δc-correctness
and (ts, δs, εs)-security with respect to secret distribution Pk,x, if there exist n
efficient subshare generation algorithms Hi : Si(x, k)→ Ti(x, k) for i = 1, . . . , n,
and an efficient subshare combiner algorithm C′ such that the modified (t′, n)-
threshold scheme TSS′ = (GC,D′,C′), with modified shares

D′
k,x(s, r) def= (H1(s1), . . . ,Hn(sn)) ∈ T1(k, x)× · · · Tn(k, x),

where (s1, . . . , sn) = Dk,x(s; r), is δc-correct and (ts, δs, εs)-secure with respect to
Pk,x. TSS is called asymptotically threshold-changeable to (ts, t′) with respect to
Pk,x if there exist algorithms Hi : Si(k, x)→ Ti(k, x) (i = 1, . . . , n) and C′ such
that the (t′, n)-threshold scheme TSS′ defined above is asymptotically correct and
asymptotically ts-secure with respect to Pk,x.

The idea captured by the above definition is that the change of threshold
from t to t′ is implemented by getting each shareholder to replace his original
share si by the subshare Hi(si) output by the subshare generation algorithm Hi

(the original share si is then discarded).

178 R. Steinfeld, H. Wang, and J. Pieprzyk

4 Threshold-Changeability for Shamir Secret-Sharing

4.1 The Standard Shamir Scheme

The standard Shamir (t, n)-threshold secret sharing scheme is defined as follows.

Scheme ShaTSS = (GC,D,C): Shamir (t, n)-Threshold Secret-Sharing

1. GC(k) (Public Parameter Generation):

(a) Pick a (not necessarily random) prime p ∈ [2k, 2k+1] with p > n.
(b) Pick uniformly at random n distinct non-zero elements α =

(α1, . . . , αn) ∈ D((ZZ∗
p)

n). Return x = (p, α).

2. Dk,x(s,a) (Dealer Setup): To share secret s ∈ ZZp using t − 1 uniformly
random elements a = (a1, . . . , at−1) ∈ ZZt−1

p , build the polynomial as,a(x) =
s+a1x+a2x

2+. . .+at−1x
t−1 ∈ ZZp[x; t−1]. The ith share is si = a(αi) mod p

for i = 1, . . . , n.
3. Ck,x(sI) (Share Combiner): To combine shares sI = (si : i ∈ I) for some I ⊆

[n] with #I = t, compute by Lagrange interpolation the unique polynomial
b ∈ ZZp[x; t − 1] such that b(αi) ≡ si (mod p) for all i ∈ I. The recovered
secret is s = b(0) mod p.

4.2 Threshold-Changing Algorithms

Our threshold-changing subshare generation and combiner algorithms to change
the (t, n)-threshold scheme ShaTSS = (GC,D,C) into a (t′, n)-threshold scheme
ShaTSS′ = (GC,D′,C′) are defined as follows. Note that the subshare combiner
algorithm uses an efficient CVP approximation algorithm ACVP with ‖ · ‖∞-
approximation factor γCV P . We define ΓCV P = log(#γCV P + 1$) (if we use the
Babai poly-time CVP algorithm, we have ΓCV P ≤ 1 + 0.5(t′ + t + log(t′ + t))).

Scheme ShaTSS′: Changing Threshold to t′ > t

1. Hi(si) (ith Subshare Generation): To transform share si ∈ ZZp of original
(t, n)-threshold scheme into subshare ti ∈ ZZp of desired (t′, n)-threshold
scheme (t′ > t) the ith shareholder does the following (for all i = 1, . . . , n):
(a) Determine noise bound H which guarantees δc-correctness (typically, we

set δc = k−t′
):

i. Set H = max(pα/2
, 1) with
ii. α = 1− 1+δF

(t′/t) > 0 (noise bitlength fraction) and

iii. δF = (t′/t)
k

(
log(δ−1/t′

c nt) + ΓCV P + 1
)
.

(b) Compute ti = αi · si + ri mod p for a uniformly random integer ri with
|ri| < H.

2. C′
k,x(tI) (Subshare Combiner): To combine subshares tI = (ti : i ∈ I) for

some I = {i[1], . . . , i[t′]} with #I = t′ (and guaranteed δc-correctness), do
the following:

Lattice-Based Threshold-Changeability 179

(a) Build the following (t′ + t)× (t′ + t) matrix MSha(αI ,H, p), whose rows
form a basis for a full-rank lattice LSha(αI ,H, p) in Qt′+t:

MSha(αI ,H, p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p 0 . . . 0 0 0 . . . 0
0 p . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
0 0 . . . p 0 0 . . . 0

αi[1] αi[2] . . . αi[t′] H/p 0 . . . 0
α2

i[1] α
2
i[2] . . . α

2
i[t′] 0 H/p . . . 0

...
...

. . .
...

...
...

. . .
...

αt
i[1] α

t
i[2] . . . α

t
i[t′] 0 0 . . . H/p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here H = 	pα/2
, α = 1− 1+δF

(t′/t) , δF = (t′/t)
k

(
log(δ−1/t′

c nt) + ΓCV P + 1
)
.

(b) Define t′ = (ti[1], . . . , ti[t′], 0, 0, . . . , 0) ∈ ZZt′+t.
(c) Run CVP Approx. alg. ACVP on lattice LSha(αI ,H, p)

given by MSha(αI ,H, p) with target vector t′. Let c =
(c1, . . . , ct′ , ct′+1, . . . , ct′+t) ∈ Qt′+t denote the output vector returned
by ACVP, approximating the closest vector in LSha to t′.

(d) Compute the recovered secret ŝ = (p/H) · ct′+1 mod p.

Remark 1. The reason for multiplying the shares si by αi before adding the noise
ri, is that otherwise, the secret may not be uniquely recoverable from the noisy
subshares (indeed, a(αi) + ri = a(αi) + 1 + (ri − 1), and typically |ri − 1| < H,
so secrets s and s + 1 would be indistinguishable).

Remark 2. It is not difficult to see that our method of adding a ‘small’ random
noise integer ri with |ri| < H to the share multiple αi ·si modulo p, is essentially
equivalent (in the sense of information on the secret) to passing the residues
αi · si mod p through a deterministic function which chops off the log(2H) ≈
(1− 1/(t′/t)) · k least-significant bits of the k-bit residues αi · si mod p, and this
also yields shorter subshares than in our method above. However, since reducing
the length of the original shares is not our main goal, we have chosen to present
our scheme as above since it slightly simplifies our scheme and its analysis.
Similar results can be obtained, however, for the ‘deterministic’ approach of
chopping off least-significant bits.

Remark 3. Some special variants of the Shamir scheme use special values for
the points αi, such as αi = i for i = 1, . . . , n, to which the above method does
not apply, because of its reliance on the random choice of the αi’s. However, it
turns out that our method can be modified to work even for these special Shamir
variants. The idea is to make up for the loss of randomness in the αi’s by getting
the shareholders to multiply their shares by additional random integers (say
Bi ∈ ZZp) prior to adding the random noise ri. The Bi’s are then sent along to
the combiner with the noisy subshares. We do not analyze this variant of our
scheme in this paper.

180 R. Steinfeld, H. Wang, and J. Pieprzyk

4.3 Correctness

The following theorem shows that the choice of the parameter δF used in our
threshold changing algorithm is sufficient to guarantee the δc-correctness of our
scheme for all sufficiently large security parameters.

Theorem 4 (Correctness). The scheme ShaTSS′ (with parameter choice δc =
k−t′

) is asymptotically correct. Concretely, for any choice of parameter δc (0 <
δc < 1), the (t′, n) scheme ShaTSS′ is δc-correct for all security parameters k
satisfying the inequality k ≥ k′

0, where

k′
0 =

(
t′/t

t′/t− 1

)(
log(δ−1/t′

c nt) + ΓCV P + 2
)
.

Proof. Fix a subshare subset I ⊆ [n] with #I = t′. We know by construction of
lattice LSha(αI), that the dealer’s secret polynomial as,a(x) = s + a1x + . . . +
at−1x

t−1 ∈ ZZp[x; t− 1] gives rise to the lattice vector

a′ = (αi[1]as,a(αi[1])− k1p, . . . , αi[t′]as,a(αi[t′])− kt′p, (
s

p
H),

a1

p
H, . . . ,

at−1

p
H),

which is “close” to the target vector

t′ = (αi[1]as,a(αi[1])− k1p + ri[1], . . . , αi[t′]as,a(αi[t′])− kt′p + ri[t′], 0, 0, . . . , 0),

where kj = 	αi[j]a(αi[j])+ri[j]

p
 ∈ ZZ for all j = 1, . . . , t′. In particular we have,
using |ri[j]| < H for all j = 1, . . . , t′, that ‖a′ − t′‖∞ < H. Consequently, since
ACVP is a CVP approximation algorithm with ‖.‖∞ approximation factor γCV P ,
its output lattice vector c will also be “close” to the target vector, namely we
have ‖c− t′‖∞ < γCV P ·H. Applying the triangle inequality, we conclude that
the lattice vector z = c− a′ satisfies

‖z‖∞ = ‖c− a′‖∞ < (γCV P + 1)H. (2)

Now, either p
H c[t′+1] ≡ p

H a′[t′+1] ≡ s (mod p) in which case the combiner
succeeds to recover secret s, or otherwise we have the ‘bad’ case that

p

H
z[t′ + 1] =

p

H
c[t′ + 1]− p

H
a′[t′ + 1] �≡ 0 (mod p). (3)

Hence, for fixed I, the combiner succeeds except for a fraction δI of ‘bad’
choices of αI ∈ D((ZZ∗

p)
t′
), for which LSha(αI) contains a ‘short’ and ’bad’

vector z satisfying (2) and (3). To upper bound δI , consider the polynomial
f(x) = p

H z[t′ + 1]x + · · · + p
H z[t′ + t]xt. Note that, since z ∈ LSha, we have

f(αi[j]) ≡ z[j] (mod p) and hence ‖f(αi[j])‖L,p < (γCV P + 1)H for all j ∈ [t′]
using (2). Also, f(x) mod p has zero constant coefficient and degree at least 1
and at most t over ZZp using (3). Applying Lemma 1 (with parameters n̂ = t′,t̂ =
t,Ĥ = 2ΓCV P H, #Â ≤ pt) we conclude that such a ‘bad’ polynomial f exists
for at most a fraction δI ≤ pt(2Ĥt)t′

/#D((ZZ∗
p)

t′
) of αI ∈ D((ZZ∗

p)
t′
), for each

Lattice-Based Threshold-Changeability 181

fixed I. Hence, the probability δ that a uniformly chosen α ∈ D((ZZ∗
p)

n) is ‘bad’
for some I ⊆ [n] with #I = t′ is upper bounded as

δ ≤
(

n
t′
)
pt(2Ĥt)t′

#D((ZZ∗
p)t′)

, (4)

and a straightforward calculation (see full paper) shows that the right-hand side
of (4) is upper bounded by δc for all k ≥

(
t′/t

t′/t−1

)(
log(δ−1/t′

c nt) + ΓCV P + 2
)
.

This completes the proof. �

4.4 Security

The concrete security of our scheme is given by the following result. It shows that,
for fixed (t′, n) and with parameter choice δc = k−t′

, the (t′, n) scheme ShaTSS′

leaks at most fraction εs/k = O(log k/k) = o(1) of the entropy of the secret to
an attacker observing less than t′ − (t′/t) subshares (for all except a fraction
δs ≤ δc = o(1) of public parameters, and assuming the security parameter k is
sufficiently large).

Theorem 5 (Security). The scheme ShaTSS′ (with parameter choice δc =
k−t′

) is asymptotically Int(t′ − (t′/t))-secure with respect to the uniform secret
distribution on ZZp. Concretely, for any parameter choice δc > 0, the (t′, n)
scheme ShaTSS′ is (ts, δs, εs)-secure with:

ts =
t′ − (t′/t)

1 + (t′/t)
k

(
log(δ−1/t′

c nt) + ΓCV P + 1
) ,

δs = δc, εs = (β + 7)(ts + t) + ts log t + 1, β =
log(2δ−1

c

(
n
ts

)
)

ts + t− 1
,

for all security parameters k ≥ k0, where, letting m = ts +t+1 and k′
0 as defined

in Theorem 4,

k0 = max
(
k′
0 +

(t′/t + 1)2

t′/t− 1
(β + log t + 3), (β + 4)m2 + 5tsm logm

)
.

Proof. (Sketch) Fix an observed subshare subset I ⊆ [n] with #I = ts. Assuming
the secret is uniformly distributed on ZZp it is easy to show (see full paper) that
the conditional probability Pk,x(s|sI) of the secret taking the value s ∈ ZZp given
that the observed sub-share vector takes the value sI is given by:

Pk,x(s|sI) =
#Ss,p(αI , t, p,H, sI)
#S0,1(αI , t, p,H, sI)

, (5)

where, for any integers ŝ ≥ 0 and p̂ ≥ 1, we define the set

S
ŝ,p̂

(αI , t, p,H, sI)
def= {a ∈ ZZp[x; t− 1] : ‖αi[j]a(αi[j])− si[j]‖L,p < H∀j ∈ [ts]

and a(0) ≡ ŝ (mod p̂)}.

182 R. Steinfeld, H. Wang, and J. Pieprzyk

We will derive a probabilistic lower bound on #S0,1 and upper bound on
#Ss,p which both hold for all except a fraction δI ≤ δs/

(
n
ts

)
of ‘bad’ choices

for αI ∈ D((ZZ∗
p)

ts) assuming k ≥ k0 (with ts, δs and k0 defined in the theorem
statement). We then apply these bounds to (5) to get a bound Pk,x(s|sI) ≤ 2εs/p
for all s (with εs defined in the theorem statement) so that for fixed I, entropy
loss is bounded as Lk,x(sI) ≤ εs, except for fraction δI of αI ∈ D((ZZ∗

p)
ts). It

then follows that Lk,x(sI) ≤ εs for all I ⊆ [n] with #I = ts except for a fraction
δ ≤

(
n
ts

)
δI ≤ δs of α ∈ D((ZZ∗

p)
n) assuming that k ≥ k0, which proves the

theorem.

Reduction to Lattice Point Counting. It remains to derive the desired probabilis-
tic upper and lower bounds on #S

ŝ,p̂
. The following lemma shows that #S

ŝ,p̂
is

equal to the number of points of a certain lattice LSha (closely related to the lat-
tice used in our subshare combiner algoritm) contained in a (ts + t)-dimensional
box of side length 2H, centered on a certain non-lattice vector ŝI .

Lemma 2. Fix positive integers (t, ts, p,H, p̂) such that p ≥ 2H and p̂ is a di-
visor of p. Let ŝ ∈ ZZ

p̂
, αI = (αi[1], . . . , αi[ts]) ∈ ZZn

p and sI = (si[1], . . . , si[ts]) ∈
ZZts

p .Define LSha(αI , t, p,H, p̂) as the full-rank lattice in Qts+t with basis consist-
ing of the rows of the matrix

MSha(αI , t, p,H, p̂) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p 0 . . . 0 0 0 . . . 0
0 p . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

...
0 0 . . . p 0 0 . . . 0

p̂αi[1] p̂αi[2] . . . p̂αi[ts] 2H/(p/p̂) 0 . . . 0
α2

i[1] α2
i[2] . . . α2

i[ts] 0 2H/p . . . 0
...

...
. . .

...
...

...
. . .

...
αt

i[1] αt
i[2] . . . αt

i[ts] 0 0 . . . 2H/p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and define the vector ŝI ∈ Qts+t by

ŝI
def=
(
si[1] − ŝαi[1], . . . , si[ts] − ŝαi[ts],H(1− 1 + 2ŝ

p
),H(1− 1

p
), . . . ,H(1− 1

p
)
)
.

Then the sizes of the following two sets are equal:

S
ŝ,p̂

(αI , t, p,H, sI)
def= {a ∈ ZZp[x; t− 1] : ‖αi[j]a(αi[j])− si[j]‖L,p < H∀j ∈ [ts]

and a(0) ≡ ŝ (mod p̂)},

and

V
ŝ,p̂

(αI , t, p,H, ŝI)
def= {v ∈ LSha(αI , t, p,H, p̂) : ‖v − ŝI‖∞ < H}.

Finding a Lower Bound on #V0,1. Lower bounding the number #V0,1

of points of the lattice LSha in a symmetric box TsI
(H) def= {v ∈ Qts+1 :

Lattice-Based Threshold-Changeability 183

‖v− ŝI‖∞ < H} centered on vector ŝI seems a difficult ‘non-homogenous’ prob-
lem because ŝI is in general not a lattice vector. But by ‘rounding’ ŝI to a nearby
lattice vector ŝ′

I (with rounding error ε = ‖ŝ′
I− ŝI‖∞), we reduce the problem to

two simpler problems: (1) The ‘homogenous’ problem of lower bounding the num-
ber of lattice points in an origin-centered box T0

def= {v ∈ Qts+t : ‖v‖∞ < H−ε},
and (2) Upper bounding the largest Minkowski minimum λts+t(LSha) of the lat-
tice. This general reduction is stated precisely as follows.

Lemma 3. For any full-rank lattice L in IRn, vector s ∈ IRn, and H > 0, we
have

#{v ∈ L : ‖v − s‖∞ < H} ≥ #{v ∈ L : ‖v‖∞ < H − ε},

where ε = n
2 · λn(L).

To solve the ‘homogenous’ counting problem (1) above we directly apply
the Blichfeldt-Corput theorem (Theorem 2 in Sec. 2). To solve the problem (2)
above of upper bounding λts+t(LSha), we apply Minkowski’s “second theorem”
(Theorem 3 in Sec. 2) to reduce this problem further to the problem of lower
bounding the first Minkowski minimum λ1(LSha). Namely, since λi(LSha) ≥
λ1(LSha) for all i ∈ [ts], then Minkowski’s second theorem gives λts+t(LSha) ≤
2ts+t det(LSha)
λ1(LSha)ts+t−1 . Finally, to lower bound λ1(LSha) (i.e. the infinity norm of the
shortest non-zero vector in LSha), we use a probabilistic argument based on the
algebraic counting lemma 1 (similar to the argument used in proving Theorem 4),
to obtain the following result.

Lemma 4. Fix positive integers (t, ts, p,H, p̂) and a positive real number β, such
that p ≥ max(2H, 2ts) is prime and p̂ ∈ {1, p}. For each αI ∈ D((ZZ∗

p)
ts), let

LSha(αI , p̂) denote the lattice in Qts+t with basis matrix MSha(αI , p̂) defined
in Lemma 2, and let L′

Sha(αI) denote the lattice in Qts+t−1 with basis matrix
M ′

Sha(αI) obtained from MSha(αI , p̂) by removing the (ts+1)th row and column.
In the case p̂ = 1, if

1 ≤ 2−[β+3+ ts log t
ts+t] det (LSha(αI , 1))

1
ts+t ≤ H

then, for at least a fraction 1− 2−β(ts+t) of αI ∈ D((ZZ∗
p)

ts) we have

λ1(LSha(αI , 1)) ≥ 2−[β+3+ ts log t
ts+t] det(LSha(αI , 1))

1
ts+t .

In the case p̂ = p, if

1 ≤ 2−[β+3+ ts log t
ts+t−1] det(L′

Sha(αI))
1

ts+t−1 ≤ H

then, for at least a fraction 1− 2−β(ts+t−1) of αI ∈ D((ZZ∗
p)

ts) we have

λ1(L′
Sha(αI)) ≥ λ1(LSha(αI , p)) ≥ 2−[β+3+ ts log t

ts+t−1] det(L′
Sha(αI))

1
ts+t−1 .

184 R. Steinfeld, H. Wang, and J. Pieprzyk

Combining the above results (for (ŝ, p̂) = (0, 1)) we obtain the desired lower
bound on #V0,1.

Finding an Upper Bound on #Vs,p. We first reduce the point counting prob-
lem in LSha(αI , p) to a point counting problem in the lower-dimensional lat-
tice L′

Sha(αI) defined in Lemma 4. This is possible because all the vectors of
LSha(αI , p) in the desired box have their (ts + 1)th coordinate equal to 0.

Lemma 5. Let LSha(αI , p) ⊆ Qts+t and L′
Sha(αI) ⊆ Qts+t−1 be the lattices

defined in Lemma 4, let ŝI be the vector in Qts+t defined in Lemma 2, and let ŝ′
I

be the vector in Qts+t−1 obtained from ŝI by removing the (ts + 1)th coordinate.
Then #Vs,p ≤ #V ′

s,p, where Vs,p
def= {v ∈ LSha(αI , p) : ‖v − ŝI‖∞ < H} and

V ′
s,p

def= {v ∈ L′
Sha(αI) : ‖v − ŝ′

I‖∞ < H}.

By comparing the total volume of the #Vs,p disjoint boxes of sidelength λ1(L′
Sha)

centered on the lattice points in T̂s′
I

(H) def= {v ∈ Qts+t−1 : ‖v − ŝ′
I‖∞ < H}, to

the volume of T̂̂s′
I

(H) def= {v ∈ Qts+t−1 : ‖v − ŝ′
I‖∞ < H + λ1(L′

Sha)/2} which
contains those disjoint boxes, we reduce the problem of upper bounding #Vs,p

to the problem of lower bounding the λ1(L′
Sha). This general reduction can be

stated as follows.

Lemma 6. For any lattice L in IRn, vector s ∈ IRn, and H > 0, we have

#{v ∈ L : ‖v − s‖∞ < H} ≤
[

2H

λ1(L)
+ 1
]n

.

Now we apply the probabilistic lower bound on λ1(L′
Sha) from Lemma 4 in

Lemma 6 (with (ŝ, p̂) = (s, p)) to get the desired upper bound on #Vs,p.
After some straightforward calculation (see full paper), we find that the prob-

abilistic lower and upper bounds on #V
ŝ,p̂

obtained above hold for all except a
fraction δI ≤ δs/

(
n
ts

)
of ‘bad’ choices for αI ∈ D((ZZ∗

p)
ts) assuming k ≥ k0 (with

ts, δs and k0 defined in the theorem statement), and plugging the bounds in
(5) gives the desired bound Pk,x(s|sI) ≤ 2εs/p for all s (with εs defined in the
theorem statement). This completes the proof sketch. �

An immediate consequence of the above results is the following.

Corollary 1. For any (t, n) and t′ > t, the standard Shamir (t, n)-threshold
secret-sharing scheme ShaTSS is asymptotically threshold-changeable to
(Int(t′ − t′/t), t′) with respect to the uniform secret distribution.

5 Conclusions

We presented a new cryptographic application of lattice reduction techniques to
achieve threshold-changeability for the standard Shamir (t, n)-threshold scheme.
We proved concrete bounds on the correctness and security of our method, mak-
ing use of fundamental results from lattice theory in our analysis.

Lattice-Based Threshold-Changeability 185

Acknowledgements. We would like to thank Scott Contini and Igor Shpar-
linski for helpful discussions and encouragement to work on this problem. This
work was supported by ARC Discovery Grants DP0345366 and DP0451484.

References

1. M. Ajtai, R. Kumar, and D. Sivakumar. A Sieve Algorithm for the Shortest Lattice
Vector Problem. In Proc. 33-rd ACM Symp. on Theory of Comput., pages 601–610,
New York, 2001. ACM Press.

2. C. Asmuth and J. Bloom. A Modular Approach to Key Safeguarding. IEEE Trans.
on Information Theory, 29:208–210, 1983.

3. L. Babai. On Lovasz’ Lattice Reduction and the Nearest Lattice Point Problem.
Combinatorica, 6, 1986.

4. C. Blundo, A. Cresti, A. De Santis, and U. Vaccaro. Fully Dynamic Secret Sharing
Schemes. In CRYPTO ’93, volume 773 of LNCS, pages 110–125, Berlin, 1993.
Springer-Verlag.

5. Y. Desmedt and S. Jajodia. Redistributing Secret Shares to New Access Structures
and Its Application. Technical Report ISSE TR-97-01, George Mason University,
1997.

6. O. Goldreich, D. Ron, and M. Sudan. Chinese Remaindering with Errors. IEEE
Transactions on Information Theory, 46:1330–1338, 2000.

7. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer-Verlag, 1993.

8. P. Gruber and C. Lekkerkerker. Geometry of Numbers. Elsevier Science Publishers,
1987.

9. V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon Codes and
Algebraic-Geometric Codes. IEEE Trans. Inf. Th., 45:1757–1767, Sep. 1999.

10. E. Hlawka, J. Schoiβengeier, and R. Taschner. Geometric and Analytic Number
Theory. Springer-Verlag, 1991.

11. R. Kannan. Algorithmic Geometry of Numbers. Annual Review of Comp. Sci.,
2:231–267, 1987.

12. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring Polynomials with Rational
Coefficients. Mathematische Annalen, 261:515–534, 1982.

13. A. Maeda, A. Miyaji, and M. Tada. Efficient and Unconditionally Secure Verifiable
Threshold Changeable Scheme. In ACISP 2001, volume 2119 of LNCS, pages 402–
416, Berlin, 2001. Springer-Verlag.

14. K. Martin. Untrustworthy Participants in Secret Sharing Schemes. In Cryptography
and Coding III, pages 255–264. Oxford University Press, 1993.

15. K. Martin, J. Pieprzyk, R. Safavi-Naini, and H. Wang. Changing Thresholds in
the Absence of Secure Channels. Australian Computer Journal, 31:34–43, 1999.

16. K. Martin, R. Safavi-Naini, and H. Wang. Bounds and Techniques for Efficient
Redistribution of Secret Shares to New Access Structures. The Computer Journal,
8, 1999.

17. M. Quisquater, B. Preneel, and J. Vandewalle. On the Security of the Threshold
Scheme Based on the Chinese Remainder Theorem. In PKC 2002, volume 2274 of
LNCS, pages 199–210, Berlin, 2002. Springer-Verlag.

18. A. Shamir. How To Share a Secret. Comm. of the ACM, 22:612–613, 1979.

186 R. Steinfeld, H. Wang, and J. Pieprzyk

19. M.A. Shokrollahi and H. Wasserman. List Decoding of Algebraic-Geometric Codes.
IEEE Transactions on Information Theory, 45:432–437, March 1999.

20. I.E. Shparlinski. Sparse Polynomial Approximation in Finite Fields. In Proc. 33rd
STOC, pages 209–215, New York, 2001. ACM Press.

21. I.E. Shparlinski and R. Steinfeld. Noisy Chinese Remaindering in the Lee Norm.
Journal of Complexity, 20:423–437, 2004.

22. R. Steinfeld, J. Pieprzyk, and H. Wang. Dealer-Free Threshold Changeability for
Standard CRT Secret-Sharing Schemes. Preprint, 2004.

Masking Based Domain Extenders for
UOWHFs: Bounds and Constructions

Palash Sarkar

Cryptology Research Group,
Applied Statistics Unit,

Indian Statistical Institute,
203, B.T. Road,

Kolkata 700108, India
palash@isical.ac.in

Abstract. We study the class of masking based domain extenders for
UOWHFs. Our first contribution is to show that any correct mask-
ing based domain extender for UOWHF which invokes the compression
UOWHF s times must use at least �log2 s� masks. As a consequence, we
obtain the key expansion optimality of several known algorithms among
the class of all masking based domain extending algorithms. Our second
contribution is to present a new parallel domain extender for UOWHF.
The new algorithm achieves asymptotically optimal speed-up over the
sequential algorithm and the key expansion is almost everywhere opti-
mal, i.e., it is optimal for almost all possible number of invocations of
the compression UOWHF. Our algorithm compares favourably with all
previously known masking based domain extending algorithms.

Keywords: UOWHF, domain extender, parallel algorithm.

1 Introduction

A universal one-way hash function (UOWHF) is a function family {hk}k∈K with
hk : {0, 1}n → {0, 1}m, for which the following task of the adversary is compu-
tationally infeasible: the adversary chooses an n-bit string x, is then given a k
chosen uniformly at random from K and has to find a x′ such that x �= x′ and
hk(x) = hk(x′). The notion of UOWHF was introduced in [9].

Intuitively, a UOWHF is a weaker primitive than a collision resistant hash
function (CRHF), since the adversary has to commit to the string x before
knowing the actual hash function hk for which a collision has to be found. In
fact, Simon [15] has shown that there is an oracle relative to which UOWHFs
exist but CRHFs do not exist. Further, as pointed out in [1], the birthday paradox
does not apply to the UOWHF and hence the message digest can be smaller.
Thus a construction for UOWHF may be faster than a construction for CRHF.

There is a second and perhaps a more important reason to prefer UOWHF
over CRHF. A protocol built using a UOWHF maybe “more” secure than a
protocol built using CRHF. The intuitive reason being that even if it is possible

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 187–200, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

188 P. Sarkar

to find a collision for a hash function, it might still be difficult to find a collision
for it when considered as a UOWHF. This situation is nicely summed up in [1]:
“Ask less of a hash function and it is less likely to disappoint!”

The important paper by Bellare and Rogaway [1] provides the foundation for
the recent studies on UOWHFs. They introduce the notion of domain extender
for UOWHF; show that the classical Merkle-Damg̊ard algorithm does not work
for UOWHFs; provide several new constructions for UOWHF domain extenders
and finally provide a secure digital signature scheme based on UOWHF in the
hash-then-sign paradigm.

The study in [1] shows that extending the domain usually requires an asso-
ciated increase in key length. One of the major new ideas behind their domain
extending algorithm is “masking” the outputs of intermediate invocations by
random strings. This idea of masking based algorithms have been later pur-
sued by several authors [14, 3, 13, 12, 8, 7]. We would like to point out that [1]
also presents other (i.e., non-masking type) techniques for domain extension.
However, the key expansion for these techniques is more than the masking type
techniques. Consequently, subsequent work, including the current one, have con-
centrated only on masking type domain extenders.

Our Contributions: The contribution of this paper is twofold.

We start by formalizing the class A of all masking based domain extend-
ing algorithms. This class includes all known efficient domain extending algo-
rithms [14, 3, 13, 12, 8, 7]. Any masking based algorithm in A proceeds by XOR-
ing the output of any intermediate invocation of the compression UOWHF by a
fixed length bit string called a mask.

Suppose {hk}k∈K, hk : {0, 1}n → {0, 1}m is a compression UOWHF whose
domain is to be extended. Further, suppose that an algorithm in A makes s
invocations of hk (for some k ∈ K) and uses a total of ρ masks. In Proposition 1,
we show that the length of any string in the extended domain is n+(s−1)(n−m).
The resulting amount of key expansion is ρm and hence the key expansion is
totally determined by the number of masks.

Our main result on class A is to obtain a necessary condition for any algo-
rithm in A to be a correct domain extending algorithm. Using this necessary
condition, we obtain a non-trivial lower bound on the number of masks used
by any correct algorithm in A. More precisely, in Theorem 1, we show that
ρ ≥ #log2 s$. Based on this lower bound, we define the masking efficiency, ME
of an algorithm which uses ρ masks and makes s invocations of the compression
UOWHF to be ME = ρ−#log2 s$. In the case ME = 0, we say that the algorithm
achieves optimal masking. Our lower bound immediately shows the masking op-
timality of the sequential algorithm of Shoup [14] and the parallel algorithms
of [3, 7].

The basic unit of operation of a domain extending algorithm is one invocation
of the compression UOWHF. The number of operations made by any sequential
algorithm is equal to the number of invocations of the compression UOWHF. On
the other hand, in a parallel algorithm, several invocations of the compression

Masking Based Domain Extenders for UOWHFs: Bounds and Constructions 189

UOWHF is done in parallel and thus the number of parallel rounds will be
lower. Suppose an algorithm makes s invocations of the compression UOWHF
and uses Np processors to complete the computation in Nr rounds. Since there
are s invocations and Np processors, at least #s/Np$ parallel rounds will be
required and hence Nr ≥ #s/Np$. We define the parellelism efficiency, PE to be
equal to s/Nr. In general, PE ≤ Np and in the case PE = Np we say that the
algorithm achieves optimal parallelism.

Our second contribution is to obtain a parallel domain extending algorithm.
The basic idea of the algorithm is to divide the input message into several parts,
hash each part separately and then combine the different parts using a binary
tree. This idea has already been suggested for collision resistant hash functions
by Damg̊ard in [2]. Our contribution is to add a suitable masking strategy. The
result is a simple and efficient parallel domain extending algorithm for UOWHF.
The masking efficiency ME is almost always zero and in very few cases it is one.
Hence we say that the masking efficiency of our algorithm is almost always
optimal. Further, the parallelism efficiency PE is asymptotically optimal. Thus
our algorithm provides a satisfactory parallel domain extender for UOWHF and
to a certain extent completes the line of research on obtaining efficient domain
extenders for UOWHFs which was started in [1].

Related Work: We have already mentioned that UOWHF was introduced by
Naor and Yung [9] and the important work done by Bellare and Rogaway [1].
There are several direct constructions of UOWHFs based on general assump-
tions [10, 4]. However, as noted in [1] these are not very efficient. Subsequent
to the work in [1], Shoup [14] described a nice domain extending algorithm
which is a modification of the Merkle-Damg̊ard construction. Shoup’s algorithm
is a sequential algorithm and Mironov [6] proved that the algorithm achieves
minimal key length expansion among all sequential masking based domain ex-
tending algorithms. (As opposed to this, our lower bound shows that Shoup’s
algorithm is optimal among all masking based domain extending algorithms.)
Later work [13, 8, 3, 12, 7] have provided different parallel constructions of do-
main extending algorithms with varying trade-off between degree of parallelism
and key length expansion. These are summarized in Tables 1 and 2.

We note that none of the previous constructions simultaneously achieve op-
timal parallelism and optimal key expansion. (In [7], it is claimed that their
algorithm achieves optimal parallelism. This claim is not correct: In [7], s = 2T

and the number of parallel rounds is Nr = T + 1. This requires Np = 2T−1 and
hence PE ≈ Np/ log2 Np; as explained above, for optimal parallelism we should
have PE = Np.)

Note that the algorithms in [1, 13, 8, 7, 3] can also be executed with a fixed
number of processors by a level-by-level simulation of the large binary tree.
However, this simulation will require storing the results of all the invocations
at one level and hence will push up the memory requirement. In contrast, for
our algorithm, the required number of buffers is exactly equal to the number of
processors.

190 P. Sarkar

Table 1. Comparison of masking efficiency. Here s is the number of invocations of the
compression UOWHF

construction [1] [13] [8] [12] [14, 3, 7] ours
ME ≈ log2 s ≈ log2 log2 s O(log∗ s) const 0 0 or 1†

†: the value is almost always 0.

Table 2. Comparison of parallelism efficiency. Here Np is the number of processors

construction [1, 13, 8, 7] [3] [12], ours

PE ≈ Np

log Np
≈ N

1−1/l
p , l const. ≈ Np

In [7], a sufficient condition for the correctness of any algorithm in A is
presented. Essentially, this condition states that, if, for any subtree, there is at
least one mask which occurs exactly once in that subtree, then the construction
is correct. In contrast, our necessary condition states that for any correct con-
struction, for any subtree, there must be at least one mask which occurs an odd
number of times. Though these two combinatorial conditions are close, they are
not the same and they have not yet been proved to be equivalent. In fact, it is
also possible that they cannot be proved to be equivalent.

Our necessary condition yields a tight lower bound on the number of masks,
whereas the sufficient condition in [7] is used to verify the correctness of some
previous constructions. However, it is not easy to apply the sufficient condition
of [7] to prove the correctness of the construction in [12] and the construction
presented here. On the other hand, for small examples, it is possible to verify
that both the construction in [12] and the one presented here satisfy the sufficient
condition of [7]. Thus our necessary condition and the sufficient condition of [7]
are actually different and are of separate interest. It could be an interesting
research problem to obtain a single necessary and sufficient condition for correct
domain extension for any algorithm in A.

The rest of the paper is organized as follows. In Section 2, we describe the
necessary preliminaries. In Section 3, we describe the formal model for masking
based domain extenders and study its properties. In this section, we also obtain
the necessary condition and the lower bound on the number of masks. The new
construction of a parallel domain extending algorithm is described in Section 4.
Finally, Section 5 concludes the paper. Due to lack of space, most of the proofs
are omitted. These can be found in the full version of the paper and in the
technical report [11].

2 Preliminaries

All logarithms in this paper are to the base 2. The notation x ∈r A denotes
the (uniformly at) random choice of the element x from the set A. Also λ

Masking Based Domain Extenders for UOWHFs: Bounds and Constructions 191

denotes the empty string. By an (n,m) function f we will mean a function
f : {0, 1}n → {0, 1}m. A formal definition for UOWHF is given in [9]. In this pa-
per we will be interested in “securely” extending the domain of a given UOWHF.
Our proof technique will essentially be a reduction. We formalize this as a re-
duction between two suitably defined problems.

Let F = {hk}k∈K be a keyed family of hash functions, where each hk is an
(n,m) function, with n > m. Consider the following adversarial game G(F) for
the family F.

1. Adversary chooses an x ∈ {0, 1}n.
2. Adversary is given a k which is chosen uniformly at random from K.
3. Adversary has to find x′ such that x �= x′ and hk(x) = hk(x′).

The problem G(F)-UOWHF for the family F is to win the game G(F).
A strategy A for the adversary runs in two stages. In the first stage Aguess,

the adversary finds the x to which he has to commit in Step 1. It also produces
some auxiliary state information state. In the second stage Afind(x, k, state), the
adversary either finds a x′ which provides a collision for hk or it reports fail-
ure. Both Aguess and Afind(x, k, state) are probabilistic algorithms. The success
probability of the strategy is measured over the random choices made by Aguess

and Afind(x, k, state) and the random choice of k in Step 2 of the game. We say
that A is an (ε, q)-strategy for G(F)-UOWHF if the success probability of A is
at least ε and it invokes some hash function from the family F at most q times.
Informally, we say that F is a UOWHF if there is no “good” winning strategy
for the game G(F).

In this paper, we are interested in extending the domain of a UOWHF. Let
F = {hk}k∈K, where each hk is an (n,m) function. For i ≥ 1, let ni = n + (i−
1)(n − m). Define F0 = F and for i > 0, define Fi = {Hpi}pi∈Pi , where each
Hpi

is an (ni,m) function. The family Fi is built from the family F. In fact, as
shown in Proposition 1, a function in Fi is built using exactly i invocations of
some function in F.

We consider the problem G(Fi)-UOWHF. We say that the adversary has an
(ε, q)-strategy for G(Fi)-UOWHF if there is a strategy B for the adversary with
probability of success at least ε and which invokes some hash function from
the family F at most q times. Note that Fi is built using F and hence while
studying strategies for G(Fi) we are interested in the number of invocations of
hash functions from the family F.

The correctness of our construction will essentially be a Turing reduction. We
will show that if there is an (ε, q)-strategy for G(Fi), then there is an (ε1, q1)-
strategy for Fi, where ε1 is not “significantly” less than ε and q1 is not “signif-
icantly” more than q. In fact, we will have ε1 = ε/i and q1 = q + 2i. Since Fi

invokes a hash function from F a total of i times, we “tolerate” a reduction in
success probability by a factor of 1/i. (This is also true for other constructions
such as in [1].) The intuitive interpretation of the reduction is that if F is a
UOWHF then so is Fi for each i ≥ 1.

The key length for the base hash family F is #log |K|$. On the other hand,
the key length for the family Fi is #log |Pi|$. Thus increasing the size of the

192 P. Sarkar

input from n bits to ni bits results in an increase of the key size by an amount
#log |Pi|$ − #log |K|$.

3 Lower Bound on Key Expansion

In this section, we consider the problem of minimising the key expansion while
securely extending the domain of a UOWHF. More precisely, we are interested in
obtaining a lower bound on key length expansion. Obtaining a complete answer
to this problem is in general difficult. Thus we adopt a simpler approach to
the problem. We fix a class of possible domain extending algorithms and obtain
a lower bound on key expansion for any algorithm in this class. (Note that
in computer science, this is the usual approach for proving lower bounds on
algorithmic problems. For example, the lower bound of O(n log n) for sorting n
elements is obtained for the class of all comparison based algorithms.)

The usefulness of our lower bound depends on the class of algorithms that
we consider. The class that we consider consists of all masking based domain
extending algorithms. (We make this more precise later.) All previously known
masking based algorithms [1, 14, 13, 12, 8, 3, 7] belong to this class. We consider
this to be ample evidence for the usefulness of our lower bound. However, we
would like to point out that our lower bound does not hold for any domain ex-
tending algorithm. Thus it might be possible to achieve lower key expansions.
However, any such algorithm must adopt an approach which is different from
masking based algorithms. One possible approach could be to develop the tech-
nique of using separate keys for the compression functions (see [1]).

Let F = {hk}k∈K, where each hk is an (n,m) function. We are interested in
the class A of masking based domain extension algorithms. We do not want the
algorithm to be dependent on the structure of the UOWHF; in fact it should
work for all UOWHF’s which can “fit” into the structure of the algorithm. Any
algorithm A ∈ A behaves in the following manner.

1. It invokes some function hk ∈ F a finite number of times.
2. The outputs of all but one invocation of hk() is masked by XORing with

an m-bit string selected from the set {μ0, . . . , μρ−1}.
3. The invocations of hk() whose outputs are masked are called intermediate

invocations and the invocation whose output is not masked is called the
final invocation.

4. The entire output of any intermediate invocation is fed into the input of
exactly one separate invocation of hk().

5. Each bit of the message x is fed into exactly one invocation of hk().
6. The output of the final invocation is the output of A.

We emphasize that all previously known masking based algorithms [1, 14, 13,
12, 8, 3, 7] belong to A. In the following we make a general study of any algorithm
in A, with particular emphasis on obtaining a lower bound on key expansion
made by any algorithm in A.

Masking Based Domain Extenders for UOWHFs: Bounds and Constructions 193

Proposition 1. Let A ∈ A be such that A invokes hk() a total of s times.
Then the length of the message which is hashed is equal to n + (s− 1)(n−m).

Thus the number of invocations of hk() and the parameters n and m deter-
mine the length of the message to be hashed irrespective of the actual structure
of the algorithm. Hence any algorithm A ∈ A which invokes hk() a total of s
times defines a family F(A,s) = {H(A,s)

p }p∈P , where P = {0, 1}|k|+mρ and each
H

(A,s)
p is an (n + (n −m)(s − 1),m) function. The structure of any algorithm

A ∈ A which makes s invocations of hk() is described by a labelled directed
graph DA

s = (Vs, Es, ψs), where

1. Vs = {v1, . . . , vs}, i.e., there is a node for each invocation of hk().
2. (vi, vj) ∈ Es if and only if the output of the ith invocation is fed into the

input of the jth invocation.
3. ψs is a map ψ : Es → {μ0, . . . , μρ−1}, where ψ(vi1 , vi2) = μj if the output

of the i1-th invocation of hk() is masked using μj .

The nodes corresponding to the intermediate invocations are called interme-
diate nodes and the node corresponding to the final node is called the final node.
Without loss of generality we assume the final node to be vs. Nodes with inde-
gree zero are called leaf nodes and the others are called internal nodes. Define
δ(DA

s) = max{indeg(v) : v ∈ Vs}. We call δ(DA
s) to be the fan-in of algorithm A

for s invocations.

Proposition 2. The outdegree of any intermediate node in DA
s is 1 and the

outdegree of the final node is 0. Hence there are exactly (s − 1) arcs in DA
s .

Consequently, DA
s is a rooted directed tree where the final node is the root of DA

s .

Proposition 3. If δ = δ(DA
s), then n ≥ δm.

Thus an algorithm A with fan-in δ cannot be used with all UOWHFs. The
value of fan-in places a restriction on the values of n and m. However, given
this restriction the actual structure of DA

s does not depend on the particular
family F.

Let T be a non-trivial subtree of DA
s . Denote by vecψ(T) the ρ-tuple

(numμ0(T) mod 2, . . . , numμρ−1(T) mod 2),

where numμi(T) is the number of times the mask μi occurs in the tree T . We say
that DA

s is null-free if vecψ(T) �= (0, . . . , 0) for each non-trivial subtree of DA
s .

We now turn to the task of obtaining a lower bound on key expansion made
by any algorithm A in A. This consists of two tasks. Firstly, we show that for any
“correct UOWHF preserving domain extender” A which invokes some function
from the compression UOWHF exactly s times, the DAG DA

s must be null-free.
This translates the problem into a combinatorial one. Our second task is to use
use this combinatorial property to obtain the required lower bound.

The intuitive idea behind the first part is as follows. Given DA
s and a family F′

with suitable parameters, we construct a family F such that if F′ is a UOWHF,

194 P. Sarkar

then so is F. Then we extend the domain of F using DA
s to obtain the family

F(A,s) and show that if DA
s is not null-free then it is possible to exhibit a collision

for every function in F(A,s). Now we argue as follows. If F′ is a UOWHF and
A is correct for s invocations, then F(A,s) must also be a UOWHF and hence
DA

s must be null-free. This intuitive argument is now formalized in terms of
reductions.

Let A ∈ A and DA
s be the DAG corresponding to s invocations of the

compression family by A. We set δ = δ(DA
s). Let F′ = {h′

k}k∈K where each h′

is an (n,m′) function with K = {0, 1}K , m = m′ + K and n = δm + δ + 1. For
z ∈ {0, 1}n write

z = z1,1||z1,2||z2,1||z2,2|| . . . ||zi,1||zi,2|| . . . ||zδ,1||zδ,2||y||b

where |zi,1| = m, |zi,2| = K for 1 ≤ i ≤ δ, |y| = δ and b ∈ {0, 1}. We write
y = y(z) and b = b(z) to show the dependence of y and b on z. Given z ∈ {0, 1}n,
define KLst = {z1,2, z2,2, z3,2, . . . , zδ,2}. Given z ∈ {0, 1}n and k ∈ K, define a
Boolean function φ(z, k) to be true (T) if and only if k =

⊕
w∈S w for some

∅ �= S ⊆ KLst(z). We define the family of functions F = {hk}k∈K, where each
hk is an (n,m) function in the following manner.

hk(z) = h′
k(z)||k if b = 1 and φ(z, k) = F;

= h′
k(z)||0K if b = 0, y = 0δ and φ(z, k) = F;

= h′
k(z)||Sy if b = 0, y �= 0δ and φ(z, k) = F;

= 1m φ(z, k) = T.

⎫⎪⎪⎬⎪⎪⎭ (1)

Here y = y(z) and Sy = ⊕yi=1zi,2, i.e., the XOR’s of the zi,2’s for which the
ith bit of y is 1.

Proposition 4. Suppose there is an (ε, q)-strategy for G(F). Then there is an
(ε− 1

2K , q)-strategy for G(F′).

Intuitively, this means that if F′ is a UOWHF, then so is F. In the next result
we show that if DA

s is not null-free, then it is possible to exhibit a collision for
each function in F(A,s).

Lemma 1. Let A ∈ A and F be defined as in (1). For s > 0, let F(A,s)

be the family obtained by extending the domain of F using DA
s . If DA

s is not
null-free, then it is possible to define two strings x, x′ such that x �= x′ and
H

(A,s)
p (x) = H

(A,s)
p (x′) for any H

(A,s)
p ∈ F(A,s),

We now translate Lemma 1 into a lower bound on the number of masks.

Definition 1. Let T1 = (V1, E1) and T2 = (V2, E2) be two subtrees of DA
s . We

denote by T1ΔT2 the subtree of DA
s induced by the set of arcs E1ΔE2, where

E1ΔE2 is the symmetric difference between E1 and E2.

Definition 2. Let F be a family of non-trivial subsets of DA
s such that for any

T1, T2 ∈ F , the tree T1ΔT2 is also a non-trivial subtree of DA
s . We call F a

connected family of DA
s .

Masking Based Domain Extenders for UOWHFs: Bounds and Constructions 195

Lemma 2. Let DA
s be null-free and let F be a connected family of DA

s . Then

1. For any T ∈ F , vecψ(T) �= (0, . . . , 0).
2. For any T1, T2 ∈ F , vecψ(T1) �= vecψ(T2).

Consequently, 2ρ−1 ≥ |F| or equivalently ρ ≥ #log2(|F|+1)$, where ρ is the
number of masks used by A for s invocations.

Lemma 2 provides a lower bound on the number of masks in terms of sizes
of connected families. Thus the task is to find a connected family of maximum
size in DA

s . We show the existence of a connected family of size (s − 1) in DA
s .

For each intermediate node v ∈ DA
s , let Pv be the path from v to the final node

of DA
s . Define F = {Pv : v is an intermediate node in DA

s }. It is easy to check
that F is a connected family of size (s− 1). Hence we have the following result.

Theorem 1. Let s > 0 and A ∈ A be correct for s invocations. Then the
number of masks required by A is at least #log2 s$.

The bound in Theorem 1 is tight since Shoup’s algorithm [14] meets this
bound with equality. This also shows that Shoup’s algorithm is optimal for the
class A . Also we would like to point out that the lower bound of Theorem 1
can be improved for particular algorithms.

Lemma 3. Suppose DA
s is the full binary tree on s = 2t − 1 nodes. If t = 2,

there is a connected family of size 3 in DA
s and for t ≥ 3, there is a connected

family of size 5× 2t−2 − 2 in DA
s . Consequently, ρ ≥ 2 for t = 2 and ρ ≥ t + 1

for t ≥ 3.

4 New Construction

For t > 0, let Tt be the binary tree defined as Tt = (Vt = {P0, . . . , P2t−2}, At),
where At = {(P2j+1, Pj), (P2j+2, Pj) : 0 ≤ j ≤ 2t−1−2}. The underlying digraph
for our algorithm is a binary tree with sequential paths terminating at the leaf
nodes of the tree. We define a digraph Gt,i which consists of the full binary tree
Tt alongwith a total of i nodes on the sequential paths. The precise definition of
Gt,i = (Vt,i, At,i) is

Vt,i = Vt ∪ {Q0, . . . ,Qi−1}
At,i = At ∪ {(Qj , P2t−1+j−1) : 0 ≤ j ≤ 2t−1 − 1}

∪ {(Qj ,Qj−2t−1) : 2t−1 ≤ j ≤ i− 1}.

⎫⎬⎭ (2)

The total number of nodes in Gt,i is equal to 2t − 1 + i, where 2t − 1 nodes
are in the binary tree part and i nodes are in the sequential part. We define
parameters rt,i and st,i (or simply r and s) in the following manner: If i = 0,
then r = s = 0; if i > 0, then r and s are defined by the equation:

i = r2t−1 + s (3)

where s is a unique integer from the set {1, . . . , 2t−1}. For i > 0, we can write
i = (r + 1)× s + (2t−1 − s)r. Thus in Gt,i there are s sequential paths of length

196 P. Sarkar

(r + 1) each and these terminate on the left most s leaf nodes of Tt. There are
also (2t−1−s) sequential paths of length r each and these terminate on the other
(2t−1 − s) leaf nodes of Tt. Figure 1 shows G4,19.

We define ρt,i or (simply ρ) to be the maximum length (counting only Q
nodes) of a path from a Q-node to a P -node. Hence ρ = 0 if i = 0 and ρ = r+ 1
if i > 0.

When i = 0, Gt,i is simply the full binary tree Tt and when t = 1, Gt,i is a
dipath of length r + 1. These are the two extreme cases – one leading to a full
binary tree and the other leading to a single dipath. In practical applications,
t will be fixed and there will be “long” dipaths terminating on the leaf nodes
of Tt. For implementation purpose, the number of processors required is 2t−1.
Hence for practical applications, the value of t ≤ 5.

Remark: The idea of breaking a message into parts, hashing them indepen-
dently and finally combining the outputs is present in Damg̊ard [2] in the context
of collision resistant hash functions. The current construction can be seen as a
development of the “UOWHF version” of this idea.

4.1 Notation

We define a few notation for future reference.

1. t is the number of levels in the binary tree Tt.
2. i is the total number of nodes in the sequential part of the algorithm.
3. r and s are as defined in (3).
4. ρ = 0 if i = 0 and ρ = r + 1 if i > 0.
5. N = 2t − 1 + i is the total number of nodes in Gt,i.
6. For U ∈ Vt,i, define nodenum(U) = j if U = Pj and

nodenum(U) = j + 2t − 1 if U = Qj .
7. For U ∈ Vt,i, we say that U is a P -node (resp. Q-node) if U = Pj

(resp. U = Qj) for some j.

For U ∈ Vt,i, we define indeg(U) (resp. outdeg(U)) to be the indegree (resp.
outdegree) of U . Note that other than P0 each node U has outdeg(U) = 1. Thus
for each node U �= P0 there is a unique out neighbour.

The concept of level is defined in the following manner. There are L = ρ + t
levels in Gt,i and the level number of each node is defined as follows.

level(Pj) = L− 1− j1 if 2j1 − 1 ≤ j ≤ 2j1+1 − 2 and 0 ≤ j1 ≤ t− 1;
level(Qj) = ρ− j1 − 1 if j12t−1 ≤ j ≤ (j1 + 1)2t−1 − 1 and 0 ≤ j1 ≤ r − 1;
level(Qj) = 0 if r2t−1 ≤ j ≤ r2t−1 + s.

⎫⎬⎭(4)

Note that if ρ = 0, there are no Q-nodes and hence the level numbers of
Q-nodes are not defined. The root node of Tt has the highest level. Nodes with
indegree zero can be at levels zero and one. Let U ∈ Vt,i and j = nodenum(U):
If 0 ≤ j ≤ 2t−1 − 2 then we define lchild(U) = P2j+1 and rchild(U) = P2j+2; if
2t−1 − 1 ≤ j ≤ N − 1, then we define predecessor of U in the following manner:

pred(U) = Qj+2t−1 if 2t−1 − 1 ≤ j ≤ 2t−1 + i− 2;
= NULL if 2t−1 + i− 1 ≤ j ≤ N − 1;

}
(5)

Masking Based Domain Extenders for UOWHFs: Bounds and Constructions 197

For a node U , pred(U) = NULL implies that the indegree of U is zero.

4.2 Mask Assignment Algorithm

There are two disjoint sets of masks {α0, . . . , αl−1} and {β0, . . . , βt−2} where
l = #log(ρ + t)$. The mask assignment

ψ : At,i → {α0, . . . , αl−1} ∪ {β0, . . . , βt−2}.

is a function from the set of arcs of Gt,i to the set of masks. The definition of ψ
is as follows: Let (U, V) ∈ At,i with level(U) = j − 1 and level(V) = j for some
j ∈ {1, . . . , L− 1}.
• If ((U is a Q-node) or (U is a P -node and U = lchild(V))),

then ψ(U, V) = αν(j).
• If (U is a P -node and U = rchild(V)) then ψ(U, V) = βj−(ρ+1).

Here ν(j) is defined to be the non negative integer j1 such that 2j1 |j and
2j1+1 � |j. Also for the convenience of notation we write ψ(U, V) instead of
ψ((U, V)). The mask assignment for G4,19 is shown in Figure 1.

4.3 Optimality of Mask Assignment

The total number of masks used is equal to t − 1 + #log(ρ + t)$. The total
number of nodes in Gt,i is equal to N = 2t − 1 + i. Using Theorem 1, at least
Lt,i = #log(2t − 1 + i)$ masks are required by any algorithm in class A. Our
algorithm requires Rt,i = t − 1 + #log(ρ + t)$ masks. Define Dt,i = Rt,i − Lt,i.
We study Dt,i.

Proposition 5.

Dt,i = 0 if i = 0 and t = 1;
= #log t$ − 1 if i = 0 and t > 1;
= #log(r + 1 + t)$ −

⌈
log
(
r + 2 + s−1

2t−1

)⌉
if i > 0.

⎫⎬⎭ (6)

Furthermore, Dt,i = 0 if and only if either t = 1; or (t = 2 and i = 0); or
2j − 1− #(s− 1)/2t−1$ ≤ r ≤ 2j+1 − t− 1 for some j > 0.

For t = 1, the mask assignment algorithm reduces to the mask assignment
algorithm of Shoup [14] and for i = 0, the mask assignment algorithm reduces
to the mask assignment algorithm of Sarkar [13]. Hence we concentrate on the
case t > 1 and i > 0. For practical parallel implementation, the value of t will
determine the number of processors and will be fixed whereas the value of i can
grow in an unbounded manner.

Suppose 2τ−1 < t− 1 ≤ 2τ . For j ≥ 0, define two intervals of integers in the
following manner:

Ij = {2τ+j − 1−
⌈

s−1
2t−1

⌉
, 2τ+j −

⌈
s−1
2t−1

⌉
, . . . , 2τ+j+1 − t− 1};

Jj = {2τ+j+1 − t, 2τ+j+1 − t + 1, . . . , 2τ+j+1 − 2−
⌈

s−1
2t−1

⌉
}.

}
(7)

Clearly, |Ij | = 2τ+j− t+1+
⌈
(s− 1)/2t−1

⌉
, |Jj | = t−1−

⌈
(s− 1)/2t−1

⌉
and

|Ij |+ |Jj | = 2τ+j .

198 P. Sarkar

� � �

� � � � � � � �

� � � � � � � �

�
�
�
���

�
�
�
���

�
�
�
���

�
�
�
���

	
	

	
		

	
	

	
		

	
	

	
		

	
	

	
		

�
�

�
���

�
�

�
���

�

�

�
�

�
�

�
�

�
�

���

�

α0 α0 α0

α0 α0 α0 α0 α0 α0 α0 α0

α0 α0

α1 α1 α1 α1 α1 α1 α1 α1

α1

α2 α2 α2 α2β0 β0 β0 β0

β1 β1

β2

Q16 Q17 Q18

Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

P7 P8 P9 P10 P11 P12 P13 P14

P3 P4 P5 P6

P1 P2

P0

level 0

level 1

level 2

level 3

level 4

level 5

level 6

Fig. 1. Example of mask assignment for t = 4 and i = 19

Theorem 2. Suppose i > 0, 2τ−1 < t− 1 ≤ 2τ and for j ≥ 0, Ij and Jj are as
defined in 7. Then Dt,i = 0 if r ∈ Ij; and Dt,i = 1 if r ∈ Jj.

From Theorem 2, it follows that for j ≥ τ , in any interval 2j + 1 ≤ r ≤ 2j+1,
there are exactly t−1−#(s−1)/2t−1$ points where the algorithm is suboptimal
with respect to the lower bound. Moreover, at these points it requires exactly
one extra mask over the lower bound. In any practical parallel implementation,
the value of t will be fixed, whereas the value of r will grow. In such a situation,
the ratio 1

2j (t− 1− #(s− 1)/2t−1$) approaches zero very fast and hence we can
say that for t ≥ 2, the algorithm achieves optimal key length expansion almost
everywhere. (Note that for t = 1, the algorithm reduces to Shoup’s algorithm
and hence achieves optimal key length expansion.)

4.4 Computation of Message Digest

Let {hk}k∈K, where each hk is an (n,m) function, be the compression UOWHF
whose domain is to be extended. For t > 1, we require n ≥ 2m. The nodes
of Gt,i represent the invocations of hk. Thus hk is invoked a total of N times.

Masking Based Domain Extenders for UOWHFs: Bounds and Constructions 199

The output of P0 is provided as output digest, whereas the outputs of all the
other nodes are used as inputs to other invocations as defined by the arcs of
Gt,i. Using Proposition 1 of [12] we obtain the following: Suppose a message x is
hashed using Gt,i and the compression UOWHF {hk}k∈K, where each hk is an
(n,m) function. Then |x| = N(n−m) + m.

Thus {hk}k∈K is extended to {H(t,i)
p }p∈P where each H

(t,i)
p is an (N(n−m)+

m,m) function and

p = k||α0|| . . . ||αl−1||β0|| . . . ||βt−2.

The message x of length N(n − m) + m has to be formatted into small
substrings and provided as input to the different invocations of hk. Write x =
x0|| . . . ||xN−1, where the lengths of the xj ’s are as follows.

|xj | = n− 2m if 0 ≤ j ≤ 2t−1 − 2;
= n−m if 2t−1 − 1 ≤ j ≤ 2t−1 + i− 2;
= n if 2t−1 + i− 1 ≤ j ≤ 2t + i− 2.

⎫⎬⎭ (8)

The substring xj is provided as input to node U with nodenum(U) = j and
the m-bit output of U is denoted by zj . The outputs z1, . . . , zN−1 are masked
using the α and β masks to obtain m-bit strings y1, . . . , yN−1 in the following
manner.

yj = zj ⊕ ψ(U, V) if nodenum(U) = j. (9)

The inputs to the invocations of hk are formed from the x’s and the y’s in
the following manner. There are N invocations whose inputs are denoted by
w0, . . . , wN−1 and are defined as follows.

wj = xj ||y2j+1||y2j+2 if 1 ≤ j ≤ 2t−1 − 2;
= xj ||yj+2t−1 if r > 0 and 2t−1 − 1 ≤ j ≤ 2t−1 + i− 2;
= xj if 2t−1 + i− 1 ≤ j ≤ 2t + i− 2.

⎫⎬⎭ (10)

Note that the length of each wj is n and hence we can invoke hk on wj for all
j ∈ {0, . . . ,N − 1}. For any node U ∈ Vt,i we define x(U), y(U) and w(U) to be
the x, y and w strings associated to the node U as defined respectively in (8), (9)
and (10). Similarly the output of node U will be denoted by z(U).

Now we are ready to describe the digest computation algorithm. Most of the
work has already been done, so that the description of the algorithm becomes
simple. Suppose the compression UOWHF is {hk}k∈K. We describe the digest
computation of H

(t,i)
p (x).

Algorithm to compute H(t,i)(x)

1. for j = 0 to L− 1 do
2. for all U with level(U) = j do in parallel
3. compute z(U) = hk(w(U));
4. end do;
5. end do;
6. return z0.

200 P. Sarkar

5 Conclusion

In this paper, we have formalized the model for masking based domain extending
algorithms. Using this formal model, we obtained a lower bound on the minimum
amount of key expansion required by any masking based algorithm. Our second
contribution has been to develop a simple and efficient parallel domain extender.
The key expansion of our algorithm is almost everywhere optimal whereas the
efficiency of parallelism is asymptotically optimal.

References

1. M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs
practical. Proceedings of Crypto 1997, pp 470–484.

2. I. B. Damg̊ard. A design principle for hash functions. Proceedings of Crypto 1989,
Lecture Notes in Computer Science, volume 435 (1990), 416–427.

3. W. Lee, D. Chang, S. Lee, S. Sung and M. Nandi. New Parallel Domain Extenders
for UOWHF. Proceedings of Asiacrypt 2003, Lecture Notes in Computer Science,
pp 208–227.

4. R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes provably as secure
as subset sum. Journal of Cryptology, volume 9, number 4, 1996.

5. R. C. Merkle. One way hash functions and DES. Proceedings of Crypto 1989,
Lecture Notes in Computer Science, volume 435, 1990, pp 428–226.

6. I. Mironov. Hash functions: from Merkle-Damg̊ard to Shoup. Proceedings of Eu-
rocrypt 2001, Lecture Notes in Computer Science, volume 2045 (2001), Lecture
Notes in Computer Science, pp 166–181.

7. M. Nandi. Optimal Domain Extension of UOWHF and a Sufficient Condition.
Proceedings of SAC 2004, Lecture Notes in Computer Science, to appear.

8. M. Nandi. A New Tree based Domain Extension of UOWHF, Cryptology e-print
archive, Report No. http://eprint.iacr.org, 2003/142.

9. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
aplications. Proceedings of the 21st Annual Symposium on Theory of Computing,
ACM, 1989, pp. 33–43.

10. J. Rompel. One-way functions are necessary and sufficient for digital signatures.
Proceedings of the 22nd Annual Symposium on Theory of Computing, ACM, 1990.

11. P. Sarkar. Masking Based Domain Extenders for UOWHFs: Bounds and Construc-
tions, Cryptology e-print archive, http://eprint.iacr.org, Report No. 2003/225.

12. P. Sarkar. Domain Extenders for UOWHFs: A Finite Binary Tree Algorithm,
Cryptology e-print archive, http://eprint.iacr.org, Report No. 2003/009.

13. P. Sarkar. Construction of UOWHF: Tree Hashing Revisited, Cryptology e-print
archive, http://eprint.iacr.org, Report No. 2002/058.

14. V. Shoup. A composition theorem for universal one-way hash functions. Proceed-
ings of Eurocrypt 2000, pp 445–452, 2000.

15. D. Simon. Finding collisions on a one-way street: Can secure hash function be
based on general assumptions?, Proceedings of Eurocrypt 1998, Lecture Notes in
Computer Science, pp 334–345, 1998.

16. D. R. Stinson. Some observations on the theory of cryptographic hash functions.
http://www.cacr.math.uwaterloo.ca/~dstinson/papers/newhash.ps.

Higher Order Universal One-Way Hash
Functions�

Deukjo Hong1,��, Bart Preneel2, and Sangjin Lee1,� � �

1 Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

{hongdj, sangjin}@cist.korea.ac.kr
2 ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Belgium

bart.preneel@esat.kuleuven.ac.be

Abstract. Universal One-Way Hash Functions (UOWHFs) are families
of cryptographic hash functions for which first a target input is chosen
and subsequently a key which selects a member from the family. Their
main security property is that it should be hard to find a second input
that collides with the target input. This paper generalizes the concept
of UOWHFs to UOWHFs of order r. We demonstrate that it is possible
to build UOWHFs with much shorter keys than existing constructions
from fixed-size UOWHFs of order r. UOWHFs of order r can be used
both in the linear (r + 1)-round Merkle-Damg̊ard construction and in a
tree construction.

Keywords: Hash Function, Collision Resistant Hash Function (CRHF),
Universal One-Way Hash Function (UOWHF), Higher Order Universal
One-Way Hash Function.

1 Introduction

Since the introduction of the notion of UOWHFs by Naor and Yung in 1989 [5],
it is widely believed that UOWHFs form an attractive alternative to CRHFs
(Collision Resistant Hash Functions). The main requirement for a UOWHF is
that it is hard to find a second preimage. First a challenge input is selected by
the opponent, subsequently a key is chosen which selects a member of the class
of functions and only after this choice the opponent has to produce a second
preimage with the same hash value (for this key) as the challenge input. This
should be contrasted to CRHFs, where first a key is selected and subsequently a
two colliding inputs need to be found; due to the birthday paradox, a black box
approach for a CRHF with an n-bit result takes on average about 2n/2 queries.

� Supported by Korea University Grant in 2003 year.
�� A guest researcher at ESAT/SCD-COSIC, K.U.Leuven from 2003 to 2004.

� � � Supported (in part) by the Ministry of Information & Communications, Korea,
under the Information Technology Research Center (ITRC) Support Program.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 201–213, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

202 D. Hong, B. Preneel, and S. Lee

Simon [10] has demonstrated that a UOWHF is a strictly weaker concept than
a CRHF. UOWHFs can replace CRHFs in many applications; even for digital
signatures this is feasible, but it should be noted that one becomes vulnerable
to attacks by the signers (who can cheat and choose the key before the target
message). The concept of UOWHFs has been generalized by Zheng et al. [12]
and by Mironov [4].

A standard approach to construct hash functions that take input strings of
arbitrary length is to start from a compression function that compresses input
strings of fixed length. For CRHFs, the Merkle-Damg̊ard construction is a widely
used and efficient method [2, 3]. Both authors showed independently that it is
sufficient for the hash function to be collision resistant that the compression
function is. Damg̊ard also proposed a tree construction. Naor and Yung showed
that it is possible in principle to build UOWHFs by composition [5]. However,
Bellare and Rogaway showed that even if the compression function is a UOWHF,
a 2-round Merkle-Damg̊ard iteration of this function may not be a UOWHF.

Subsequently, provably secure constructions have been developed based on
compression functions at the cost of an increase in key length. Bellare and Rog-
away [1] propose two types of constructions.

– The first type has a linear structure; two variants of the Merkle-Damg̊ard
construction were shown to be secure: the basic linear hash and the XOR
linear hash. Later, Shoup improved the XOR linear hash construction. He
shows that if one has a fixed size UOWHF which maps n bits to m bits (with
n > m), one can construct a UOWHF that can hash messages of bit-length
2t(m− n) + m bits to m using a key of bit-length t ·m and 2t applications
of the compression function. Mironov has proved that this construction is
optimal in terms of key size among linear constructions [4].

– The second type has a tree structure. Here the two constructions with a
security proof are the basic tree hash and the XOR tree hash (they extend
the work of [5]). XOR tree hash has subsequently been improved further, a.o.
by Sarkar [7, 8] and by Lee et al. [11], who reduce the key size and extend
these structures to higher dimensional parallel constructions.

1.1 Motivation

The special UOWHF made by Bellare and Rogaway [1] loses its universal one-
wayness when it is extended to 2-round Merkle-Damg̊ard construction. This ex-
ample motivated us to study general constructions that work for any UOWHF
compression function. It means that the Merkle-Damg̊ard construction cannot
be used for extending a universal one-way compression function in general. How-
ever, this property does not applied to all UOWHFs. The compression functions
of certain UOWHFs may not lose their universal one-wayness until they are ex-
tended to 3-round Merkle-Damg̊ard construction. In this case, a 2-round Merkle-
Damg̊ard construction based on the compression function can be used as another
compression function and so the key size of the whole scheme is reduced by a
factor of 2. This lead to promising results, since an important goal of research

Higher Order Universal One-Way Hash Functions 203

on constructions extending UOWHFs has been optimalization of the key size.
We began with the Merkle-Damg̊ard construction, but we found that the tree
construction has the same problem as the Merkle-Damg̊ard construction.

Intuitively, a UOWHF which does not lose its universal one-wayness until
it is extended to 3-round Merkle-Damg̊ard construction is a slightly stronger
primitive than Bellare-Rogaway’s special UOWHF. More generally, a UOWHF
which does not lose its universal one-wayness until it is extended to more round
Merkle-Damg̊ard construction is stronger. So, we need new security notions to
classify UOWHFs.

1.2 Our Contribution

We define the order of a UOWHF. We can classify UOWHFs according to the
order. The classes of UOWHFs of same order form a chain between CRHF and
UOWHF classes.

We show in Theorem 1 that if a UOWHF has a higher order, a Merkle-
Damg̊ard construction with more rounds based on it becomes a UOWHF. Theo-
rem 3 states that if a UOWHF has a higher order, a tree construction with more
levels becomes a UOWHFs. Theorems 1 and 3 are our main results. They con-
sider collisions of the same length only, since we want to use our Merkle-Damg̊ard
and tree constructions only as a compression function which plays the role of a
building block in the known constructions. Theorems 2 and 4 are generalizations
of Theorem 1 and 3 which are mainly of theoretical interest.

1.3 Organization of This Paper

This paper is organized as follows. Section 2 introduces our notation and defini-
tions and presents the counterexample of Bellare and Rogaway. In Sect. 3, our
new definition of higher order UOWHFs is introduced. Section 4 and 5 present
respectively the Merkle-Damg̊ard and the tree construction based on higher or-
der UOWHFs. Some concluding remarks are made in Sect. 6.

2 Preliminaries

We will follow the notation and computation models in [1].

2.1 Notation

We denote the concatenation of strings x and x′ by x||x′ or xx′. Σn is the set
of all strings of bit-length n. We use the notation Σm

n instead of Σnm when we
want to stress that each string consists of m blocks of bit-length n. The set of
all strings whose lengths are multiple of n is denoted by Σ+

n .
A hash function family is a function H : Σk × Σm → Σc, where Σk is the

key space, Σm is the message space, and Σc is the set of hash values. We often
need to change Σm to describe different hash function families.

We write x
R←− Σn for choosing a string of n-bit length uniformly at random.

For a string x, |x| is its bit-length. When A is an algorithm, program or adversary,

204 D. Hong, B. Preneel, and S. Lee

A(x)→ y means that A gets an information of x to output y. When we want to
address that A has no information to outputs y, we write A(null)→ y with the
null string null.

We take the RAM (Random Access Machine) model of computation which is
also used in [1], and measure the running time of a program with respect to that
model. If H : Σk ×Σm → Σc is a hash function family, we let TH indicate the
worst-case time to compute H(K,x), in the underlying model of computation,
when K ∈ Σk and x ∈ Σm.

2.2 Definitions of CRHF and UOWHF

Recently, Rogaway and Shrimpton suggested seven simple and nice definitions
of hash functions including CRHF and UOWHF [6], but we prefer to use some
games to define our objects and to describe our work.

Definition 1 (CRHF). A hash function family H : Σk ×Σm → Σc,m ≥ c, is
(t, ε)-CRHF if no adversary A wins in the following game with the probability ε
and within the time t:

Game(CRHF,A,H)
K

R←− Σk

A(K)→ (x, x′)
A wins if x �= x′ and H(K,x) = H(K,x′).

In the game of Definition 1, the adversary gets the key K of H. This implies
that the adversary knows everything about H(K, ·) and so it can try any exper-
iments until it produces its output within the time t. However, the behavior of
the adversary is more restricted in Definition 2.

Definition 2 (UOWHF). A hash function family H : Σk×Σm → Σc,m ≥ c,
is (t, ε)-UOWHF if no adversary A = (A1, A2) wins in the following game with
the probability ε and within the time t:

Game(UOWHF,A,H)
A1(null)→ (x, State)
K

R←− Σk

A2(K,x, State)→ x′

A = (A1, A2) wins if x �= x′ and H(K,x) = H(K,x′).

In Definition 2, algorithm A1 outputs the target message x. The only infor-
mation which the adversary has before producing the target message is H. State,
the other output of A1, is some extra state information which helps A2 to find
a collision. Algorithm A2 outputs the sibling message x′ on input (x, State).

Strictly speaking, when we are given H : Σk ×Σm → Σc, we should call it a
CRHF family or a UOWHF family, but for simplicity we often just call it CRHF
or UOWHF.

Higher Order Universal One-Way Hash Functions 205

3 Higher Order UOWHFs

Let us revisit Definition 2. No access to any oracles is given to A1. A1 outputs
(x, State) with no information. So, random selection of K from K is independent
of A1’s behavior. Consequently, changing the order of steps 1 and 2 in the game
doesn’t effect the success probability of the adversary. So, the following game is
essentially equivalent to the game in Definition 2.

Definition 3. A hash function family H : Σk × Σm → Σc,m ≥ c, is (t, ε)-
UOWHF′ if no adversary A = (A1, A2) wins in the following game with the
probability ε and within the time t:

Game(UOWHF′, A, H)
K

R←− Σk

A1(null)→ (x, State)
A2(K,x, State)→ x′

A = (A1, A2) wins if x �= x′ and H(K,x) = H(K,x′).

However, unlike the game in Definition 2, we can add an oracle OH(K,·) to
the game in Definition 3, which gets a query x and returns y = H(K,x). We
can then allow the adversary to access the oracle before he chooses the target
message. Now we give the following definition. Let Q be a set of adaptive query-
answer pairs associated with the oracle OH(K,·) which is initialized to the empty
set Ø in the game.

Definition 4 (r-th Order UOWHF). A hash function family H : Σk×Σm →
Σc,m ≥ c, is (t, ε)-UOWHF(r) if no adversary A = (A1, A2) wins in the follow-
ing game with the probability ε and within the time t:

Game(UOWHF(r), A)
K

R←− Σk; Q← Ø
if r > 0 do:

for i = 1, ..., r do:
A1(Q)→ xi

yi ← OH(K,xi)

Q← {(xi, yi)} ∪Q
A1(Q)→ (x, State)
A2(K,x, State)→ x′

A = (A1, A2) wins if x �= x′ and H(K,x) = H(K,x′).

Indeed, the hash function families which satisfy Definition 3 can be regarded
as UOWHF(0) families. The relationships among Definitions 1, 2, 3 and 4 can
be summarized as follows.

Proposition 1. Let H : Σk × Σm → Σc,m ≥ c, be a hash function family.
Then,

206 D. Hong, B. Preneel, and S. Lee

1. H is a (t, ε)-UOWHF ⇔ H is a (t, ε)-UOWHF(0).
2. For any r ≥ 0, H is a (t′, ε)-UOWHF(r + 1) ⇒ H is a (t, ε)-UOWHF(r),

where t = t′ −Θ(TH + m + c).
3. For any r ≥ 0, H is a (t′, ε)-CRHF ⇒ H is a (t, ε)-UOWHF(r), where

t = t′ −Θ(r)(TH + m + c).

Proof. The proofs of 1 and 2 are trivial. So, we only prove 3. Suppose that
A = (A1, A2) is an adversary for H in the UOWHF(r) sense. We use it to make
the adversary B who works in Game(CRHF,B,H) as follows.

Game(CRHF,B,H)
K

R←− Σk

B(K) do:
Q← Ø
if r > 0 do:

for i = 1, ..., r do:
A1(Q)→ xi

yi ← H(K,xi)
Q← {(xi, yi)} ∪Q

A1(Q)→ (x, State)
A2(K,x, State)→ x′

output (x, x′)

In the above game, B simulates OH(K,·) for A1. Since B just outputs a
collision which A found, the probability that B wins the game is same as A. The
running time of B is at most t + Θ(r)(TH + m + c). �

We claim that H is not a UOWHF(1) in Bellare and Rogaway’s example [1].
If the adversary asks any query x and get the answer y = H(K,x), then he
would obtain the key K and can make a collision easily.

4 Merkle-Damg̊ard Construction Based on Higher Order
UOWHF

Suppose we have a hash function family H : Σk × Σc+m → Σc, where m is
a positive integer. The Merkle-Damg̊ard construction of H with variable initial
value gives a hash function family MD[H] : Σk × (Σc × Σ+

m) → Σc. For each
key K ∈ Σk and any message x = x0x1...xn, where x0 ∈ Σc and xi ∈ Σm for
i = 1, ..., n, MD[H] is defined as follows.

Algorithm MD[H](K,x)
n← (|x| − c)/m
y0 ← x0
for i = 1, ..., n do:

yi ← HK(yi−1||xi)
return yn

Higher Order Universal One-Way Hash Functions 207

If MD[H] only takes (c + nm)-bit messages for a fixed n, it would always
have n rounds. In that case we use the notation MDn[H] instead of MD[H].
In the following theorem, we say that if H is a UOWHF(r), the (r + 1)-round
MDr+1[H] is a UOWHF.

Fig. 1. 3-round Merkle-Damg̊ard construction MD3[H]

Theorem 1. Let H : Σk ×Σc+m → Σc be a (t′, ε′)-UOWHF(r). Then, MDr+1
[H] : Σk × Σc+rm → Σc is a (t, ε)-UOWHF, where ε = (r + 1)ε′ and t =
t′ −Θ(r)(TH + m + c).

Proof. Let x, x′ ∈ Σc+(r+1)m be a collision for MDr+1[H](K, ·). We observe that
there exists an index j ∈ {1, ..., r + 1} such that

MD[H](K,x0x1 · · ·xj) = MD[H](K,x′
0x

′
1 · · ·x′

j)
MD[H](K,x0x1 · · ·xj−1)||xj �= MD[H](K,x′

0x
′
j · · ·x′

j−1)||x′
j . (1)

We will exploit this below.
Assume that A = (A1, A2) is an adversary who breaks MDr+1[H] with in-

puts of equal-length in the UOWHF sense. We use it to make the adversary
B = (B1,B2) who works in the Game(UOWHF(r),B,H) as follows.

Game(UOWHF(r),B,H)
K

R←− Σk; Q← Ø
if r > 0 do:

for j = 1, ..., r do:
B1(Q) do:

if j = 1 do:
A1(null)→ (x, StateA)
y0 ← x0

query y0||x1 to OH(K,·)

if j > 1 do:
query yj−1||xj to OH(K,·)

yj ← OH(K,yj−1||xj)

Q← {(yj−1||xj , yj)} ∪Q

208 D. Hong, B. Preneel, and S. Lee

B1(Q) do:
i

R←− {1, ..., r + 1}
output (yi−1||xi, StateB)

B2(K, yi−1||xi, StateB) do:
A2(K,x, StateA)→ x′

y′
i−1 ← MD[H](K,x′

0x
′
1 · · ·x′

i−1)
output y′

i−1||x′
i

The adversary B works in the game as follows. When j = 1, Q is empty and
B1 runs A1 to obtain (x, StateA) where x = x0x1 · · ·xr+1. Then B1 sets y0 to
x0 and sends a query y0||x1 to the oracle OH(K,·). When j �= 1, Q is nonempty
and B1 sends a query yj−1||xj to the oracle OH(K,·). After collecting r adaptive
query-answer pairs, B1 selects i ∈ {1, ..., r + 1} at random, and then outputs
yi−1||xi and StateB = (i, x, StateA) as the target message and an additional
state information for B2, respectively. On input (K, yi−1||xi, StateB), B2 runs
A2 by giving (K,x, StateA). Once A2 outputs its sibling message x′, B2 computes
y′

i−1 and outputs y′
i−1||x′

i as its sibling message.
Now we must bound the probability that (yi−1||xi, y

′
i−1||x′

i) is a collision for
H(K, ·) in the game. Note that i was chosen at random, so if (x, x′) is a collision
for MDr+1[H](K, ·) then we have i = j with probability 1/(r + 1), where j is
the value of Equation (1). So, ε′ > ε/(r + 1).

The running time of B is that of A plus the overhead. This overhead is
Θ(r)(TH + m + c). The choice of t in the theorem statement makes all this at
most t′, from which we conclude the result. �

Assume that a domain D and a range R are fixed. We regard the notion
of UOWHF(r) as the class of all UOWHF(r). We also consider the class of all
the hash functions which do not lose universal one-wayness (upto equal-length
collisions) until they are extended to (r+1)-round Merkle-Damg̊ard construction,
UOW-MD(r). From Proposition 1 and Theorem 1, it is easy to see that these
classes forms two different chains between the classes CRHF and UOWHF with
the same domain D and the same range R, and that for each integer r > 0,
UOWHF(r) implies UOW-MD(r+1) (see Fig. 2).

We can generalize Theorem 1 to MD[H] taking inputs of variable length. We
assume that the message is always padded such that its length is a multiple of
m. There are many padding methods but we don’t mention any specific one.
We use the notation (t, μ1, μ2, ε)-UOWHF instead of (t, ε)-UOWHF. μ1 is the
bound on the length of the target message and μ2 is the bound on the length of
the sibling message. Note that the only restriction on μ2 is that the algorithms
on the sibling message should be computable in polynomial time.

Theorem 2. Suppose H : Σk × Σc+m → Σc be a (t′, ε′)-UOWHF(r). Suppose
μ1 − c and μ2 − c are multiples of m. Then, for μ1 ≤ c+ (r + 1)m and a proper
μ2, MD[H] : Σk× (Σc×Σ+

m)→ Σc is a (t, μ1, μ2, ε)-UOWHF, where ε = σminε′

and t = t′ −Θ(σmax)(TH +m+ c) for σmin = min{(μ1 − c)/m, (μ2 − c)/m} and
σmax = max{(μ1 − c)/m, (μ2 − c)/m}.

Higher Order Universal One-Way Hash Functions 209

Fig. 2. Two chains between CRHF and UOWHF. Each arrow means the implication

Fig. 3. 3-level tree construction TR3[H] for the case of l = 3

Proof. The proof is similar to that of Theorem 1.

5 Tree Construction Based on Higher Order UOWHF

If we are given a UOWHF family H : Σk × Σm → Σc and m is a multiple of
c, we can extend it more efficiently by using a tree structure. If m = dc for a
positive integer d, we can use a d-ary tree structure. Since a tree construction
consists of parallel procedures, it can be more efficient than the Merkle-Damg̊ard
construction if multiple processors are available.

Firstly, we define the parallel construction PA[H] on H. PAn[H] consists of
n components PAn[H]1, ...,PAn[H]n. For K ∈ Σk, each component function
PAn[H]i is

PAn[H]i(K,x) =
{

H(K,xi) if |x| = dc
xi if |x| = c

That is, the domain of PAn[H]i(K, ·) is Σc∪Σdc, while the domain of H(K, ·)
is Σc.

210 D. Hong, B. Preneel, and S. Lee

We assume that we are given x = x1 · · ·xn for each xi ∈ Σc ∪Σdc. For a key
k ∈ Σk, PAn[H](K,x) is defined as follows.

Algorithm PAn[H](K,x)
n← logdc |x|
for i = 1, ..., n do:

yi ← PAn[H]i(K,xi)
return y1|| · · · ||yn

Now we define a tree construction TR[H] based on H. We begin with the
message space Σdl

c . We denote the tree construction on H to hash only messages
in Σdl

c as TRl[H]. For each key K ∈ Σk and any message x ∈ Σdl

c , TRl[H] is
defined according to:

Algorithm TRl[H](K,x)
Level[0] ← x
for i = 1, ..., l do

Level[i] ← PAdl−i [H](K,Level[i− 1])
return Level[l]

Write Level[0] = x as x0 = x0,1x0,2 · · ·x0,dl where x0,i ∈ Σc for i = 1, ..., dl.
Then, we can see TRl[H](K,x) is computed as follows.

Level[0] = x1
0x

2
0 · · · · · · · · · xdl

0

Level[1] = x1
1x

2
1 · · · · · · xdl−1

1
...

Level[l − 1] = x1
l−1 · · · xd

l−1
Level[l] = x1

l

where xj
i = H(K,x

(j−1)d+1
i−1 x

(j−1)d+2
i−1 · · ·xjd

i−1).
The following theorem states that if H is a UOWHF(r) and r = (dl − 1)/

(d− 1), then TRl[H] is a UOWHF.

Theorem 3. Let H : Σk × Σd
c → Σc be a (t′, ε′)-UOWHF(r) and r = (dl −

d)/(d−1). Then TRl[H] : Σk×Σdl

c → Σc is a (t, ε)-UOWHF, where ε = (r+1)ε′,
and t′ = t + Θ(dl)(TH + dc).

Proof. Assume that x, y ∈ Σdl

c is a collision for TRl[H](K, ·). We observe that
there exist α ∈ {1, ..., l} and β ∈ {1, ..., dl−α} such that

xβ
α = yβ

α

x
(β−1)d+1
α−1 || · · · ||xβd

α−1 �= y
(β−1)d+1
α−1 || · · · ||yβd

α−1. (2)

We will exploit this below.
Assume that A = (A1, A2) is an adversary who breaks TRl[H] with inputs of

equal-length in the UOWHF sense. We use it to make the adversary B = (B1,B2)
who works in Game(UOWHF(r),B,H) as follows.

Higher Order Universal One-Way Hash Functions 211

Game(UOWHF(r),B,H)
K

R←− Σk; Q← Ø
if r > 0 do:

for u = 1, ..., l − 1 do:
for v = 1, ..., dl−u do:

B1(Q) do:
if (u, v) = (1, 1) do:

A1(null)→ (x, StateA)
query x1

0|| · · · ||xd
0 to OH(K,·)

if (u, v) �= (1, 1) do:
query x

(v−1)d+1
u−1 || · · · ||xvd

u−1 to OH(K,·)

xv
u ← OH(K,x

(v−1)d+1
u−1 ||···||xvd

u−1)

Q← {(x(v−1)d+1
u−1 || · · · ||xvd

u−1, x
v
u)} ∪Q

B1(Q) do:
i

R←− {1, ..., l}; j R←− {1, ..., dl−i}
output (x(j−1)d+1

i−1 || · · · ||xjd
i−1, StateB)

B2(K,x
(j−1)d+1
i−1 || · · · ||xjd

i−1, StateB) do:
A2(K,x, StateA)→ y

output y
(j−1)d+1
i−1 || · · · ||yjd

i−1

The adversary B works in the game as follows. When (u, v) = (1, 1), Q is
empty and B1 runs A1 to obtain (x, StateA) where x = x1

0|| · · · ||xdl

0 ∈ Σdl

c .
Then, B1 sends a query x1

0|| · · · ||xd
0 to the oracle OH(K,·). When (u, v) �= (1, 1),

Q is nonempty. B1 sends a query x
(v−1)d+1
u−1 || · · · ||xvd

u−1 to the oracle OH(K,·).
After collecting r adaptive query-answer pairs, B1 randomly selects i and j from
{1, ..., l} and {1, ..., dl−i}, respectively. The B1 outputs x

(j−1)d+1
i−1 || · · · ||xjd

i−1 as
the target message and StateB = (i, j, x, StateA) as an additional state informa-
tion for B2. On the input (x(j−1)d+1

i−1 || · · · ||xjd
i−1, StateB), B2 runs A2 by giving

(K,x, StateA). Once A2 outputs its sibling message x′, B2 computes and outputs
y
(j−1)d+1
i−1 || · · · || yjd

i−1 as its sibling message.
Now we must bound the probability that x(j−1)d+1

i−1 || · · · ||xjd
i−1, y

(j−1)d+1
i−1 || · · ·

||yjd
i−1 is a collision for H(K, ·). The number of possibilities for (i, j) is at most

d0 + · · ·+ dl−1 = (dl − 1)/(d− 1). Note that i and j were chosen randomly and
independently, so if x, y is a collision for TRl[H](K, ·) then we have (i, j) = (α, β)
with probability (d − 1)/(dl − 1), where (α, β) is the pair in Equation (2). So,
ε′ > ε(d− 1)/(dl − 1).

The running time of B is that of A plus the overhead, which is equal to
Θ(dl)(TH + dc). �

The tree construction can hash the messages of variable lengths like the
Merkle-Damg̊ard construction. We assume that we are given a message x. When
#logd

|x|
c $ = l, we pad x such that the length of the padded message x∗ is the

smallest value larger than |x| of the form |x∗| = (dl − qd + q)c for some integer

212 D. Hong, B. Preneel, and S. Lee

0 < q < dl−1. Then, the number of applications of the underlying hash function
is 1 + d + d2 + · · · + dl−1 − q = dl−1

d−1 − q. See Fig. 4, 5, 6 and 7 for the case of
l = 2, d = 4. We denote the set of the padded messages in such way by

S(c, d) = {x ∈ Σ∗||x| = (dl − qd + q)c for some integers l > 0 and
0 ≤ q < dl−1}

Now we generalize Theorem 3.

Fig. 4. |x|/c = 16 = 42 Fig. 5. |x|/c = 13 = 42 − 1 · 4 + 1

Fig. 6. |x|/c = 10 = 42 − 2 · 4 + 2 Fig. 7. |x|/c = 7 = 42 − 3 · 4 + 3

Theorem 4. Suppose H : Σk × Σd
c → Σc be a (t′, ε′)-UOWHF(r). Suppose

μi = dli − qid + qi for i = 1, 2. Then for μ1 ≤ c(r(d − 1) + d) and a proper
μ2, TR[H] : Σk × S(c, d) → Σc is a (t, ε)-UOWHF, where ε = σminε′ and
t′ = t + Θ(σmax)(TH + dc) for σmin = min{dl1−1

d−1 − q1,
dl2−1
d−1 − q2} and σmax =

max{dl1−1
d−1 − q1,

dl2−1
d−1 − q2} .

Proof. The proof is similar to that of Theorem 3. �

6 Conclusion

We defined the order of a UOWHF family and showed how much the efficiency
of known constructions for UOWHFs is improved by the notion of the order.
Our main results are as follows.

Higher Order Universal One-Way Hash Functions 213

– If the order of the underlying UOWHF H is r, then the (r+1)-round Merkle-
Damg̊ard construction MDr+1[H] is also a UOWHF. If the resulting function
MDr+1[H] is used as a building block in existing constructions with linear
structure, the key size can be reduced with at most a factor of (r + 1).

– If the order of the underlying UOWHF H : Σk × Σd
c → Σc is r = dl−d

d−1 ,
then the l-level tree construction TRl[H] is also a UOWHF. If the resulting
function TRl[H] is used as a building block in existing constructions with
tree structure, the key size can be reduced with at most a factor of l.

References

1. M. Bellare and P. Rogaway, “Collision-resistant hashing: Towards making
UOWHFs practical,” In B.S. Kaliski Jr., editor, Advances in Cryptology –
CRYPTO’97, LNCS 1294, Springer-Verlag, pages 470–484, 1997.

2. I. Damg̊ard, “A Design Priciple for Hash Functions,” In G. Brassard, editor, Ad-
vances in Cryptology – Crypto’89, LNCS 435, Springer-Verlag, pages 416–427, 1989.

3. R. Merkle, “One way hash functions and DES,” In G. Brassard, editors, Advances
in Cryptology – Crypto’89, LNCS 435, Springer-Verlag, pages 428–446, 1989.

4. I. Mironov, “Hash Functions: From Merkle-Damg̊ard to Shoup,” In B. Pfitzmann,
editor, Advances in Cryptology – Eurocrypt 2001, LNCS 2045, Springer-Verlag,
pages 166-181, 2001.

5. M. Naor and M. Yung, “Universal one-way hash functions and their cryptographic
applications,” Proceedings of the Twenty-first ACM Symposium on Theory of Com-
puting, pages 33–43, 1989.

6. P. Rogaway and T. Shrimpton, “Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance,” In B. Roy and W. Meier, editors, Fast Software
Encryption 2004, LNCS 3017, Springer-Verlag, pages 371–388, 2004.

7. P. Sarkar, “Constuction of UOWHF: Tree Hashing Revisited,” Cryptology ePrint
Achive, http://eprint.iacr.org/2002/058.

8. P. Sarkar, “Domain Extenders for UOWHF: A Generic Lower Bound om Key
Expansion and a Finite Binary Tree Algorithm,” Cryptology ePrint Archive,
http://eprint.iacr.org/2003/009.

9. V. Shoup, “A composite theorem for universal one-way hash functions,” In B.
Preneel, editor, Advances in Cryptology – Eurocrypt 2000, LNCS 1807, Springer-
Verlag, pages 445–452, 2000.

10. D. Simon, “Finding collisions on a one-way street: can secure hash functions be
based on general assumptions?,” In K. Nyberg, editor, Advances in Cryptology –
Eurocrypt’98, LNCS 1403, Springer-Verlag, pages 334–345, 1998.

11. W. Lee, D. Chang, S. Lee, S. Sung, and M. Nandi, “New Parallel Domain Extenders
for UOWHF,” Advances in Cryptology – ASIACRYPT 2003, LNCS 2894, Springer-
Verlag, pages 208–227, 2003.

12. Y. Zheng, T. Matsumoto, H. Imai, “Connections between several versions of one-
way hash functions,” Trans. IEICE E, Vol. E73, No. 7, pp. 1092–1099, July 1990.

The MD2 Hash Function Is Not One-Way

Frédéric Muller

DCSSI Crypto Lab 51, Boulevard de Latour-Maubourg,
75700 Paris 07 SP France

Frederic.Muller@sgdn.pm.gouv.fr

Abstract. MD2 is an early hash function developed by Ron Rivest for
RSA Security, that produces message digests of 128 bits. In this paper,
we show that MD2 does not reach the ideal security level of 2128. We
describe preimage attacks against the underlying compression function,
the best of which has complexity of 273. As a result, the full MD2 hash
can be attacked in preimage with complexity of 2104.

1 Introduction

Cryptographic hash functions are an important primitive used in various situa-
tions. The main fields of applications are message authentication codes, digital
signatures, and therefore certificates. Hash functions are also used as a building
tool in many protocols and advanced constructions.

By definition, a hash function H is a function mapping an input message m
of arbitrary length to an output h of fixed length (typically this length ranges
from 128 to 512 bits) h = H(m)

The main properties expected from a cryptographic hash function are:

– Collision Resistance: it should be hard to find two inputs m and m′ that
map to the same output by H.

– Second Preimage Resistance: for a given m, it should be hard to find a
second input m′ such that m and m′ map to the same output by H.

– Preimage Resistance: for a given challenge h, it should be hard to find
an input m which maps to h by H.

More can be found on the theory of hash functions in [9, 10]. Most of the hash
functions used in practice belong to the so-called “MD family”. This family of
hash functions was initially developed by Ron Rivest for RSA Security. The first
proposal was MD2 [7], an early, non-conventional, byte-oriented design. It was
quickly followed by MD4 [11] and MD5 [12], two hash functions with a more
modern, 32-bit-oriented design. Despite not being collision-resistant [3], MD4
has inspired most modern hash functions designs, like the RIPEMD family or
the SHA family. Over the last years, the effort on attacking hash functions has
mostly concerned collision resistance [2-4, 15], since this property is essential for
many applications. However, few results have been reported regarding (second)
preimage attacks for these hash functions (see [5, 9]).

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 214–229, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The MD2 Hash Function Is Not One-Way 215

In this paper, we focus on the MD2 hash function [7]. Despite being the oldest
hash functions from its family, and despite using an old-fashioned architecture,
MD2 is still used in several contexts. For instance, if we look at the recent PKCS
#1 v2.1, a cryptographic standard from RSA Security [17], the MD2 hash is still
given as an example of one-way, collision-resistant hash function, while MD4
has been removed, presumably because of Dobbertin’s collision attack [3]. In
addition, it is precised that “MD2 (is) recommended only for compatibility with
existing applications based on PKCS #1 v1.5”. The underlying explanation is
that the use of MD2 was highly encouraged in the previous version from 1993 [16]
where MD2 was recommended as a “conservative design”. This confidence in
MD2 is not surprising because, despite being quite inefficient and based on an
older design philosophy, MD2 has surprisingly well resisted to cryptanalysis. The
only attack known is a collision attack against the compression function [14]. This
attacks works with the correct IV, however it no longer works when a checksum
is appended to the message, as imposed in the specifications [7]. For the full hash
function, no attack is known.

Consequently MD2 still appears in various applications and even some pro-
posed standards [1]. However, the crucial security point regarding MD2 is now
its use in public-key infrastructures. Many certificates have been generated with
RSA-MD2 in the past and many of them are still widely used (like Verisign cer-
tificates for instance). Actually, anyone can easily verify that recent versions of
Windows are delivered with those MD2 certificates. Therefore millions of users
are probably using MD2-based certificates on a regular basis. The security of
certificates is a particular problem. Indeed, collision attacks do not threat the
security of the scheme, because the input of the signature primitive (typically
the usual primitive used with MD2 is the RSA signature) is fixed. An attacker
needs to find a collision between two inputs of MD2, one of them being the
data part of the certificate. If he succeeds, he will manage to forge a new valid
certificate. Hence what is required here is exactly second preimage resistance of
MD2. This is an important motivation to analyze the security of MD2 regard-
ing preimage and second preimage attacks, which is the focus of this paper. We
obtained interesting new results and theoretical attacks. Since our best attack
against MD2 is more efficient than a naive guessing attack in 2128, MD2 can no
longer be considered a secure one-way hash function.

First, we describe briefly the MD2 algorithm. Then, we focus on the compres-
sion function and describe several attacks. The best is a pseudo-preimage attack
with complexity 273. Finally, we show how to turn these attacks into an attack
for the full hash, which is not straightforward because of the checksum bytes.

2 The MD2 Hash Function

2.1 Generalities

The MD2 Message-Digest algorithm was developed in 1989 by Ron Rivest. The
actual specifications can be found in RFC 1319 [7]. This algorithm belongs,
together with MD4 and MD5, to the family of hash functions developed by Ron

216 F. Muller

Rivest for RSA Security. However, compared to the other algorithms of the family
(and to most actual hash functions), MD2 has several interesting particularities

– MD2 is a byte-oriented hash function. Indeed all instructions handle 8
bits of data. While this was useful for old architectures, today’s processors
can manipulate words of (at least) 32 bits. Consequently all modern hash
functions use 32-bit instructions. This is the case of MD4, MD5 and also for
the hash functions of the RIPEMD and SHA families.

– MD2 uses a checksum of 128 bits computed from the whole message and
appended as the last input block of the compression function. Hence MD2
does not follow the Merkle-Damg̊ard construction, contrarily to most actual
hash functions. Consequently classical results [9] on how to turn collisions
on the compression function to collisions for the whole hash function do not
apply here. This is the reason why the collision attack described in [14] does
not extend to the full MD2 hash.

– the compression function of MD2 has a different architecture from most
modern hash functions. Indeed it does not look like a block cipher. Instead,
a fixed “scrambling” function is iterated on a 384 bits long internal state.
The initial state is derived linearly from a message block of length 128 bits
and an intermediate hash of 128 bits. The final state is truncated to 128 bits.
This function uses simple instructions like XOR and a nonlinear S-box.

Therefore MD2 is a very early design of hash function and differs significantly
from modern hash functions. In terms of efficiency, it compares quite bad to its
challengers (mostly because of the byte-oriented structure).

2.2 Description of MD2

In this section, we describe more precisely the mechanisms used by the MD2
hash function (see [7] for the full specifications). The general description of MD2
is found in Figure 1.

0

. .

. . .

message with padding

checksum

F F F F hash

M M C

H

M 0 1 n.

Fig. 1. The MD2 Hash Function

All blocks manipulated have length 128 bits. We refer to the blocks of the
message by M0, . . . ,Mn. The first step of MD2 is to append a padding to the

The MD2 Hash Function Is Not One-Way 217

initial message, then to compute a checksum block (that we call C). This in-
creases the length of the message by 1 block. Finally the compression function
(referred to as F) is applied iteratively to produce the hash value. If we call Hi

the i-th intermediate hash,

Hi+1 = F (Hi,Mi)

The IV of the hash function is H0 and is set by default to 0.

The Compression Function. A precise representation of the compression
function F is given in Figure 2. Each box in this figure contains one byte. F
is decomposed into 3 matrices - denoted by A, B and C - with 16 columns and
19 rows each. The first row of each matrix is initialized respectively with Hi,
Mi and Hi ⊕Mi. Then the rows of each matrix are computed recursively from
top to bottom. The last rows of B and C are not used. The ’+’ symbol denotes
addition modulo 256.

Fig. 2. The Compression Function of MD2

The computations are based on a function φ from 16 bits to 8 bits. In the
case of the matrix A, this can be described by the equations:

At
i = φ(At−1

i , At
i−1)

= At−1
i ⊕ S(At

i−1)

where S is a fixed S-box of size 8 bits. Equations for matrices B and C are
exactly the same. This function φ is represented in Figure 3. For the particular
case i = 0, a byte extracted from another matrix is used instead of At

i−1 (see
Figure 2).

The Checksum Function. The checksum C is computed from the blocks of
message by iterating a non-linear checksum function, that we call G. Details on
G are not relevant for our attacks. Basically G uses only basic operations like
XOR and the S-box S. At a high-level, the following equations describe this
mechanism:

IC0 = 0
ICi+1 = G(ICi,Mi)

218 F. Muller

At−1
i

�

�� ��
�

�

At
i−1 S At

i

Fig. 3. The φ function

G is a complicated function, however it is straightforward to compute the
intermediate checksum ICi from ICi+1 and Mi. The final value ICn+1 is the
appended checksum C. A precise description of G is available in [7].

3 Collision Attacks Against MD2

The only known cryptanalytic result against MD2 is the paper by Rogier and
Chauvaud [14]. In this paper, collisions on the compression function of F are de-
scribed. This attack works very well because the IV used in MD2 is O (although
a variant is proposed for other IV’s with an increased complexity). Details of
this attack are not essential here. The key idea is to use the symmetry between
matrices B and C when Hi = 0. (the first rows are equal in this case). Unfortu-
nately collisions cannot be extended to the full MD2 because of the checksum
bytes.

Although collision attacks may be of interest in many contexts, there are
several arguments why researching efficient collision attacks for MD2 is no longer
a major concern.

– First, one has to take into account the dimension of MD2. The produced
hashed values have length only 128 bits. Therefore birthday paradox attacks
have complexity of the order of 264. This is not a satisfying level of security for
modern applications. As an example, the MD5 hash function (whose output
have also a length of 128 bits) is actually the subject of a distributed attack to
find collisions [8]. It is clear that the interest of finding complicated shortcut
attacks diminishes when efficient attacks using a large computational power
are possible [18].

– Secondly, MD2 is no longer widely used in practice. For instance, in MAC or
signatures, the collision resistance of a hash function is generally a require-
ment, but MD2 is no longer recommended for such applications. However,
as we mentioned previously, MD2 is still used in some certificates. In this
context, collision resistance is not really a concern but preimage and second
preimage resistance are required.

The MD2 Hash Function Is Not One-Way 219

4 Preimage Attacks Against MD2 Compression Function

A large variety of definitions for preimage and second preimage attacks exist in
the literature, depending on what is a fixed challenge for the attacker and what
can be freely chosen. A classical reference is [9], however a new classification of
these notions has been recently given in [13].

In this section, we focus only on (preimage) attacks against the compression
function of MD2. It is well known that these attacks can generally be extended
to attacks against the whole hash (see [9]).

4.1 Three Scenarios

According to the previous notations, the compression function F operates by:

Hi+1 = F (Hi,Mi)

where the Hi’s are intermediate hash values and Mi is a message block (see
Section 2.2). Basically we can consider 3 attack scenarios at this point:

1. Hi+1 and Hi are given and the attacker must find an appropriate Mi.
2. Hi+1 and Mi are given and the attacker must find an appropriate Hi.
3. Hi+1 is given and the attacker must find appropriate Hi and Mi.

Any of these attacks may be of interest to attack the whole hash. Obviously,
the 1st and 2nd attack are very similar because the roles of Hi and Mi in F are
almost symmetric.

These 3 attack scenarios have received different names in the literature. Re-
cently the names “aPre” (“a” stands for “always”), “ePre” (“e” stands for “ev-
erywhere”) and “Pre” have been given to these 3 notions [13]. In [9], the ter-
minology of “preimage resistance” and “pseudo-preimage resistance” is used. In
the following sections, we envisage each scenario separately and propose new
attacks.

4.2 Attacking Scenario 1

In this scenario, we suppose that Hi and Hi+1 are a fixed challenge and our goal
is to find an appropriate Mi such that

Hi+1 = F (Hi,Mi)

First, we notice that a solution does not necessarily exist. Indeed all variables
have length 128 bits, so in average only one solution Mi is expected, but there is
no guarantee. We propose an attack that recovers all solutions corresponding to a
given challenge (Hi,Hi+1). Basically our attack is a sophisticated combination of
exhaustive search and meet-in-the-middle attacks. It proceeds with two distinct
steps. In the following, we call (m0, . . . ,m15) the 16 bytes of Mi.

First Step. The first step of the attack is to derive all possible information from
the challenge (Hi,Hi+1). These two objects are stored at the first and last row
of matrix A (see Figure 4 where dashed cells correspond to the known bytes).

220 F. Muller

Fig. 4. Initial knowledge when Hi+1 and Hi are fixed

Fig. 5. Known values in the matrix A

Because of the structure of φ (this function is used to compute the contents
of the matrices, see Section 2.2), more information can be derived directly from
the challenge. For instance, when At

i−1 and At
i are known, we can obtain At−1

i

since:

At
i = φ(At−1

i , At
i−1)

= At−1
i ⊕ S(At

i−1)

In Figure 5, we represented by dashed boxes the large portion of A that
can be directly derived this way. The second row is known because the byte
introduced on the left hand side is known and always equal to 0.

In addition, if we guess the byte introduced on the left hand side of
the 3rd row in A (i.e. C1

15 + 1), then we can derive the full content of matrix
A by similar considerations. In particular the bytes Ai

15’s are known, and also
the bytes Ci

15’s for i > 0.

Second Step. Then, the second step of the attack is to perform a meet-in-
the-middle attack on the matrices B and C to find an appropriate value of Mi.
Basically at this point, we know what enters on the left hand side of B and what
exits on the right hand side of C. Hence, we apply the following “meet-in-the-
middle” algorithm:

The MD2 Hash Function Is Not One-Way 221

– Guess the 4 bytes (B1
15, . . . ,B

4
15)

• for all values of the 8 bytes (m0, . . . ,m7),
∗ compute the 4 bytes (B1

7 , . . . ,B
4
7) (this is possible because the se-

quence of Ai
15’s is known)

∗ compute the 4 bytes (C1
7 , . . . , C

4
7) (this is possible because Hi is

known)
∗ store these 4 + 4 = 8 bytes in a table T1

• sort T1 (which has 264 entries of 64 bits each)
• Repeat the same process with (m8, . . . ,m15) to obtain a table T2 that

contains also the bytes (B1
7 , . . . ,B

4
7 , C

1
7 , . . . , C

4
7).

• Find all collisions between T1 and T2. This can be done efficiently by
computing the joint product T = T1 ! T2 (see [19]) with complexity of
the order of 264

• The resulting table T contains on average 264 candidate values for Mi =
(m0, . . . ,m15)

• Loop over all these candidates to find all valid Mi’s

One can also refer to Figure 6 for the general philosophy of this attack.
Dashed boxes represent the 8 bytes stored in tables T1 and T2, where we look
for collisions.

Fig. 6. The general philosophy of the attack

Analysis. In this attack, there are two outside loops. A loop of size 28 comes
from the First Step of the attack (we need to guess one byte in order to find
the full content of A). Besides an outside loop of length 232 is required in the
“meet-in-the-middle” algorithm. Inside these loops we need to create and to sort
the tables T1 and T2. Those are tables with 264 entrees, sorted using a key of 64
bits. Sorting the tables can be done efficiently with an appropriate “bucket-sort”
algorithm so the cost is above 264 instructions. Creating the tables has also a
cost of the order of 264 instructions. Since these two operations are performed
twice (once for T1 and once for T2), the complexity is of the order of

Complexity = 28 × 232 × (4× 264) = 2106

basic instructions. This corresponds approximatively to 295 applications of the
compression function (a quick estimation shows that about 211 instructions are
needed for the compression function).

222 F. Muller

This should be compared to the complexity of an exhaustive search to find a
preimage which would cost 2128 applications of the compression function. How-
ever, our attack requires about 271 bits of memory. High memory requirements
are known to increase the “real” cost of attacks [20]. Nevertheless this complex-
ity is of the order of 23n/4 while 2n would be expected for a good compression
function on n bits. An improved attack is also proposed in Appendix A to reduce
these memory requirements. Further improvements have been investigated but
no attack with complexity below 23n/4 was found.

4.3 Attacking Scenario 2

In the second scenario, the message block Mi is fixed and we search an appro-
priate Hi. Attacking this scenario is very similar to attacking scenario 1 because
there is an important symmetry in the compression function.

In the previous attack we managed to reconstruct the content of A from the
initial challenge, and then applied a “meet-in-the-middle” attack to B and C. In
Scenario 2, we can reconstruct the content of B from the challenge (Mi, Hi+1)
and then attack by the middle the matrices A and C. Details of this attack are
not very helpful to break the full MD2 hash, so we decided not to explore further
this scenario.

4.4 Attacking Scenario 3

Finally, we suppose that only Hi+1 is fixed, and the problem is to find any pair
(Hi,Mi) solution of the equation

Hi+1 = F (Hi,Mi)

This type of attack is often referred to as a pseudo-preimage attack on the
compression function [9]. Of course, it is easier to find such a solution because
we have more degrees of freedom. Therefore we wish to find an attack with
complexity better than the previous 295. In this section, we describe an attack
with complexity of the order of 273 against this scenario.

The Attack. First, one should notice that many solutions exist to this problem.
Indeed, we expect

2128 × 2128

2128 = 2128

solutions in average. Therefore it is reasonable to impose some additional con-
straints.

Like for the previous attacks, we first derive all possible information from
the given challenge (Hi+1 here). In addition, we impose the constraint that
A1

15 = A2
15 = c, where c is some constant, say c = 0 for instance. Figure 7

represents the resulting known values in the matrix A.
We observe that the complete rightmost column of A is known, which helps

when considering the behavior of matrix B. At this point, a 6 bytes constant
(k0, . . . , k5) is chosen at random. Then we apply the following algorithm:

The MD2 Hash Function Is Not One-Way 223

Fig. 7. Known values in the matrix A

– Pick 272 messages Mi of the form

Mi = (m0, . . . ,m9, k0, . . . , k5)

where the mi’s are chosen at random. It is straightforward to compute the
matrix B for each Mi since the rightmost column of A is known. Hence we
build a table T (with 272 entries) where we store the rightmost column of
B, i.e. the Bi

15’s.
– Pick 264 intermediate hashes Hi of the form

Hi = (h0, . . . , h9, k0, . . . , k5)

where the hi’s are chosen at random1. It is straightforward to compute the
complete matrix A for each Hi. Therefore all values Ci

15 for i > 0 are also
known. Besides

Hi ⊕Mi = (∗, . . . , ∗, k0 ⊕ k0, . . . , k5 ⊕ k5)

thus the 6 rightmost boxes of the first row of C are known and equal to 0.
Hence a lot of information about C can be derived (see Figure 8). By the
way, the bytes Bi

15 for 11 ≤ i ≤ 17 are also known at this point. We store
these elements in a table T ′.

The final step of the attack is to find collisions on the objects of 56 bits

(B11
15 , . . . ,B

17
15)

that have been computed by two different means and stored in tables T and T ′.
Using the birthday paradox, we expect 280 collisions because

|T | × |T ′| × 2−56 = 272 × 264 × 2−56 = 280

1 Actually there is an extra constraint, that φ(A0
0) = A1

0. Thus only 1 out of 256 values
of Hi are valid. Once (h1, . . . , h9) are chosen, the value of h0 is fully determined.
This induce no extra cost but must be taken into account when choosing the Hi’s.

224 F. Muller

Fig. 8. Known values in the matrix C

All these collisions can be found efficiently by computing T ! T ′ (see [19]).
Each collision corresponds to some pair (Hi,Mi). In order for this pair to solve
the initial problem, we need an additional equality between

– the bytes (B1
15, . . . ,B

10
15) stored in table T

– the value of the same bytes obtained when we fill up all the content of matrix
C (which is possible for each candidate since Hi ⊕Mi is now known).

Hence a little extra processing is required to find a real solution and a condi-
tion on 80 bits must be verified. However, we have 280 candidates from the joint
product of T and T ′ so one “real” solution should be found among them. The
probability of failure (i.e. that no solution exists) can be roughly approximated
to 1

e % 0.368. Otherwise, we can pick a little more candidates for Mi and Hi or
choose other constants.

Analysis. The bottleneck in the previous attack is the time spent analyzing
each of the 280 candidates (Hi,Mi). However, using an “early-abort” strategy,
most candidates can be eliminated after the first check for the value B1

15. There-
fore, only half a row of matrix C must be computed in average. To compute the
compression function, 3× 18 = 54 rows are computed. So we have a speedup by
a factor

2× 54 % 26.75

compared to a full computation of F .
Therefore this pseudo-preimage attack has complexity of about 273.25 com-

putations of the compression function, and requires about 278 bits of memory.
This is much faster than the expected value of 2128. All attacks against the
compression function are summarized in Table 1.

The MD2 Hash Function Is Not One-Way 225

Table 1. Summary of the attacks against the compression function

Attack Fixed Challenge Variable Time Memory
Simple Hi+1 and Hi Mi 295 271

Improved Hi+1 and Hi Mi 295 238

Pseudo-Preimage Hi+1 Hi and Mi 273 278

5 Preimage Attacks for the Full MD2 Hash

The objective of a preimage attack is, for a given challenge h, to find a message
m such that hashing m with MD2 gives h:

MD2(m) = h

Classical techniques exist to turn attacks against the compression function
into attacks against the full hash. However they apply to classical iterated hash
functions, like those based on the Merkle-Damg̊ard paradigm. The use of an
additional checksum in MD2 make things slightly more complicated.

5.1 Attacking MD2 Without the Checksum

If we omit the checksum, it is straightforward to apply the previous attacks
directly to MD2. For instance, the attack described in Section 4.2 is immediately
useful. Indeed, for a given (Hi,Hi+1), we are able to find Mi such that:

Hi+1 = F (Hi,Mi)

faster than exhaustive search. If we take Hi = 0 (i.e. the IV of the MD2 spec-
ifications) and Hi+1 = h (the target value), the message of 1 block m = Mi

basically solves the preimage problem (some extra work might be necessary to
ensure the padding is correct). Anyway, this clearly no longer works when the
checksum block is appended at the end.

Preimage attacks against the full hash can also be found based on a pseudo-
preimage attack (like the one described in Section 4.4, with complexity 273). For
instance, a general meet-in-the-middle technique is:

– Pick 2100 random values of the first block of message M1, and store all
intermediate hashes H1 in a table T1.

– Apply 228 times the pseudo-preimage attack and, for each solution (H2,M2),
store the intermediate hash H2 in a table T2.

– Search for a collision between some H1 in table T1 and some H2 in table T2.
The corresponding message m = (M1,M2) is a solution.

Since 2100×228 = 2128, a collision is indeed expected. Hence this attack builds
a solution m of length two blocks and has complexity of the order of 2101, which
is faster than exhaustive search. However when the checksum is used, this input
message is likely to be invalid. Indeed, we need a collision on the intermediate
hash values and the intermediate checksums simultaneously.

226 F. Muller

5.2 A Chaining Attack

The principle of chaining attacks is to iterate an attack against the compression
function, while chaining the intermediate variables used in each attack. Here, we
first choose at random a sequence of intermediate hashes of the form:

0 = H0,H1, . . . ,H127,H128 = h

For each pair (Hi,Hi+1), we apply the attack of Section 4.2 to find all solu-
tions of:

Hi+1 = F (Hi,Mi)

A constraint we add is that at least two solutions Mi and M ′
i must be found,

for all i. Assuming F is a random function, this should happen with a reasonable
probability (called p). It can roughly be approximated by 1 minus the probability
to have exactly 0 or 1 solution:

p % 1− (1− 2−128)2
128−1 − (1− 2−128)2

128

% 1− 2 e−1

% 0.264

If there are less than 2 solutions, we throw away Hi+1 and pick another value.
In average, we need to apply 128 × p−1 % 29 times the attack of Section 4.2 to
find an appropriate pair of solutions (Mi,M

′
i) for all i.

Then, we have 2128 possible messages that are solution of the preimage prob-
lem for MD2 with challenge h (there are 2 possible blocks of message for all i).
Among them, one of the message is likely to satisfy the checksum constraint, i.e.
its last block should be the checksum of the 127 previous blocks. To find this
message, a simple meet-in-the-middle attack applies:

– Compute the 264 intermediate checksums IC64 by testing the two possible
blocks of message at all positions i, 0 ≤ i ≤ 63.

– Compute the 264 intermediate checksums IC64 by inverting the checksum
function G, starting for both values M127 and M ′

127, and for all blocks of
message at positions i, 64 ≤ i < 127.

– Search for a collision between these 2 lists of 264 elements

This technique is similar to the one used in [6]. The resulting attack against
the full hash is only marginally slower than the attack against the compression
function, since the deterioration corresponds to a factor 29. Therefore it will
cost about 295 × 29 = 2104 applications of the compression function. In addi-
tion, a memory of 271 bits is required (or 238 using the improved algorithm of
Appendix A). This is much faster than a naive exhaustive search.

6 Second Preimage Attacks

A second preimage attack consists, on the challenge of a message m, to provide
a second message m′ which gives the same MD2 hash:

MD2(m) = MD2(m′)

The MD2 Hash Function Is Not One-Way 227

The resistance of MD2 against this type of attack is critical for the security
of existing certificates. Indeed a certificate generally consists in a data part m
and a signature of the data part. To compute this signature, a hash of the data
part is generally computed. If an attacker is able to replace m with an other
data part m′ mapping to the same hash, he is able to forge a new certificate.

If we omit the checksum blocks for MD2, it is straightforward to find a second
preimage, based on the previous attacks. For any of the intermediate steps

Hi+1 = F (Hi,Mi)

in the original message m, we apply the attack described in Section 4.2. With
probability p % 0.26, another message block M ′

i , mapping Hi to Hi+1 is found.
Then we can simply substitute M ′

i to Mi to forge a new certificate.
Unfortunately, when the checksum is used, this attack no longer works be-

cause the checksum is altered by the previous substitution. Therefore the last
block of message is no longer valid.

We could not find a dedicated second preimage attack against the full MD2,
including the checksum bytes. An attack is still possible by applying a preimage
attack on h = MD2(m). The result m′ is a preimage of h and is very likely to
be different from m. Unfortunately m′ is very constrained:

– its length is at least 128 blocks (including the checksum block), so the mes-
sage m′ is of length > 2 Kbytes. Some variants of the attack can increase
this message length but it is not possible to reduce it. This is slightly larger
than a typical certificate, however a trade-off between the size of the forged
certificate and the probability of success could also be envisaged.

– at least 128 blocks in the forged certificates are random and therefore cannot
be chosen by the attacker.

All together, it seems difficult for the moment to forge new certificates that
respect the required format. However we are not far from it and we think it
is an interesting topic for further research. We encourage a deeper analysis of
the MD2 hash function whose security, especially regarding (second) preimage
attacks is important for many existing certificates.

7 Conclusion

In this paper, we described preimage and pseudo-preimage attacks against the
compression function of MD2, the best of which has complexity 273. The re-
sulting attack against the full hash (including the checksum) costs about 2104

applications of the compression function. As a consequence, MD2 can no longer
be considered a secure one-way hash function.

These results are also very interesting from a theoretical point of view, be-
cause preimage attacks against hash functions are quite rare. Most of the research
in recent years has focused on finding collisions for hash functions.

228 F. Muller

References

1. D. Balenson. RFC 1423 - Privacy Enhancement for Internet Electronic Mail: Part
III: Algorithms, Modes, and Identifiers, february 1993. RSA Laboratories.

2. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In H. Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lectures Notes in
Computer Science, pages 56–71. Springer, 1998.

3. H. Dobbertin. Cryptanalysis of MD4. In D. Gollmann, editor, Fast Software
Encryption – 1996, volume 1039 of Lectures Notes in Computer Science, pages
53–69. Springer, 1996.

4. H. Dobbertin. The Status of MD5 after a Recent Attack. CryptoBytes, 2(2):1–6,
1996.

5. H. Dobbertin. The First Two Rounds of MD4 are Not One-Way. In S. Vaude-
nay, editor, Fast Software Encryption – 1998, volume 1372 of Lectures Notes in
Computer Science, pages 284–292. Springer, 1998.

6. A. Joux. Multicollisions in iterated hash functions. Application to cascaded con-
structions. In Advances in Cryptology – CRYPTO’04, To appear.

7. B. Kaliski. RFC 1319 - The MD2 Message-Digest Algorithm, april 1992. RSA
Laboratories.

8. MD5CRK, a new distributed computing project. See http://www.md5crk.com/.
9. A. Menezes, P. van 0orschot, and S. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1996.
10. B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,

Katholieke Universiteit Leuven, 1993.
11. R. Rivest. The MD4 Message Digest Algorithm. In A. Menezes and S. Vanstone,

editors, Advances in Cryptology – CRYPTO’90, volume 537 of Lectures Notes in
Computer Science, pages 303–311. Springer, 1991.

12. R. Rivest. RFC 1321 - The MD5 Message-Digest Algorithm, april 1992. RSA
Laboratories.

13. P. Rogaway and T. Shrimpton. Cryptographic Hash Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resis-
tance, and Collision Resistance. In B. Roy and W. Meier, editors, Fast Software
Encryption – 2004, pages 349–366, 2004. Pre-proceedings Version.

14. N. Rogier and P. Chauvaud. MD2 Is not Secure without the Checksum Byte.
Designs, Codes and Cryptography, 12(3):245–251, november 1997. An early version
of this paper was presented at the 2nd SAC Workshop in 1995.

15. B. Van Rompay, A. Biryukov, and B. Preneel. Cryptanalysis of 3-Pass HAVAL.
In C. Laih, editor, Advances in Cryptology – ASIACRYPT’03, volume 2894 of
Lectures Notes in Computer Science, pages 228–245. Springer, 2003.

16. RSA Laboratories. PKCS #1 v1.5 : RSA Encryption Standard, 1993. Available
at http://www.rsalabs.com/pkcs/pkcs-1.

17. RSA Laboratories. PKCS #1 v2.1 : RSA Encryption Standard, 2002. Available
at http://www.rsalabs.com/pkcs/pkcs-1.

18. P. van Oorschot and M. Wiener. Parallel Collision Search with Cryptanalytic
Applications. Journal of Cryptology, 12(1):1–28, 1999.

19. D. Wagner. A Generalized Birthday Problem. In M. Yung, editor, Advances in
Cryptology – Crypto’02, volume 2442 of Lectures Notes in Computer Science, pages
288–303. Springer, 2002. Extended Abstract.

20. A. Wiemers. The Full Cost of Cryptanalytic Attacks. Journal of Cryptology,
17(2):105–124, March 2004.

The MD2 Hash Function Is Not One-Way 229

A A Memory-Efficient Attack

The attack described in Section 4.2 is much faster than an exhaustive search,
however the large memory requirements make it highly unpractical and prob-
ably contributes to under-estimate the “real” complexity. Here, we propose an
improved attack regarding the data complexity.

The general idea of the attack of Section 4.2 is to split the target Mi in two
halves (m0, . . . ,m7) and (m8, . . . ,m15) of 64 bits each. The improved attack
consists in splitting Mi in 4 parts instead of 2 using the following algorithm:

– Guess the 6 bytes {(B1
7 ,B

2
7), (B1

15,B
2
15), (C

1
7 , C

2
7)}

• guess the 4 bytes m0, . . . ,m3
∗ compute and store in table T1 the bytes B1

3 ,B
2
3 , C

1
3 , C

2
3

• guess the 4 bytes m4, . . . ,m7
∗ compute and store in table T2 the bytes B1

3 ,B
2
3 , C

1
3 , C

2
3

• guess the 4 bytes m8, . . . ,m11
∗ compute and store in table T3 the bytes B1

11,B
2
11, C

1
11, C

2
11

• guess the 4 bytes m12, . . . ,m15
∗ compute and store in table T4 the bytes B1

11,B
2
11, C

1
11, C

2
11

• Compute the joint product T = T1 ! T2 of size 232. It contains candidate
values for (m0, . . . ,m7).

• Compute the joint product T ′ = T3 ! T4 of size 232. It contains candi-
date values for (m8, . . . ,m15).

• Guess 2 additional bytes B3
15 and B4

15
∗ For each element of T compute the 4 bytes B3

7 ,B
4
7 , C

3
7 , C

4
7

∗ Compute similarly these 4 bytes for each element of T ′

∗ Search for a collision in the two resulting lists.
• This results in a list of 232 candidates for (m0, . . . ,m15).

This slightly more complex attack has complexity of the order of

28 × 248 × 216 × 232 % 2104

instructions, like previously. However the largest tables we handle have 232 en-
tries of 32 bits. The philosophy of this improved attack is described in Figure 9.

Fig. 9. The general philosophy of the improved attack

New Approaches to Password Authenticated
Key Exchange Based on RSA

Muxiang Zhang

Verizon Communications Inc.,
40 Sylvan Road, Waltham, MA 02451, USA

muxiang.zhang@verizon.com

Abstract. We investigate efficient protocols for password-authenticated
key exchange based on the RSA public-key cryptosystem. To date, most
of the published protocols for password-authenticated key exchange were
based on Diffie-Hellman key exchange. It seems difficult to design efficient
password-authenticated key exchange protocols using RSA and other
public-key cryptographic techniques. In fact, many of the proposed pro-
tocols for password-authenticated key exchange based on RSA have been
shown to be insecure; the only one that remains secure is the SNAPI pro-
tocol. Unfortunately, the SNAPI protocol has to use a prime public ex-
ponent e larger than the RSA modulus n. In this paper, we present a new
password-authenticated key exchange protocol, called PEKEP, which al-
lows using both large and small prime numbers as RSA public exponent.
Based on number-theoretic techniques, we show that the new protocol is
secure against the e-residue attack, a special type of off-line dictionary
attack against RSA-based password-authenticated key exchange proto-
cols. We also provide a formal security analysis of PEKEP under the
RSA assumption and the random oracle model. On the basis of PEKEP,
we present a computationally-efficient key exchange protocol to mitigate
the burden on communication entities.

1 Introduction

The design of authentication and key exchange protocol is usually based on the
assumption that entities either share or own some secret data (called keys) which
are drawn from a space so large that an adversary can not enumerate, either on-
line or off-line, all possible keys in the space. In practice, however, cryptographic
keys may often be substituted by human-memorable passwords consisting of only
six to ten characters. The consequence is the proliferation of the so-called exhaus-
tive guessing or dictionary attacks against many password-based systems [26].
Password guessing attacks have been around for so long, it seems paradoxical
that strong authentication using only small passwords would be possible. In 1992,
Bellovin and Merritt [5] showed that such paradoxical protocols did exist. They
presented a family of protocols known as Encrypted Key Exchange, or EKE. By
using a combination of symmetric and asymmetric (public-key) cryptographic
techniques, EKE provides insufficient information for an adversary to verify a

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 230–244, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

New Approaches to Password Authenticated Key Exchange Based on RSA 231

guessed password and thus defeats off-line dictionary attacks. Following EKE, a
number of protocols for password-based authentication and key exchange have
been proposed, e.g., [2, 6, 8, 10, 11, 13, 15–17, 21, 25] A comprehensive list of
such protocols can be found in Jablon’s research link [14].

Password-authenticated key exchange protocols are attractive for their sim-
plicity and convenience and have received much interest in the research commu-
nity. Over the last decade, many researchers have investigated the feasibility of
implementing EKE using different public-key cryptosystems such as RSA, ElGa-
mal, and Diffie-Hellman key exchange. Nonetheless, most of the well-known and
secure variants of EKE are based on Diffie-Hellman key exchange. It seems that
EKE works well with Diffie-Hellman key exchange, but presents subtleties when
implemented with RSA and other public-key cryptosystems. In their original
paper [5], Bellovin and Merritt pointed out that the RSA-based EKE variant is
subject to a special type of dictionary attack, called e-residue attack. Based on
number-theoretic techniques, Patel [22] further investigated the security of the
RSA-based EKE variant and concluded that simple modifications of EKE would
not prevent the RSA-based EKE variant from off-line dictionary attacks. In
1997, Lucks [18] proposed an RSA-based password-authenticated key exchange
protocol (called OKE) which was claimed to be secure against the e-residue
attack. Later, Mackenzie et al. [19] found that the OKE protocol is still sub-
ject to the e-residue attack. In [19], Mackenzie et al. proposed an RSA-based
password-authenticated key exchange protocol (SNAPI) and provided a formal
security proof in the random oracle model. The SNAPI protocol mandates that
the public exponent e be a prime number larger than the RSA modulus n. This
ensures that e is relatively prime to φ(n).

To avoid using large public exponents, Zhu et al. [27] proposed an “interac-
tive” protocol which is revised from an idea of [5]. In the interactive protocol,
Bob sends to Alice a number of messages encrypted using Alice’s public key. If
Alice can successfully decrypt the encrypted messages, then Bob is ensured that
the encryption based on Alice’s public key is a permutation. In [24], Wong et al.
revised the interactive protocol of [27] to reduce the message size involved in the
interactive protocol. Recently, Catalano et al. [9] proposed an interactive pro-
tocol similar to that of [24] and provided a security proof in the random oracle
model. A drawback of the interactive protocols [27, 24, 9] is the large communi-
cation overhead involved in the verification of RSA public key.

In this paper, we investigate RSA-based password-authenticated key ex-
change protocols that can use both large and small primes as RSA public ex-
ponent, but without inducing large communication overhead on communication
entities. For this purpose, we develop a new protocol for password-authenticated
key exchange based on RSA. The new protocol, called PEKEP, involves two
entities, Alice and Bob, who share a short password and Alice possesses a pair
of RSA keys, n, e and d, where ed ≡ 1 (mod φ(n)). Unlike the protocol SNAPI,
however, the new protocol PEKEP allows Alice to select both large and small
primes for the RSA public exponent e. In the protocol PEKEP, Bob does not
need to verify if e is relatively prime to φ(n), and furthermore, Bob does not

232 M. Zhang

have to test the primality of a large public exponent selected by Alice. Thus, the
protocol PEKEP improves on SNAPI by reducing the cost of primality test of
RSA public exponents. The protocol PEKEP also improves on the interactive
protocols of [27, 24, 9] by reducing the size of messages communicated between
Alice and Bob. Based on number-theoretic techniques, we prove that the proto-
col PEKEP is secure against the e-residue attack as described in [5, 22]. We also
provide a formal security analysis of PEKEP under the RSA assumption and
the random oracle model.

To further reduce the computational load on entities, we present a computa-
tionally efficient key exchange protocol (called CEKEP) in this paper. The pro-
tocol CEKEP is derived from PEKEP by adding two additional flows between
Alice and Bob. With the two additional flows, we show that the probability
for an adversary to launch a successful e-residue attack against CEKEP is less
than or equal to ε, where ε is a small number (e.g., 0 < ε ≤ 2−80) selected
by Bob. In the protocol CEKEP, the computational burden on Bob includes
two modular exponentiations, each having an exponent of O(#log2 ε−1$) bits.
When ε = 2−80, for example, the computational burden on Bob is lighter than
that in a Diffie-Hellman based password-authenticated key exchange protocol.
In the Diffie-Hellman based EKE variant, Bob needs to compute two modular
exponentiations, each having an exponent of at least 160 bits.

The rest of the paper is organized as follows. We provide an overview of
the security model for password-authenticated key exchange in Section 2. In
Section 3, we present the protocol PEKEP and investigate its security against
e-residue attack. We describe the protocol CEKEP in Section 4 and pursue
formal security analysis of PEKEP and CEKEP in Section 5. We conclude in
Section 6.

2 Security Model

We consider two-party protocols for authenticated key-exchange using human-
memorable passwords. In its simplest form, such a protocol involves two entities,
say Alice and Bob (denoted by A and B), both possessing a secret password
drawn from a small password space D. Based on the password, Alice and Bob
can authenticate each other and upon a successful authentication, establish a
session key which is known to nobody but the two of them. There is present
an active adversary, denoted by A, who intends to defeat the goal for the pro-
tocol. The adversary has full control of the communications between Alice and
Bob. She can deliver messages out of order and to unintended recipients, con-
coct messages of her own choosing, and create multiple instances of entities and
communicate with these instances in parallel sessions. She can also enumerate,
off-line, all the passwords in the password space D. She can even acquire session
keys of accepted entity instances. Our formal model of security for password-
authenticated key exchange protocols is based on that of [2]. In the following,
we review the operations of the adversary and formulate the definition of secu-
rity. For details of the security model, we refer the readers to [2].

New Approaches to Password Authenticated Key Exchange Based on RSA 233

Initialization. Let I denote the identities of the protocol participants. Ele-
ments of I will often be denoted A and B (Alice and Bob). We emphasis that
A and B are variables ranging over I and not fixed members of I. Each pair of
entities, A,B ∈ I, are assigned a password w which is randomly selected from
the password space D. The initialization process may also specify a set of crypto-
graphic functions (e.g., hash functions) and establish a number of cryptographic
parameters.

Running the Protocol. Mathematically, a protocol Π is a probabilistic
polynomial-time algorithm which determines how entities behave in response
to received message. For each entity, there may be multiple instances running
the protocol in parallel. We denote the i-th instance of entity A as Πi

A. The
adversary A can make queries to any instance; she has an endless supply of Πi

A

oracles (A ∈ I and i ∈ N). In response to each query, an instance updates its
internal state and gives its output to the adversary. At any point in time, the in-
stance may accept and possesses a session key sk, a session id sid, and a partner
id pid. The query types, as defined in [2], include:

- Send(A, i,M): This sends message M to instance Πi
A. The instance executes

as specified by the protocol and sends back its response to the adversary.
Should the instance accept, this fact, as well as the session id and partner
id will be made visible to the adversary.

- Execute(A, i,B, j): This call carries out an honest execution between two
instances Πi

A and Πj
B , where A,B ∈ I, A �= B and instances Πi

A and Πj
B

were not used before. At the end of the execution, a transcript is given to the
adversary, which logs everything an adversary could see during the execution
(for details, see [2]).

- Reveal(A, i): The session key ski
A of Πi

A is given to the adversary.
- Test(A, i): The instance Πi

A generates a random bit b and outputs its session
key ski

A to the adversary if b = 1, or else a random session key if b = 0. This
query is allowed only once, at any time during the adversary’s execution.

- Oracle(M): This gives the adversary oracle access to a function h, which is
selected at random from some probability space Ω . The choice of Ω deter-
mines whether we are working in the standard model, or in the random-oracle
model (see [2] for further explanations).

Note that the Execute query type can be implemented by using the Send
query type. The Execute query type reflects the adversary’s ability to passively
eavesdrop on protocol execution. As well shall see, the adversary shall learn
nothing about the password or the session key from such oracle calls. The Send
query type allows the adversary to interact with entity instances and to carry
out an active man-in-the-middle attack on the protocol execution.

Definition. Let Πi
A and Πi

B , A �= B, be a pair of instances. We say that Πi
A

and Πi
B are partnered if both instances have accepted and hold the same session

id sid and the same session key sk. Here, we define the sid of Πi
A (or Πi

B) as the
concatenation of all the messages sent and received by Πi

A (or Πi
B). We say that

Πi
A is fresh if: i) it has accepted; and ii) a Reveal query has not been called either

234 M. Zhang

on Πi
A or on its partner (if there is one). With these notions, we now define the

advantage of the adversary A in attacking the protocol. Let Succ denote the
event that A asks a single Test query on a fresh instance, outputs a bit b′, and
b′ = b, where b is the bit selected during the Test query. The advantage of the
adversary A is defined as Advake

A = 2Pr(Succ)− 1.
It is clear that a polynomial-time adversary A can always gain an advantage

close to 1 if we do not limit her capability to perform on-line password-guessing
attacks. In such an attack, the adversary picks a password π as her guess and then
impersonates as an instance Πi

A to start the protocol towards another instance
Πj

B . By observing the decision of Πj
B (i.e., accepts or rejects), the adversary can

test the correctness of the guessed password π. Furthermore, by analyzing, off-
line, the transcript of the execution, the adversary may be able to test passwords
other than π. For a secure protocol, we expect that the adversary can only test
a single password in each on-line password-guessing attack. As suggested in [10],
we use the Send query type to count the number of on-line guesses performed by
the adversary. We only count one Send query for each entity instance, that is, if
the adversary sends two Send queries to an entity instance, it should still count
as a single password guess. Based on this idea, we have the following definition
of secure password-authenticated key exchange protocol, which is the same as
in [10].

Definition 1. A protocol Π is called a secure password-authenticated key ex-
change protocol if for every polynomial-time adversary A that makes at most
Qsend (Qsend ≤ |D|) queries of Send type to different instances, the following
two conditions are satisfied:

(1) Except with negligible probability, each oracle call Execute(A, i,B, j) produces
a pair of partnered instances Πi

A and Πj
B.

(2) Advake
A ≤ Qsend/|D| + ε, where |D| denotes the size of the password space

and ε is a negligible function of security parameters.

The first condition basically says that when the adversary carries out an
honest execution between two instances Πi

A and Πj
B (A �= B), both instances

accept and hold the same session key and the same session id. The second con-
dition means that the advantage of the adversary is at most negligibly more
than Qsend/|D| if she sends at most Qsend queries of Send type to different en-
tity instances, or equivalently, if she interacts on-line with at most Qsend entity
instances using the Send query type.

3 Password Enabled Key Exchange Protocol

In this section, we present a new protocol, called Password Enabled Key Ex-
change Protocol, or simply, PEKEP. In the protocol PEKEP, there are two enti-
ties, Alice and Bob, who share a password w drawn at random from the password
space D and Alice has also generated a pair of RSA keys n, e and d, where n is
a large positive integer (e.g., n > 21023) equal to the product of two primes of

New Approaches to Password Authenticated Key Exchange Based on RSA 235

(roughly) the same size, e is a positive integer relatively prime to φ(n), and d is a
positive integer such that ed ≡ 1 (mod φ(n)). The encryption function is define
by E(x) = xe mod n, x ∈ Zn. The decryption function is D(x) = xd mod n.
For a positive integer m, we define Em recursively as Em(x) = E(Em−1(x)) =
xem

mod n. Likewise, Dm(x) = D(Dm−1(x)) = xdm

mod n. Before describing
the protocol, let’s review some of the facts of number theory.

Let a be a positive integer relatively prime to n, we say that a is an e-th
power residue of n if the congruence xe ≡ a (mod n) has a solution in Z∗

n. Let
g be a positive integer relatively prime to n. The least positive integer i such
that gi ≡ 1 (mod n) is called the order of g modulo n. If the order of g is equal
to φ(n), then g is called a primitive root of n. It is known (see [1, 23]) that a
positive integer n, n > 1, possesses a primitive root if and only if n = 2, 4, pt or
2pt, where p is an odd prime and t is a positive integer. If n has a primitive root
g, then a positive integer a relatively prime to n can be represented as a = gi

Alice (A) Bob (B)
password: w password: w

RSA keys: n, e, d

rA ∈R {0, 1}k
rA, n, e, A �

e odd prime? and n odd?
If yes, m = �loge n�

a ∈R Z
∗
n, rB ∈R {0, 1}k

α = H(w, rA, rB , A, B, n, e)
If gcd(α, n) = 1, λ = α

else λ ∈R Z
∗
n

z = Em(λE(a))
rB , z�

α = H(w, rA, rB , A, B, n, e)
If gcd(α, n) = 1, b ∈R Zn

else b = D(α−1Dm(z))
μ = H1(b, rA, rB , A, B, n, e)

μ �

μ
?= H1(a, rA, rB , A, B, n, e)

Reject if not, else
η = H2(a, rA, rB , A, B, n, e)

sk = H3(a, rA, rB , A, B, n, e)
η�

η
?= H2(b, rA, rB , A, B, n, e)

Reject if not, else
sk = H3(b, rA, rB , A, B, n, e)

Fig. 1. Password Enabled Key Exchange Protocol (PEKEP)

236 M. Zhang

mod n, 0 ≤ i ≤ φ(n) − 1. The integer i is called the index of a to the base g
modulo n, and is denoted by indga.

Define hash functions H1,H2,H3 : {0, 1}∗ → {0, 1}k and H : {0, 1}∗ → Zn,
where k is a security parameter, e.g., k = 160. Note that H can be implemented
using a standard hash function h : {0, 1}∗ → {0, 1}�, where � is the length of n,
i.e., � = #log2 n$. On input x,H(x) = h(x), if h(x) < n, and H(x) = h(x)−#n/2$
if else. The protocol PEKEP is described in Fig. 1. Alice starts the protocol by
sending her public key (n, e) and a random number rA ∈R {0, 1}k to Bob.
Bob verifies if e is an odd prime and n is an odd integer. Bob may also verify
that the integer n is large enough, e.g., n > 21023. If e is not an odd prime
or n is not an odd integer, Bob rejects; otherwise, Bob computers an integer
m = 	loge n
 and selects two random numbers a ∈R Z∗

n, and rB ∈R {0, 1}k.
Bob then computes α = H(w, rA, rB , A,B, n, e) and checks if gcd(α, n) = 1. If
gcd(α, n) �= 1, Bob assigns a random number of Z∗

n to λ; otherwise, Bob assigns
α to λ. Next, Bob computes z = Em(λE(a)) and sends rB and z to Alice.
Subsequently, Alice computes α using her password w and checks if α and n
are relatively prime. If gcd(α, n) �= 1, Alice assigns a random number of Zn to
the variable b. If gcd(α, n) = 1 and z is an em-th power residue of n, Alice sets
b = D(α−1Dm(z)). Next, Alice and Bob authenticate each other using a and b
and generate a session key sk upon successful authentication.

Note that, when e is a prime number larger than n, Bob sets m = 0. In this
case, the run of PEKEP is nearly identical to that of SNAPI. In the protocol
PEKEP, Bob only verifies if the public exponent e is an odd prime and the
RSA modulus n is an odd integer; Bob does not verify if e is relatively prime to
φ(n). This may foster the so-called e-residue attack as described in [5, 22]. In the
e-residue attack, an adversary, say, Eva, selects π0 ∈ D as her guess of Alice’s
password. She also selects an odd prime number e and an odd integer n such
that e | φ(n), i.e., (n, e) is not a valid RSA public key. Then Eva impersonates
as Alice and starts the protocol PEKEP by sending rE , n, e, A to Bob, where
rE ∈ {0, 1}k is a random number generated by Eva. After receiving rB and z
from Bob, Eva computes μ and sends it back to Bob. If Bob accepts, then Eva
has a successful guess of Alice’s password (i.e., π0). If Bob rejects, on the other
hand, Eva excludes her guess π0 from the password space D. Furthermore, Eva
may exclude more passwords by repeating, off-line, the following three steps:

1) Eva selects a password π from D.
2) Eva computes α = H(π, rE , rB , A,B, n, e).
3) Eva tests if gcd(α, n) = 1. If not, Eva returns to step 1; otherwise, Eva

verifies if the congruence (αxe)em ≡ z (mod n) has a solution in Z∗
n. If the

congruence has a solution, Eva returns to step 1. If the congruence has no
solution in Z∗

n, then Eva knows that π is not the password of Alice. Next,
Eva excludes π from D and returns to step 1.

We say that Eva succeeds if she can exclude more than one password in the
e-residue attack as described above. In the following, we show that the protocol
PEKEP is secure against e-residue attack.

New Approaches to Password Authenticated Key Exchange Based on RSA 237

Theorem 1. Let n, n > 1, be an odd integer with prime-power factorization
n = pa1

1 pa2
2 . . . par

r . Let m be a non-negative integer and e an odd prime such that
for any prime-power pai

i of the factorization of n, em+1 � φ(pai
i), 1 ≤ i ≤ r. If z

is an em-th power residue of n, then for any λ ∈ Z∗
n, the congruence (λxe)em ≡

z (mod n) has a solution in Z∗
n.

Proof. To prove that (λxe)em ≡ z (mod n) has a solution in Z∗
n, we only need

to prove that, for each prime power pai
i of the factorization of n, the following

congruence
(λxe)em ≡ z (mod pai

i) (1)

has a solution in Z∗
p

ai
i

.

Let ni = pai
i , 1 ≤ i ≤ r. Then φ(ni) = pai−1

i (pi − 1). Since n is odd, pi is an
odd prime. Thus, the integer ni possesses a primitive root. Let g be a primitive
root of ni, that is, gφ(ni) = 1 mod ni, and for any 0 ≤ i, j ≤ φ(ni) − 1, i �= j,
gi �= gj mod ni. Let gcd(em, φ(ni)) = ec, 0 ≤ c ≤ m. We consider the following
two cases:

(1) If c = 0, then e and φ(ni) are relatively prime. In this case, it is clear
that the congruence (λxe)em ≡ z (mod ni) has a unique solution in Z∗

ni
.

(2) Next, we consider the case that 1 ≤ c ≤ m. Since z is an em-th power
residue of n, the congruence yem ≡ z (mod n) has solutions in Z∗

n. By the Chinese
Remainder Theorem, the following congruence

yem ≡ z (mod ni) (2)

has solutions in Z∗
ni

. Let indgz denote the index of z to the base g modulo ni

and let y ∈ Z∗
ni

be a solution of (2), then gemindgy−indgz ≡ 1 (mod ni). Since
the order of g modulo ni is φ(ni), we have

emindgy ≡ indgz (mod φ(ni)) (3)

Also since gcd(em, φ(ni)) = ec, equation (3) has exactly ec incongruent solu-
tions modulo φ(ni) when taking indgy as variable. This indicates that equation
(2) has ec solutions in Z∗

ni
. Let y0 denote one of the solutions of (2), then the ec

incongruent solutions of (3) are given by

indgy = indgy0 + tφ(ni)/ec (mod φ(ni)), 0 ≤ t ≤ ec − 1. (4)

For any λ ∈ Z∗
n, we have

indgy − indgλ ≡ indgy0 − indgλ + tφ(ni)/ec (mod φ(ni)), 0 ≤ t ≤ ec − 1.

Under the condition that em+1 � φ(ni), it is clear that e � φ(ni)/ec. Hence,
φ(ni)/ec ≡ 1 (mod e). So, there exists an integer t, 0 ≤ t ≤ ec − 1, such that

indgy0 − indgλ + tφ(ni)/ec ≡ 0 (mod e),

which implies that there exists an integer y ∈ Z∗
ni

, such that yem ≡ z (mod ni)
and yλ−1 is an e-th power residue of ni. Therefore, equation (1) has a solution
in Z∗

ni
, which proves the theorem. �

238 M. Zhang

In PEKEP, Bob sets m equal to 	loge n
. Thus, for every prime-power pai
i of

the factorization of n, we have em+1 > n ≥ pai
i . By Theorem 1, for any λ ∈ Z∗

n,
the congruence (λxe)em ≡ z (mod n) has a solution in Z∗

n, where z is the e-th
power residue computed by Bob. Hence, by repeating (off-line) the three steps
as described previously, Eva could not exclude any password from the space D.
So, the protocol PEKEP is secure against e-residue attacks. In Section 5, we
will provide a formal analysis of PEKEP within the security model described in
Section 2.

At the beginning of PEKEP, Bob needs to test the primality of the public
exponent e selected by Alice. When e is small, e.g., e = 17, the primality test only
induces moderate overhead on Bob. When e is large (e.g., e > 2512), however, the
computational load for the primality test would be tremendous. In the following,
we show that primality test of large public exponents by Bob could be avoided
with slight modification of PEKEP. In the protocol PEKEP, Bob can actually
select a small prime number e′ (e.g., e′ = 3) and replaces Alice’s public key (n, e)
by (n, e′), that is, Bob computes m,α, z, η, sk using (n, e′) instead of Alice’s
public key (n, e). Theorem 1 demonstrates that the replacement does not lead
to e-residue attacks, even if e′ is not relatively prime to φ(n). So, when the public
exponent e received from Alice exceeds a threshold, Bob replaces e by a smaller
prime number e′ (2 < e′ < e) of his own choosing. Bob sends rB , z, and e′ to
Alice in the second flow. After receiving e′ from Bob, Alice tests if e′ is relatively
prime to φ(n). If gcd(e′, φ(n)) �= 1, Alice sends a random number μ ∈ {0, 1}k to
Bob; Alice may select a smaller prime number for e in the next communication
session. If gcd(e′, φ(n)) = 1, Alice replaces her decryption key by d′ and then
proceeds as specified in Fig. 1, where e′d′ ≡ 1 (mod φ(n)).

In each run of PEKEP, Bob computes m+1 encryptions using Alice’s public
key (n, e), where m = 	loge n
. The computation time for the m+1 encryptions is
O((log2 n)3), which means that the computational load on Bob is about the same
as that in SNAPI. As discussed above, however, Bob does not have to perform
primality test of large public exponents. Hence, the protocol PEKEP still im-
proves on SNAPI by reducing the cost of primality test of RSA public exponent.
Since Alice has knowledge of φ(n), she only needs to perform two decryptions in
each run of PEKEP; one using the decryption key d1 = d and another using the
decryption key d2 = dm mod φ(n). Note that the computational load on Bob is
high even when e is small. In Section 4, we present a computationally-efficient
key exchange protocol which greatly reduces the computational load on Bob.

4 Computationally-Efficient Key Exchange Protocol

In this section, we present a Computationally-Efficient Key Exchange Proto-
col (CEKEP), which is described in Fig. 2. The protocol CEKEP is based on
PEKEP, but the number of encryptions performed by Bob is less than 	loge n
,
where (n, e) is the public key of Alice. In the protocol CEKEP, Bob selects a
small number ε, 0 < ε ≤ 2−80, which determines the probability of a successful
e-residue attack against the protocol CEKEP. Alice starts the protocol CEKEP

New Approaches to Password Authenticated Key Exchange Based on RSA 239

by sending her public key n, e and two random numbers ρ, rA ∈R {0, 1}k to Bob.
Bob verifies if e is an odd prime and n is an odd integer. If not, Bob rejects.
Else, Bob computers an integer m based on e and ε as m = #loge ε−1$. Then
Bob selects a random number # ∈R {0, 1}k such that γ = H(n, e, ρ, #, A,B,m)
is relatively prime to n. Bob sends # and m to Alice. After receiving # and m,
Alice computes u = Dm(γ) and sends it back to Bob. Subsequently, Bob verifies
if Alice has made the right decryption, i.e., Em(u) = γ. If γ �= Em(u), Bob
rejects. Else, Alice and Bob executes the rest of the protocol as in PEKEP.

Alice (A) Bob (B)
password: w password: w

RSA keys: n, e, d 0 < ε ≤ 2−80

ρ, rA ∈R {0, 1}k

ρ, rA, n, e, A �

e odd prime? and n odd?
If yes, m = �loge ε−1�

� ∈R {0, 1}k

H(n, e, ρ, �, A, B, m) ∈ Z
∗
n�, m�

γ = H(n, e, ρ, �, A, B, m)
u = Dm(γ)

u �
γ

?= Em(u)
Reject if not, else

a ∈R Z∗
n, rB ∈R {0, 1}k

α = H(w, rA, rB , A, B, n, e)
If gcd(α, n) = 1, λ = α

else λ ∈R Z
∗
n

z = Em−1(λE(a))
z, rB�

α = H(w, rA, rB , A, B, n, e)
If gcd(α, n) = 1, b ∈R Zn

else b = D(λ−1Dm−1(z))
μ = H1(b, rA, rB , A, B, n, e) μ �

μ
?= H1(a, rA, rB , A, B, n, e)

Reject if not, else
η = H2(a, rA, rB , A, B, n, e)

sk = H3(a, rA, rB , A, B, n, e)
η�

η
?= H2(b, rA, rB , A, B, n, e)

Reject if not, else
sk = H3(b, rA, rB , A, B, n, e)

Fig. 2. Computationally-Efficient Key Exchange Protocol (CEKEP)

240 M. Zhang

A major difference between CEKEP and PEKEP is that the protocol CEKEP
adds two additional flows between Alice and Bob. Through the two flows, Alice
and Bob establish a random number γ ∈ Z∗

n. Then Alice decrypts the random
number γ repeatedly m times. If the m repeated decryption is correct, i.e.,
γ = Em(u), then it can be concluded that, except with probability as small
as e−m, the integer em does not divide φ(pai

i) for every prime-power pai
i of the

factorization of n.

Theorem 2. Let n, n > 1, be an odd integer with prime-power factorization
n = pa1

1 pa2
2 . . . par

r . Let m be a positive integer and e an odd prime. If there exists
a prime power, say pai

i , of the factorization of n such that em | φ(pai
i), then for

an integer γ randomly selected from Z∗
n, the probability that γ is an em-th power

residue of n is less than or equal to e−m.

Proof. Let ni = pai
i be a prime power of the factorization of n such that em |

φ(ni). Since n is odd, ni possesses a primitive root. Let g be a primitive root of
ni. For an integer γ randomly selected from Z∗

n, let indgγ denote the index of γ
to the base g modulo ni. Then γ is an em-th power residue of ni if and only if
the congruence xem ≡ γ (mod ni) has a solution, or equivalently, if and only if

gem indgx−indgγ ≡ 1 (mod ni),

which is equivalent to

emindgx ≡ indgγ (mod φ(ni)).

Since em | φ(ni), γ is an em-th power residue of ni if and only if em | indgγ.
Let n′

i = n/ni, then ni and n′
i are relatively prime. For any integer β ∈

Z∗
n, it is clear that β mod ni and β mod n′

i are integers of Z∗
ni

and Z∗
n′

i
,

respectively. On the other hand, for two integers α1 ∈ Z∗
ni

and α2 ∈ Z∗
n′

i
, by

the Chinese Remainder Theorem, there is an unique integer α ∈ Z∗
n, such that

α ≡ α1 (mod ni), and α ≡ α2 (mod n′
i). So, the number of integers α ∈ Z∗

n

which satisfy the congruence α ≡ α1 (mod ni) is φ(n′
i). If γ is randomly selected

from Z∗
n, then for any integer s, 0 ≤ s ≤ φ(ni)− 1, we have

Pr(gs = γ mod ni) = φ(n′
i)/φ(n) = 1/φ(ni),

which implies that Pr(indgγ = s) = 1/φ(ni). Hence,

Pr(em | indgγ) =
∑

em|s, 0≤s<φ(ni)

Pr(indgγ = s)

= φ(ni)e−m/φ(ni)
= e−m

which indicates that, for an integer γ randomly selected from Z∗
n, the probability

that γ is an em-th power residue of ni is equal to e−m. So, the probability that
γ is an em-th power residue of n does not exceed e−m. �

New Approaches to Password Authenticated Key Exchange Based on RSA 241

Theorem 2 demonstrates that, if there exits a prime-power pai
i of the fac-

torization of n such that em | φ(pai
i), then for a random number γ ∈ Z∗

n, the
probability that Alice can decrypt γ repeatedly m times is less than or equal to
e−m. If the number u received from Alice satisfies the equation Em(u) = uem

=
γ mod n, i.e., γ is an em-power residue of n, then Bob is ensured with prob-
ability greater than or equal to 1 − e−m that, for every prime-power pai

i of the
factorization of n, em � φ(pai

i). Since m = #loge ε−1$, e−m ≤ ε. By Theorem 1,
it is clear that the probability for an adversary to launch a successful e-residue
attack against CEKEP is upper-bounded by ε.

In the protocol CEKEP, Alice proves to Bob in an interactive manner (via
flow 2 and flow 3) that for every prime-power pai

i of the factorization of n,
em � φ(pai

i). In the interactive procedure, however, only one decrypted message
is sent from Alice to Bob. The communication overhead on Alice and Bob is
greatly reduced in comparison with that in [27, 24, 9]. In CEKEP, the compu-
tational burden on Bob includes two modulo exponentiations, i.e., uem

mod n
and (λae)em−1

mod n, where m = #loge ε−1$. When e < ε−1, each modulo ex-
ponentiation has an exponent consisting of O(#log2 ε−1$) bits. The computation
time for the two modulo exponentiations is O(2(log2 ε−1)(log2 n)2). If ε−1 & n,
then the computational load on Bob is greatly reduced in CEKEP in comparison
with that in PEKEP (or in SNAPI). The parameter ε determines the compu-
tational load on Bob. It also determines the level of security against e-residue
attacks. In practice, Bob can make a trade-off between the computational load
and the security level offered by the protocol. When ε = 2−80, for example,
Bob needs to compute two modular exponentiation, each having an exponent
of about 80 bits. In this case, the computational load on Bob is lighter than
that in a Diffie-Hellman based password-authenticated key exchange protocol.
In the Diffie-Hellman based EKE variant, for example, Bob needs to compute
two modular exponentiation, each having an exponent of at least 160 bits.

5 Formal Security Analysis

In this section, we analyze the security of PEKEP and CEKEP within the formal
model of security given in Section 2. Our analysis is based on the random-oracle
model of Bellare and Rogaway [4]. In this model, a hash function is modeled as
an oracle which returns a random number for each new query. If the same query
is asked twice, identical answers are returned by the oracle. In our analysis, we
also assume the intractability of the RSA problem.

RSA Assumption: Let � be the security parameter of RSA. Let key generator
GE define a family of RSA functions, i.e., (e, d, n) ← GE(1�), where n is the
product of two primes of the same size, gcd(e, φ(n)) = 1, and ed ≡ 1 (mod
φ(n)). For any probabilistic polynomial-time algorithm C of running time t, the
following probability

Advrsa
C (t)=Pr(xe =c mod n : (e, d, n)←GE(1�), c∈R {0, 1}�, x←C(1�, c, e, n))

242 M. Zhang

is negligible. In the following, we use Advrsa(t) to denote maxC{Advrsa
C (t)}, where

the maximum is taken over all polynomial-time algorithms of running time t.

Theorem 3. Let A be an adversary which runs in time t and makes Qsend,
Qsend ≤ |D|, queries of type Send to different instances. Then the adversary’s
advantage in attacking the protocol PEKEP is bounded by

Advake
A ≤ Qsend

|D| +(Qexecute+3Qsend)Advrsa(O(t))+O(
(Qexecute + 2Qsend)Qoh

2k
),

where Qexecute denotes the number of queries of type Execute and Qoh denotes
the number of random oracle calls.

We prove Theorem 3 through a series of hybrid experiments. In each ex-
periment, we modify the way session keys are chosen for instances involved in
protocol execution. We start by choosing random session keys (not output by
random oracles) for instances for which the Execute oracle is called. We then
proceed to choose random session keys for instances for which the Send oracle is
called. These instances are gradually changed over five hybrid experiments and
in the last hybrid experiment, all the session keys are chosen uniformly at ran-
dom. Thus, the adversary A can not distinguish them from random. We denote
these hybrid experiments by P0, P1, . . . , P4 and by Adv(A, Pi) the advantage of
A when participating in experiment Pi. The hybrid experiment P0 describes
the real adversary attack. For 0 ≤ i ≤ 3, we show that the difference between
Adv(A, Pi) and Adv(A, Pi+1) is negligible. We bound the advantage of A in P4
by Qsend/|D| + ε. Hence, the advantage of A in P0 (i.e., in the real attack)
is bounded by Qsend/|D| + ε. Due to lack of space, the proof of Theorem 3 is
omitted and can be found in the full version of this paper [28].

It is easy to check that the protocol PEKEP satisfies the first condition of
Definition 1. Theorem 3 indicates that the protocol PEKEP also satisfies the
second condition of Definition 1 and hence is a secure password-authenticated
key exchange protocol. Similarly, we can also show that the protocol CEKEP
satisfies the two conditions of Definition 1. In summary, we have the following
theorem 4.

Theorem 4. Both protocols, PEKEP and CEKEP, are secure password authen-
ticated key exchange protocols under the RSA assumption and the random oracle
model.

We notice that the random oracle model in Theorem 4 is less desirable than a
standard cryptographic assumption. To avoid the random oracle model, we could
use the proof technique of [12], which require a public-key encryption scheme se-
cure against chosen-ciphertext attacks. Unfortunately, the most commonly used
RSA schemes (e.g. [3, 7]) which are secure against chosen-ciphertext attacks are
also based on the random oracle model. Nevertheless, it is encouraging to see
that efficient password-authenticated key exchange protocols with security proof
in the random oracle model can be constructed without severe restriction on the
public key of RSA.

New Approaches to Password Authenticated Key Exchange Based on RSA 243

6 Conclusion

In this paper, we investigate the design of RSA-based password-authenticated
key exchange protocols that do not restrict the size of RSA public exponent.
Based on number-theoretic techniques, we develop a Password Enabled Key
Exchange Protocol (PEKEP) which can use both large and small primes as
RSA public exponent. We show that the protocol PEKEP is secure against e-
residue attacks. We also provide a formal security analysis of PEKEP under the
RSA assumption and the random oracle model. Based on PEKEP, we develop
a computationally-efficient key exchange protocol to mitigate the burden on
communication entities. Both protocols, PEKEP and CEKEP, do not require
public parameters; Alice and Bob only need to establish a shared password in
advance and do not need to establish other common parameters such as a prime
number p and a generator g of the cyclic group modulo p. This is appealing in
environments where entities have insufficient resources to generate or validate
public parameters with certain properties, e.g., primality.

References

1. E. Bach and J. Shallit, Algorithmic Number Theory, vol. 1: Efficient Algorithms,
MIT Press, 1997.

2. M. Bellare, D. Pointcheval, and P. Rogaway, Authenticated key exchange secure
against dictionary attack, Advances in Cryptology - EUROCRYPT 2000 Proceed-
ings, Lecture Notes in Computer Science, vol. 1807, Springer-Verlag, 2000, pp.
139-155.

3. M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances in Cryp-
tology - EUROCRYPT ’94 proceedings, Lecture Notes in Computer Science, vol.
950, Springer-Verlag, 1995, pp. 92–111.

4. M. Bellare and P. Rogaway, Entity Authentication and key distribution, Advances
in Cryptology - CRYPTO’93 Proceedings, Lecture Notes in Computer Science, vol.
773, Springer-Verlag, 1994, pp. 22-26.

5. S. M. Bellovin and M. Merritt, Encrypted key exchange: Password-based protocols
secure against dictionary attacks, Proc. of the IEEE Symposium on Research in
Security and Privacy, Oakland, May 1992, pp. 72-84.

6. S. M. Bellovin and M. Merritt, Augmented encrypted key exchange: A password-
based protocol secure against dictionary attacks and password file compromise,
Proc. of the 1st ACM Conference on Computer and Communications Security,
ACM, November 1993, pp. 244-250.

7. D. Boneh, Simplified OAEP for the RSA and Rabin functions, Advances in Cryp-
tology - CRYPTO 2001 Proceedings, Lecture Notes in Computer Science, vol. 2139,
Springer-Verlag, 2001, pp. 275-291.

8. V. Boyko, P. MacKenzie, and S. Patel, Provably secure password authenticated
key exchange using Diffie-Hellman, Advances in Cryptology - EUROCRYPT 2000
Proceedings, Lecture Notes in Computer Science, vol. 1807, Springer-Verlag, 2000,
pp. 156-171.

9. D. Catalano, D. Pointcheval, and T. Pornin, IPAKE: Isomorphisms for Password-
based Authenticated Key Exchange, to appear in CRYPTO 2004 Proceedings.

244 M. Zhang

10. R. Gennaro and Y. Lindell, A framework for password-based authenticated key ex-
change, Advances in Cryptology - EUROCRYPT 2003 Proceedings, Lecture Notes
in Computer Science, vol. 2656, Springer-Verlag, 2003, pp.524-542.

11. O. Goldreich and Y. Lindell, Session-key generation using human passwords only,
Advances in Cryptology - CRYPTO 2001 Proceedings, Lecture Notes in Computer
Science, vol. 2139, Springer-Verlag, 2001, pp.408-432.

12. S. Halevi and H. Krawczyk, Public-key cryptography and password protocols, Proc.
of the Fifth ACM Conference on Computer and Communications Security, 1998,
pp. 122-131.

13. D. Jablon, Strong password-only authenticated key exchange, Computer Commu-
nication Review, ACM SIGCOMM, vol. 26, no. 5, 1996, pp. 5-26.

14. D. Jablon, http://www.integritysciences.com.
15. J. Katz, R. Ostrovsky, and M. Yung, Efficient password-authenticated key exchange

using human-memorable passwords, Advances in Cryptology – EUROCRYPT 2001
Proceedings, Lecture Notes in Computer Science, vol. 2045, Springer-Verlag, 2001.

16. K. Kobara and H. Imai, Pretty-simple password-authenticated key-exchange under
standard assumptions, IEICE Trans., vol. E85-A, no. 10, 2002, pp. 2229-2237.

17. T. Kwon, Authentication and key agreement via memorable passwords, Proc. Net-
work and Distributed System Security Symposium, February 7-9, 2001.

18. S. Lucks, Open key exchange: How to defeat dictionary attacks without encrypting
public keys, Proc. Security Protocol Workshop, Lecture Notes in Computer Science,
vol. 1361, Springer-Verlag, 1997, pp. 79-90.

19. P. MacKenzie, S. Patel, and R. Swaminathan, Password-authenticated key ex-
change based on RSA, Advances in Cryptology—ASIACRYPT 2000 Proceedings,
Lecture Notes in Computer Science, vol. 1976, Springer-Verlag, 2000, pp. 599–613.

20. A. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptogra-
phy, CRC Press, 1997.

21. M. Nguyen and S. P. Vadhan, Simpler session-key generation from short ran-
dom passwords, Proc. TCC 2004, Lecture Notes in Computer Science, vol. 2951,
Springer-Verlag, 2004, pp. 428-445.

22. S. Patel, Number theoretic attacks on secure password schemes, Proc. IEEE Sym-
posium on Security and Privacy, Oakland, California, May 5-7, 1997.

23. K. H. Rosen, Elementary Number Theory and Its Applications, 4th ed., Addison
Wesley Longman, 2000.

24. D. Wong, A. Chan, and F. Zhu, More efficient password authenticated key exchange
based on RSA, INDOCRYPT 2003 Proceedings, Lecture Notes in Computer Sci-
ence, vol. 2904, Springer-Verlag, 2003, pp. 375-387.

25. T. Wu, The secure remote password protocol , Proc. Network and Distributed
System Security Symposium, San Diego, March 1998, pp. 97-111.

26. T. Wu, A real-world analysis of Kerberos password security, Proc. Network and
Distributed System Security Symposium, February 3-5, 1999.

27. F. Zhu, D. Wong, A. Chan, and R. Ye, RSA-based password authenticated key
exchange for imbalanced wireless networks, Proc. Information Security Conference
2003 (ISC’02), Lecture Notes in Computer Science, vol. 2433, Springer-Verlag,
2002, pp.150-161.

28. M. Zhang, New approaches to password authenticated key exchange based on RSA,
Cryptology ePrint Archive, Report 2004/033.

Constant-Round Authenticated Group Key
Exchange for Dynamic Groups�

Hyun-Jeong Kim��, Su-Mi Lee, and Dong Hoon Lee� � �

Center for Information Security Technologies(CIST),
Korea University, Seoul, Korea

{khj, smlee}@cist.korea.ac.kr, donghlee@korea.ac.kr

Abstract. An authenticated group key exchange (AGKE) scheme al-
lows a group of users in a public network to share a session key which
may later be used to achieve desirable cryptographic goals. In the pa-
per, we study AGKE schemes for dynamically changing groups in ad hoc
networks, i.e., for environments such that a member of a group may join
and/or leave at any given time and a group key is exchanged without
the help of any central sever. Difficulties in group key managements un-
der such environments are caused by dynamically changing group and
existence of no trustee. In most AGKE schemes proposed so far in the
literature, the number of rounds is linear with respect to the number of
group members. Such schemes are neither scalable nor practical since the
number of group members may be quite large and the efficiency of the
schemes is severely degraded with only one member’s delay. We propose
an efficient provably secure AGKE scheme with constant-round. The pro-
pose scheme is still contributory and efficient, where each user executes
three modular exponentiations and at most O(n) XOR operations.

Keywords: dynamic authenticated group key exchange, ad hoc net-
works.

1 Introduction

Recently, secure and efficient AGKE protocols have received much attention with
increasing applicability in various collaborative and distributive group settings
such as multicast communication, audio-video conference, multiplayer game, etc.
In addition to provable security, the recent researches in group key exchange have
concentrated on the efficiency which is related to the costs of communication
and computation. Especially the number of rounds may be of critical concern in
practical environment where the number of group members are quite large and

� Supported by the Ministry of Information & Communications, Korea, under the
Information Technology Research Center (ITRC) Support Program.

�� A guest researcher at ESAT/SCD-COSIC,K.U.Leuven from 2003 to 2004.
� � � Supported by grant No. R01-2001-000-00537-0 from the Korea Science & Engineering

Foundation.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 245–259, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

246 H.-J. Kim, S.-M. Lee, and D.H. Lee

a group is dynamic. As noted in [10], even in the case of a group where only few
members have a slow network connection, the efficiency of the protocol with n
rounds for a group of n members can be severely degraded. Furthermore, it is
clear that a scheme with n rounds is not scalable.

In the paper, we design a secure and efficient dynamic AGKE protocol for
ad hoc networks [26]. Most group communication environments are dynamic,
where users can join and leave a group frequently. In particular, many group key
exchange protocols [1, 7, 20, 23, 25] have considered ad hoc networks, i.e., absent
fixed infrastructure. IEEE 802.11 standards [18] includes as a component an ad
hoc network environment such as IBSS (Independent Basic Service Set). Diffi-
culties in designing a secure and efficient dynamic group key exchange scheme
arise from the facts that a group key should be updated whenever a membership
changes and exchanged without any trustee.

1.1 Overview

Related Work: The security models and provably secure protocols for au-
thenticated static group key exchange have been first proposed by Bresson et al.
[11], in which the security models have been based on the secure 2-party key ex-
change models constructed by Bellare et al. [2, 5, 6]. Their scheme requires O(n)
rounds.

Authenticated static group key exchange protocols with constant round have
been proposed by Tzeng and Tzeng [24] and Boyd and Nieto [9]. In the protocol
[24] with a fixed constant-round, however, the cost of communication is very
high. Each member should compute n modular exponentiations for a group key
exchange and additionally perform 3n modular exponentiations for authentica-
tions, since non-interactive proof systems are used in the authentication process.
Boyd and Nieto have proven the security of the protocol [9] in the random ora-
cle model [4]. In [9], group members consist of one member called initiator and
other members called responders. While the responders only perform one signa-
ture verification, one decryption in a public cryptosystem and one operation of
one-way hash function, the initiator has a heavy burden caused by (n − 1) en-
cryptions in a public cryptosystem and one signature generation. Furthermore,
both of these protocols [9, 24] cannot provide forward secrecy.

Katz and Yung have proposed a scalable authenticated static group key
exchange protocol [19] which is based on [15] introduced by Burmester and
Desmedt. Burmester and Desmedt’s protocol provides 2-round and more effi-
cient computation rate of group members than previous protocols [9, 24]; each
member performs 3 modular exponentiations and (n2

2 + 3n
2 − 3) modular mul-

tiplications. However, Burmester and Desmedt’s protocol has not proposed any
authentication method and any clear security proof. In [19], Katz and Yung pro-
pose a scalable compiler which transforms a secure group key exchange protocol
into a secure authenticated group key exchange protocol. The compiler preserves
forward secrecy of an original protocol. As Katz and Yung adapt this compiler
to Burmester and Desmedt’s protocol, they construct a 3-round authenticated
static group key exchange protocol. Each member performs the same modular

Constant-Round Authenticated Group Key Exchange for Dynamic Groups 247

computations as the protocol [15] and additionally performs 2 signature genera-
tions and (2n− 2) signature verifications. The rate of modular exponentiations
in [15, 19] is constant, but still the rate of modular multiplications is dependent
on the number of group members.

More recently, Bresson and Catalano have proposed a provably authenticated
static group key exchange protocol with 2-round in the standard model [10].
The protocol is based on standard secret sharing techniques. The protocol is
inefficient from a point of view of the computation rate. Each member should
perform more than 3n modular exponentiations, 3n modular multiplications, n
signature generations and n signature verifications.

For dynamic groups, Bresson et al. improved the protocol [11] into dynamic
group key exchange protocols in [12, 13]. However, Bresson et al.’s protocols do
not have constant-round; in their schemes, each group member embeds its secret
in the intermediate keying materials and forwards the results generated with the
secret to the next group member. This makes the number of rounds in setup/join
algorithms linear with respect to the number of group members. Though the
number of rounds in leave algorithm is constant-round, for the constant-round
leave algorithm all members should store data of which length is linear with
respect to the number of group members.

Bresson et al. [14] have introduced a provably secure authenticated group
key distribution protocol with 2-round in the random oracle model [4], which
is suitable for restricted power devices and wireless environments. They have
concentrated on an efficient computation rate of a group member with a mobile
device. In the protocol, however, there exists a base station as a trustee. The
computation rate of the base station is similar to the maximum rate of group
members in other protocols without any central server; n modular exponentia-
tions, n signature verifications, n one-way hash function operations, and n XOR
operations.

Our Contribution: We propose a 2-round dynamic AGKE protocol with-
out using any trustee. All legitimate members can also detect errors and stop
execution the protocol instantly, if invalid messages are broadcasted by cor-
rupted members. For dynamic group communications, we propose setup, join,
and leave algorithms with 2-round. In the setup algorithm, each group member
performs at most 3 modular exponentiations, 4 one-way hash function opera-
tions, and n XOR operations. Since the operation dependent on the number of
group members is the XOR operation, the total cost of computations can be
highly reduced, compared to the previous protocols. For authentication, each
group member generates 2 signatures and performs 2n signature verifications:
this computation rate is similar to other AGKE protocols using secure signa-
ture schemes [19]. Our join/leave algorithms are executed for generations of new
session keys, whenever some members join or leave. Simply, setup algorithms of
static constant-round AGKE protocols can be performed, whenever group mem-
bership changes. In our join/leave algorithms, however, the communication rate
and the total computation rate of group members are dependent on the number
of joining/leaving members. Therefore our joining/leaving algorithms are more

248 H.-J. Kim, S.-M. Lee, and D.H. Lee

efficient than the setup algorithms with the rates dependent on the number of
total members, when the number of joining/leaving members is smaller than
the number of remaining group members. With reduced round complexity, our
protocol is still contributory; in our protocol, each member can participate in
the generation of a group key with a one-time random value without any trust
party.

In Table 1, we show efficiency analysis between our protocol and Bresson et
al.’s dynamic AGKE protocol (Bresson(Dyn)) [13]. While the number of round
in Bresson(Dyn) is depending on the number of group members, the proposed
scheme is of constant round without degrading efficiency. However, our protocol
cannot avoid the number of verification operations per each member increasing
as like other authenticated group key exchanges [19, 24]. Our further research is
to decrease or fix the number of verification operations. The following efficiency
measures, Round, Communication, Message and Computation are similar to the
measures defined by Katz and Yung in [19].

– Storage: the storage rate of a member.
– Round : the number of rounds during the execution of protocol.
– Comm.: the maximum number of bits that a member sends during the exe-

cution of protocol.

Table 1. The analysis of efficiencies

Protocol Bresson(Dyn) Our Protocol

Storage Secret-|p|, Non Secret-N|p| Secret-3|h|

Setup Round N 2

Comm. N|p| + |σ| |p| + 3|h| + 2|σ|

Mess. O(N2)|p| + N|σ| O(N)(|p| + |h| + |σ|)

Comp. Ne + s + v 3e + 4h + (N + 1)x + 2s + O(N)v

Join Round O(Nj) 2

Comm. (N + Nj)|p| + |σ| |p| + 3|h| + 2|σ|

Mess. O(NNj)|p| + O(Nj)|σ| O(Nj)(|h| + |p| + |σ|)

Comp. (N + Nj)e + 2s + Njv 3e + 4h + (Nj + 1)x + 2s + O(Nj)v

Leave Round 1 2

Comm. (N − N�)|p| + |σ| |p| + 3|h| + 2|σ|

Mess. (N − N�)|p| + |σ| N�|p| + (N + N�)(|h| + |σ|)

Comp. (N − N�)e + s 3e + 4h + (N + 1)x + 2s + (N� + N)v

Notations of Table1: |σ|-the length of a signature, |h|-the output size of a hash
function, |p|-the length of a prime number p where p is an order of a cycle group G;
N -the number of members, Nj-the number of joining members, N�-the number of
leaving members; s-the cost of a signing operation, v-the cost of a verifying operation,
e-the cost of a modular exponentiation, h-the cost of a hash function operation, x-
the cost of a XOR operation. Note that |h| ≤ |p| may be satisfied in general. We do
not consider the post computation rates in our protocol.

Constant-Round Authenticated Group Key Exchange for Dynamic Groups 249

– Mess.: the total length of all bits transmitted during the execution of proto-
col.

– Comp.: the maximum computation rate of a member during the execution
of protocol.

2 The Model

In this section we present a security model for a dynamic AGKE protocol based
on [11, 12] by Bresson et al. and [19] by Katz and Yung.

Participants. A nonempty set U is a set of users who are able to participate in
an AGKE protocol P. Each user generates secret/public key pairs (sk, pk) and
the list of all public keys are known by all users. These key pairs are long-lived
and used for signature generation/verification. An adversary is not a participant,
but can control all communication on a network and corrupt group members.

Partnering. Whenever group membership changes, a new group Gv = {u1, · · · ,
un} is formed and each group member of Gv can obtain a new session key skv

through an instance performing P: the index v increases whenever group mem-
bership changes and G0 denotes the initial group. Πj

ui
denotes an instance j

of a group member ui. An instance Πj
ui

has unique session identifier sidj
ui

and
partner identifier pidj

ui
. After the group key exchange protocol P has been termi-

nated successfully, Πj
ui

has a unique session key identifier skj
ui

corresponding to
the session key skv. pidj

ui
corresponds to a set of group members Gj

ui
= Gv\{ui}.

When the group key exchange protocol P has been successfully terminated in
the instance Πj

ui
, each member uk of Gj

ui
has an instance Πjk

uk
(1 ≤ k �= i ≤ n)

containing {sidjk
uk
, pidjk

uk
, skjk

uk
} such that sidjk

uk
= sidj

ui
, pidjk

uk
= Gv \ {uk}

and skjk
uk

= skj
ui

: we state that the instances Πj
ui

and Πjk
uk

are partnered [19].

Protocol Model. A dynamic AGKE protocol P consists of the following algo-
rithms:

– Key Generation: With an input value 1k where k is a security parameter,
this probabilistic polynomial time algorithm outputs a long-lived key for
each user of U .

– Setup(G0): This algorithm starts the protocol P and the initial group G0 is
generated.

– Join(J , Gv−1): Inputs to this algorithm are a set of joining members’ identi-
ties denoted by J and the current group Gv−1. The output of this algorithm
is a new group Gv = Gv−1 ∪ J and all members of Gv share a new session
key skv secretly.

– Leave(R, Gv−1): Inputs of this algorithm are a set of leaving members’ identi-
ties denoted by R and the current group Gv−1. The output of this algorithm
is a new group Gv = Gv−1 \ R and all members of Gv share a new session
key skv secretly.

250 H.-J. Kim, S.-M. Lee, and D.H. Lee

Security Model. We define the capabilities of an adversary. We allow the
adversary to potentially control all communication in the network via access
to a set of oracles as defined below. We consider an experiment in which the
adversary asks queries to oracles, and the oracles answer back to the adversary.
Oracle queries model attacks which an adversary may use in the real system.
We consider the following types of queries in this paper.

– Send(Πj
ui

, m): A sends a message m to an instance Πj
ui

. When Πj
ui

receives
m, it responds according to the group key exchange protocol. An adversary
may use this query to perform active attacks by modifying and inserting the
messages of the key-exchange protocol. Impersonation attacks and man-in-
the-middle attacks are also possible using this query.

– Setup(G0), Join(J , Gv−1), Leave(R, Gv−1): Using these queries, A can start
the Setup, Join or Leave algorithm.

– Reveal(Πj
ui

): A can obtain a session key sk which has been exchanged be-
tween the instance Πj

ui
and partnered instances, while ui’s long-lived key are

concealed. This query models known key attacks (or Denning-sacco attacks).
– Corrupt(ui): A can obtain ui’s long-lived key. In our protocol, we consider

adaptive corruptions [22]; in general, adaptive corruptions mean weak cor-
ruptions in which an adversary can obtain an honest member’s long-lived
key, but cannot obtain the member’s “ephemeral” keys.

– Test(Πj
ui

): This query is used to define the advantage of an adversary. A
executes this query on a fresh instance Πj

ui
at any time, but only once (other

queries have no restriction). When A asks this query, it receives a session
key sk of the instance Πj

ui
if b = 1 or a random string if b = 0 where b is the

result of a coin flip. Finally, A outputs a bit b′.

To define a meaningful notion of security, we must first define freshness.

Definition 1. An instance Πj
ui

is fresh if both the following conditions are true
at the end of the experiment described above:

(a) None of the instance Πj
ui

and its partnered instances has received an adver-
sary’s Reveal query.

(b) No one of ui and other members in Gj
ui

has received an adversary’s Corrupt
query before adversary’s Send queries.

Let P be a group key exchange protocol and let A be an active adversary
against P. When A asks a Test query to a fresh instance Πj

ui
in P, A receives the

result of the coin flip b which is either a session key or a random value and then
outputs a bit b′. If the probability that A correctly guesses the bit b is negligible,
P is secure in the sense that A cannot obtain any information about a session
key through re-keying broadcast messages. Let Advagke

A,P denote the advantage
for A’s guess over the result of a coin-flip in a Test query with P. Then, Advagke

A,P
is defined as follows.

Advagke
P,A = Pr [b′ = 1|b = 1]− Pr [b′ = 1|b = 0] = 2 Pr [b′ = b]− 1.

We say that P is a secure AGKE if Advagke
P = max

A
{Advagke

P,A } is negligible.

Constant-Round Authenticated Group Key Exchange for Dynamic Groups 251

For the security of authentication, we consider the ability of A for imper-
sonation attacks against a group member ui in an instance Πj

ui
[11]. For imper-

sonation attacks, A should be able to forge a signature of the group member
ui in the instance Πj

ui
. If it is computationally infeasible that A generates a

valid signature with any message under a chosen message attack, we say that
the signature scheme is CMA-secure. Let Σ = (K,S,V) be a signature scheme
where K,S and V are key generation, signing and verification algorithms. For-
mally, let Succcma

Σ,A be a success probability of A’s existential forgery under a
chosen message attack against Σ. Then, we state that Σ is CMA-secure [21] if
Succcma

Σ = max
A
{Succcma

Σ,A} is negligible.

Let G = 〈g〉 be a group. Given gx and gy, CDH problem is to compute a
value gxy [17]. For the CDH problem, we consider a probability Succcdh

G
such

that
Succcdh

G,A = Pr [C = gxy|gx, gy ← G;C ← A(gx, gy)] ,

Succcdh
G = max

A
{Succcdh

G,A}

where A is a CDH attacker against a group G.

3 A Constant-Round AGKE Protocol

Our protocol is based on the Computational Diffie-Hellman (CDH) assumption
and a secure signature scheme Σ = (K,S,V). A group key space belongs to
{0, 1}� where � is a security parameter. Let G = 〈g〉 be a cyclic group of prime
order p. g and p are public parameters and � ≤ |p| is satisfied. Let H : {0, 1}∗ →
{0, 1}� be a one-way hash function.

Key Generation. Each user ui of U has a private/public key pair (skui , pkui)
for signing/verifying. The list of public keys is published to all users.

Setup. Let G0 = {u1, · · · , un} be an initial group. We consider a ring structure
among the members of G0, i.e., members’ indices could be considered on the
circulation of {1, · · · , n}. L(i) (R(i), resp.) means the left (right, resp.) index of
i on the ring for i ∈ {1, · · · , n}. Let I0 = IDu1 || · · · ||IDun

. Figure 1 shows the
example of this algorithm with four members.

– Round 1. Each member ui randomly chooses ki ∈ {0, 1}� and xi ∈ Z∗
p,

computes yi = gxi and keeps ki secretly. The last member un computes
H(kn||0). Each member ui generates a signature σ1

i = Sskui
(M1

i ||I0||0) where
M1

i = yi for 1 ≤ i ≤ n− 1 and M1
n = H(kn||0)||yn, and broadcasts M1

i ||σ1
i .

– Round 2. All members receive (M1
i ||σ1

i)’s and verify σ1
i ’s. If some signatures

are not valid, this process fails and halts. Otherwise, ui computes tLi =
H(yxi

L(i)||I0||0), tRi = H(yxi

R(i)||I0||0) and generates Ti = tLi ⊕ tRi . The last

member un additionally computes T̂ = kn ⊕ tRn . Each member ui generates
σ2

i = Sskui
(M2

i ||I0||0) and broadcasts M2
i ||σ2

i where M2
i = ki||Ti for 1 ≤ i ≤

n− 1 and M2
n = T̂ ||Tn.

252 H.-J. Kim, S.-M. Lee, and D.H. Lee

Fig. 1. Setup algorithm with G0 = {u1, u2, u3, u4}

– Key Computation. Session Key Computation: All members verify
signatures σ2

i ’s. If all signatures are valid, ui computes t̃Ri+1, t̃
R
i+2, · · · , t̃Ri+(n−1)

(= t̃Li) by using tRi :

t̃Ri+1 = Ti+1⊕ tRi , t̃Ri+2 = Ti+2⊕ t̃Ri+1, · · · , t̃Ri+(n−1) = Ti+(n−1)⊕ t̃Ri+(n−2).

Finally ui can check if tLi = t̃Li holds. Even though wrong messages (or no
message) are broadcasted by illegal members or system faults, honest mem-
bers can notice the errors through the above check process and then halt the
protocol. However, it is not easy to find who transmitted illegal messages.
When members want to find illegal members, all members participating in
this protocol should reveal their secret values xi’s. If the above check process
has been valid, all members have t̃Rn (= tRn). Then they can obtain k̃n from T̂

and check if H(k̃n||0) = H(kn||0) holds. Note that Key Control can be guar-
anteed by this check value and the one-way hash function H. All members
compute a session key like as

sk0 = H(k1||k2|| · · · ||kn−1||kn||0).

Post-Computation: Each member ui generates hL
i = H(yxi

L(i)||sk0||0),
hR

i = H(yxi

R(i)||sk0||0) and X = H(kn||sk0||0) and saves (hL
i , h

R
i ,X, sk0)

secretly. All members should erase other ephemeral data.

Join. Let Gv−1 = {u1, · · · , un} (v ≥ 1) be the current group and J = {un+1, · · · ,
un+n′} (n′ ≥ 1) be a set of new members. We divide Gv−1 into three parts
{u1}, {u2, · · · , un−1} and {un}, and consider u2 as an agent of {u2, · · · , un−1}.
For convenience of explanation, we allow that un+n′+1, un+n′+2 and un+n′+3
denote u1, u2 and un. In this algorithm, we consider a ring structure among
the members un+1, · · · , un+n′+3. Let G be the set {un+1, · · · , un+n′+3} and
Iv = IDu1 || · · · ||IDun+n′ . Figure 2 shows the example of this algorithm.

Constant-Round Authenticated Group Key Exchange for Dynamic Groups 253

Fig. 2. Join algorithm with Gv−1 = {u1, u2, u3, u4} and J = {u5, u6}

– Round 1. Each member un+i of G randomly chooses kn+i ∈ {0, 1}� and
xn+i ∈ Z∗

p, computes yn+i = gxn+i and keeps kn+i secretly. The member
un+n′+2 (= u2) computes yn+n′+2 = gX by using the secret value X instead
of xn+n′+2 and the member un+n′+3 (= un) computes H(kn+n′+3||v). Each
member un+i generates σ1

n+i = Sskun+i
(M1

n+i||Iv||v) where M1
n+i = yn+i

for 1 ≤ i ≤ n′ + 2 and M1
n+n′+3 = H(kn+n′+3||v)||yn+n′+3, and broadcasts

M1
n+i||σ1

n+i.
– Round 2. All members receive (M1

n+i||σ1
n+i)’s and verify σ1

n+i’s. Each mem-
ber un+i computes tLn+i = H(yxn+i

L(n+i)||Iv||v), tRn+i = H(yxn+i

R(n+i)||Iv||v) and
generates Tn+i = tLn+i ⊕ tRn+i. The member un+n′+3 additionally computes
T̂ = kn+n′+3⊕tRn+n′+3. Each member un+i generates σ2

n+i = Sskun+i
(M2

n+i||
Iv||v) and broadcasts M2

n+i||σ2
n+i where M2

n+i = kn+i||Tn+i for 1 ≤ i ≤
n′ + 2 and M2

n+n′+3 = T̂ ||Tn+n′+3. All members of {u3, · · · , un−1} compute
tLn+n′+2 and tRn+n′+2 by using X.

– Key Computation. Session Key Computation: All members verify
σ2

n+i’s. If all signatures are valid, each member un+i computes t̃Rn+i+1, · · · ,
t̃Rn+i+n′−1(= t̃Ln+i) by using tRn+i and checks if tLn+i = t̃Ln+i holds. Also, the
members u3, · · · , un−1 can check it by using tLn+n′+2 and tRn+n′+2. Finally all
members can obtain kn+n′+3 from T̂ and compute a new session key skv as
follows:

skv+1 = H(kn+1|| · · · ||kn+n′+3||v).
Post-Computation: Each new member un+i (1 ≤ i ≤ n′) generates hL

n+i =
H(yxn+i

L(n+i)||skv||v) and hR
n+i = H(yxn+i

R(n+i)||skv||v). u1 and un respectively
compute hL

1 = H(yx1
n+n′ ||skv||v) and hR

n = H(yxn
n+1||skv||v) instead of the pre-

vious value hL
1 (= hR

n). All members compute a new value X = H(kn||skv||v).
Each member ui saves hL

i , h
R
i ,X and skv secretly.

254 H.-J. Kim, S.-M. Lee, and D.H. Lee

Leave. Let Gv−1 = {u1, u2, · · · , un} be the current group andR = {ul1 , ul2 , · · · ,
uln′′ } with {l1, · · · , ln′′} ⊂ {1, 2, · · · , n} be a set of revoked members. Let N (R)
be a set of all left/right members of revoked members, i.e.,N (R) = {ul1−1, ul1+1,
· · · , uln′′ −1, uln′′+1}. For generating a new group Gv = Gv−1 \R with a new ses-
sion key sv, a new Diffie-Hellman value should be shared between two mem-
bers ulj−1 and ulj+1 (1 ≤ j ≤ n′′). In this algorithm, we consider a ring
structure among members of Gv and we newly index the members as Gv =
{u1, u2, · · · , un−n′′}. Let Iv = IDn1 || · · · ||IDn−n′′ . Figure 3 shows the example
of this algorithm.

Fig. 3. Leave algorithm with Gv−1 = {u1, u2, u3, u4, u5, u6} and R = {u3, u5}

– Round 1. Each member uw of N (R) randomly chooses kw ∈ {0, 1}� and
xw ∈ Z∗

p, computes yw = gxw and keeps kw secretly. The member uln′′+1
computes H(kln′′+1||v). uw generates σ1

w = Sskuw
(M1

w||Iv||v) where M1
w =

yw with w ∈ {l1 − 1, l1 + 1, · · · , ln′′ − 1} and M1
ln′′+1 = H(kln′′+1||v)||yln′′+1,

and broadcasts M1
w||σ1

w.
– Round 2. All members of Gv verify signatures σ1

w’s. If all signatures are
valid, each member ulj−1 (resp. ulj+1) of N (R) regenerates hR

lj−1 = y
xlj−1

lj+1

(resp. hL
lj+1 =y

xlj+1

lj−1). Then each member ui of Gv computes tLi =H(hL
i ||Iv||v),

tRi = H(hR
i ||Iv||v) and Ti = tLi ⊕ tRi . The member uln′′+1 additionally

computes T̂ = kln′′+1 ⊕ tRln′′+1. Each member ui generates a signature

σ2
i = Sskui

(M2
i ||Iv||v) and broadcasts M2

i ||σ2
i where M2

ln′′+1 = T̂ ||Tln′′+1,
M2

i = ki||Ti for other members except uln′′+1 of N (R) and M2
i = Ti for

members of Gv \ N (R).

Constant-Round Authenticated Group Key Exchange for Dynamic Groups 255

– Key Computation. Session Key Computation: All members verify sig-
natures σ2

i ’s. If all signatures are valid, each member ui computes t̃Ri+1, t̃
R
i+2,

· · · , t̃Ri+(n−n′′−1)(= t̃Li) by using tRi . Finally, each member ui checks if tLi = t̃Li
holds. Then all members computes a session key as follows:

skv = H(kl1−1||kl1+1|| · · · ||kln′′ −1||kln′′+1||v).

Post-Computation: Each member ui regenerates hL
i = H(hL

i ||skv||v),
hR

i = H(hR
i ||skv||v) and X = H(kln′′+1||skv||v) and saves hL

i , h
R
i , X and

the session key skv secretly.

4 The Security

In this section, we prove the security of our protocol in the random oracle model.

4.1 Security Proof

The security of our protocol P is dependent on the probabilities Succcma
Σ and

Succcdh
G

, since an adversary A against P can obtain information about a ses-
sion key only by two methods: A successfully performs either signature forgery
attacks or CDH attacks. Even if random values ki’s were selected identically in
different instances, A could not get any information about a session key because
of the index v and the random hash oracle H. Our proof method is similar to
that in [14].

Theorem 1. Let A be an active adversary against our protocol P in the random
oracle model. Let qs be the number of Send queries and qH be the number of
queries to the hash oracle H. Then,

Advagke
P ≤ 2n · Succcma

Σ (t, qs) + 2qHq2
s · Succcdh

G
(t)

where n is the maximum number of group members and t is the adversary’s
running time.

Proof. We consider A’s attacks as a sequence of simulated protocols, which is
denoted by a sequence of games {Game0, · · · , Game3}. In each game, A executes
Test query and get a result of a coin flip b. Each Succi denotes an event in which
A’s a guessing bit b′ is equal to b in each Gamei. Each Gamei is simulated as
follows:

Game0: This game is equal to the real protocol P. All group members obtain
a pair of valid signing/verifying key and randomly choose ki’s and xi’s. In this
game, A’s advantage is equal to the advantage in the real protocol P. Thus,

Pr [Succ0] =
Advagke

P,A + 1
2

(1)

Game1: In this game, we consider a special event SigForge in which A executes a
Send query with a message m instead of a group member ui in an instance Πj

ui

256 H.-J. Kim, S.-M. Lee, and D.H. Lee

and the message is verified and accepted by all group members. In particular, the
message m previously has not been used in any instances and a Corrupt(ui) query
has not been executed to the member ui. When the event SigForge occurs, this
game halts and A’s output b′ is determined randomly. The difference between
A’s outputs in games Game0 and Game1 is dependent on the event SigForge.
That is,

|Pr [Succ1]− Pr [Succ0]| ≤ Pr [SigForge] .

If one correctly guesses a member impersonated by A and the event SigForge
occurs to the member, one can be suceessful in the existential forgery against a
pair of signing/verifying key under CMA. Therefore we know that

Succcma
Σ,A(t, qs) ≥ 1

n Pr [SigForge] .

Finally, we get

|Pr [Succ1]− Pr [Succ0]| ≤ Pr [SigForge] ≤ n · Succcma
Σ,A(t, qs) (2)

Game2: In this game, a Diffie-Hellman triple (A = ga,B = gb, C = gab) is given.
Whenever two successive members ui and ui+1 should choose random values xi

and xi+1 and compute yi = gxi and yi+1 = gxi+1 , we simulate this game with
yi = Aci and yi+1 = Bci+1 where ci and ci+1 are random values in Z∗

p. Then a
hash value tRi (= tLi+1) is computed by using Ccici+1 . We know that this game
is equal to Game1 as long as ci and ci+1 are selected randomly. Therefore,

Pr [Succ2] = Pr [Succ1] (3)

Game3: In this game, a pair (A = ga,B = gb) is given and there is no information
about the Diffie-Hellman value C = gab. Whenever two successive members ui

and ui+1 should choose random values xi and xi+1 and compute yi and yi+1,
we simulate this game like Game2. However, when ui or ui+1 should broadcast
a message with a hash value tRi (= tLi+1), a random value r in {0, 1}� is used as
the hash value. Now, we consider an event Hash in which A detects the fact that
the broadcasted hash value tRi (or tLi+1) is incorrect by using A’s hash oracle
queries. This event is possible when A sends a correctly guessing value Ccici+1

to the hash oracle H and receives a hash value. At that time, A recognizes that
the value is different from the previous random value r. When the event Hash
occurs, this game is halted and A’s output b′ is randomly chosen. Therefore,

|Pr [Succ3]− Pr [Succ2]| ≤ Pr [Hash] .

Given (A,B) one can obtain a valid Diffie-Hellman value C if both of the
following situations occur; (1) two successive members compute yi = Aci and
yi+1 = Bci+1 and use a random value r as a hash value tRi , (2) A executes a
hash oracle query with a correctly guessing value Ccici+1 after (1), i.e., the event
Hash occurs. Therefore

Succcdh
G,A(t) ≥ 1

qHq2
s

Pr [Hash] .

Constant-Round Authenticated Group Key Exchange for Dynamic Groups 257

Finally, we get

|Pr [Succ3]− Pr [Succ2]| ≤ Pr [Hash] ≤ qHq2
s · Succcdh

G,A(t) (4)

Furthermore, A has no advantage for guessing a coin-flip bit b in this game
since the hash oracle H has been supposed the random oracle and each input of
the hash oracle is used only once owing to the index v. Therefore Pr [Succ3] = 1

2 .

From the above results, the theorem is proved. �

4.2 Forward Secrecy of AGKE Protocol

For a secure group key exchange protocol, forward secrecy is one of essential
security requirements. Forward secrecy means that the compromise of one or
more members’ long-lived keys should give no information for the compromise
of any earlier session key.

In an AGKE protocol, a member’s long-lived key is the member’s signing key
for authentication. Most dynamic AGKE protocols have considered an adversary
with weak corruption ability and have guaranteed forward secrecy for a mem-
ber’s signing key. Bresson et al.’s protocols [12, 13] have offered forward secrecy
for a member’s signing key. However, another secret value of a member (really,
it is an exponent) is as important as a signing key. If a member’s exponent is
revealed, earlier session keys can be revealed as well as later session keys. Fur-
thermore, unless a member is a leader of a group, the member’s secret exponent
key never changes from joining to leaving. Therefore the secret exponent should
be definitely considered as a long-lived key, even though the value is saved in a
smart card. Also, in Bresson et al. [14], forward secrecy for a member’s signing
key can be guaranteed, but forward secrecy for a member’s Diffie-Hellman value
cannot be guaranteed: a member’s Diffie-Hellman value is never changed until
the member leaves. Therefore this value should be also considered as a long-lived
key.

In our AGKE protocol, a member secretly keeps a signing key as a long-
lived key and three hashed values as short-lived keys: every time a session key is
changed, member’s short-lived keys are also changed. In the paper we consider
and prove forward secrecy for member’s long-lived key, but our protocol also
guarantees forward secrecy for member’s short-lived keys. When an adversary
obtain some members’ short-lived keys, it can obtain later session keys, but
cannot obtain previous session keys easily. Therefore our protocol can guarantee
forward secrecy against an adversary with strong corruption capability [22] in
which an advasary can obtain a member’s short-lived key as well as the member’s
long-lived key.

5 Conclusion

We have proposed an efficient and secure constant-round AGKE protocol for
dynamic groups in the random oracle model. We note that each membership

258 H.-J. Kim, S.-M. Lee, and D.H. Lee

change in dynamic group could be handled by running other constant round
static AGKE protocols from scratch. But our Join and Leave algorithms are
more efficient than Setup algorithms of other constant round AGKE protocols
for static groups when the number of joining/leaving members is smaller than the
number of remaining group members. Hereafter, research in a provably secure
constant-round AGKE protocol for dynamic groups under standard assumptions
should be studied.

References

1. N. Asokan and P. Ginzboorg. Key Agreement in Ad-hoc Networks. In Computer
Communication, pp.1627-1237, 2000.

2. M. Bellare, R. Canetti and H. Krawczyk. A Modular Approach to The Design
and Analysis of Authentication and Key-Exchange Protocols. In Proc. of the 30th
Annual Symposium on the Theory of Computing (STOC), ACM Press, 1998.

3. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. In Advances in Cryptology - Eurocrypt’00, LNCS 1807,
Springer-Verlag, pp.139-155, 2000.

4. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In Proc. of ACM CCS’93, 1993.

5. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Ad-
vances in Cryptology - Crypto’93, LNCS 773, Springer-Verlag, pp.232-249, 1994.

6. M. Bellare and P. Rogaway. Provably Secure Session Key Distribtuion: The Three
Party Case. In Proc. of the 27th Annual Symposium on the Theory of Computing,
ACM Press, 1995.

7. J. Binkley. Authenticated Ad Hoc Routing at The Link Layer for Mobile Systems.
In Wireless Network, 1999.

8. V. Boyko, P.D. MacKenzie and S. Patel. Provably Secure Password-Authenticated
Key Exchange Using Diffie-Hellman. In Proc. of Eurocrypt 2000, LNCS 1807,
Springer-Verlag, pp.156-171, 2000.

9. C. Boyd and J.M.G. Nietio. Round-Optimal Contributory Conference Key Agree-
ment. In Proc. of Public-Key Cryptography, LNCS 2567, Springer-Verlag, pp.161-
174, 2003.

10. E. Bresson and D. Catalano. Constant Round Authenticated Group Key Agree-
ment via Distributed Computation. In Proc. of PKC 2004, LNCS 2947, Springer-
Verlag, pp.115-129, 2004.

11. E. Bresson, O. Chevassut and D. Pointcheval. Provably Authenticated Group
Diffie-Hellman Key Exchange. In Proc. of the 8th ACM Conference on Computer
and Communications Security, pp.255-264, 2001.

12. E. Bresson, O. Chevassut and D. Pointcheval. Provably Authenticated Group
Diffie-Hellman Key Exchange-The Dynamic Case. In Advances in Cryptology -
Asiacrypt’01, LNCS 2248, Springer-Verlag, pp.290-309, 2001.

13. E. Bresson, O. Chevassut and D. Pointcheval. Dynamic Group Diffie-Hellman Key
Exchange under Standard Assumptions. In Advances in Cryptology - Eurocrpt’02,
LNCS 2332, Springer-Verlag, pp.321-336, 2002.

14. E. Bresson, O. Chevassut, A. Essiari and D. Pointcheval. Mutual Authentication
and Group Key Agreement for Low-Power Mobile Devices. In The Fifth IEEE
International Conference on Mobile and Wireless Communications Networks, 2003.

Constant-Round Authenticated Group Key Exchange for Dynamic Groups 259

15. M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution
System. In Pre-proceedings of Eurocrypt’94, pp.279-290, 1994.

16. L. Chen and C. Kudla. Identity Based Authenticated Key Agreement Protocols
from Pairings. In 16th IEEE Computer Security Foundations Workshop (CSFW-16
2003), pp.219-233, 2003.

17. W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Transanc-
tions on Information Theory, vol.IT-22(6), pp.644-654, 1976.

18. IEEE Std 802.11. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specification, 1999 edition.

19. J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange.
In Advances in Cryptology - Crypto’03 , LNCS 2729, Springer-Verlag, pp.110-125,
2003.

20. H. Luo and S. Lu. Ubiquitous and Roubust Authentication Services for Ad Hoc
Wireless Networks. In Technical Report, 2000.

21. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. In Journal of Cryptology, 13(3):361-396, 2000.

22. V. Shoup. On Formal Models for Secure Key Exchange. In Technical Report RZ
3120, IBM Zurich Research Lab., 1999.

23. F. Stajano and R. Anderson. The Resurrecting Duckling: Security Issues for Ad-
hoc Wireless Networks. In AT&T Software Symposium, 1999.

24. W.-G. Tzeng and Z.-J. Tzeng. Round Efficient Conference Key Agreement Proto-
cols with Provable Security. In Advances in Cryptology - Asiacrypt’00, LNCS 1976,
Springer-Verlag, pp.614-628, 2000.

25. L. Venkatraman and D. P. Agrawal. A Novel Authentication Scheme for Ad Hoc
Networks. In WCND’00, 2000.

26. L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. In IEEE Network, 1999.

A Public-Key Black-Box Traitor Tracing Scheme
with Sublinear Ciphertext Size Against

Self-Defensive Pirates

Tatsuyuki Matsushita1,2 and Hideki Imai2

1 TOSHIBA Corporate Research & Development Center,
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki 212-8582, Japan

tatsuyuki.matsushita@toshiba.co.jp
2 Institute of Industrial Science, The University of Tokyo,

4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
imai@iis.u-tokyo.ac.jp

Abstract. We propose a public-key traitor tracing scheme in which (1)
the size of a ciphertext is sublinear in the number of receivers and (2)
black-box tracing is efficiently achieved against self-defensive pirate de-
coders. When assuming that a pirate decoder can take some self-defensive
reaction (e.g., erasing all of the internal keys and shutting down) to es-
cape from tracing if it detects tracing, it has been an open question
to construct a sublinear black-box traitor tracing scheme that can de-
tect efficiently at least one traitor (who builds the pirate decoder) with
overwhelming probability, although a tracing algorithm that works suc-
cessfully against self-defensive pirate decoders itself is known. In this
paper, we answer affirmatively the above question by presenting a con-
crete construction of a public-key black-box tracing scheme in which the
known tracing algorithm can be used while keeping the size of a cipher-
text sublinear.

Keywords: Public-key traitor tracing, Black-box tracing, Self-defensive
pirates.

1 Introduction

Consider content distribution (e.g., pay-TV) in which digital contents should be
available only to subscribers. A data supplier broadcasts an encrypted version
of the digital contents (e.g., a movie) to subscribers, and only subscribers can
decrypt them with their decryption keys given in advance. In this application,
malicious subscribers may redistribute their decryption keys to non-subscribers.
This piracy is serious since it allows the non-subscribers to have illegal access to
the contents.

To prevent the piracy, traitor tracing [3] has been studied extensively. In
traitor tracing, each subscriber is given a distinct decryption key (personal key)
which is contained in a decryption device (decoder), and the data supplier broad-
casts both the contents encrypted with a session key and the encrypted session

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 260–275, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Public-Key Black-Box Traitor Tracing Scheme 261

key (header). The subscribers can obtain the session key (and consequently the
contents) by inputting the received header to their decoders. In this scenario,
malicious subscribers (traitors) may give away their personal keys to a pirated
version of a decoder (pirate decoder). Once the pirate decoder is found, at least
one of the traitors who join the piracy can be identified from it. A traitor trac-
ing scheme discourages traitors from committing the piracy since the confiscated
pirate decoder can be traced back to its producers.

Among traitor tracing schemes, our interest is in a black-box tracing scheme
in the public-key setting. In black-box tracing, a tracer does not break open
the pirate decoder but uses it as a black box. Briefly, the tracer chooses a set
of suspects and tests whether traitors are included in it only by observing the
behavior of the pirate decoder on chosen inputs. Since traitors can be identified
no matter how the pirate decoder is implemented, it is desirable to support
black-box tracing. In the public-key setting, there are one or more public keys
and subscribers can decrypt the header by using their personal keys. Since no
secret information is needed to build the header and to execute the tracing
algorithm, anyone can work as a data supplier and/or a tracer. This property is
desirable as well because of the following two reasons: (1) it enhances the sender-
scalability in the sense that plural data suppliers can use the same system and (2)
it provides public verifiability of the tracing result, which is a stronger deterrent
to the piracy.

As a public-key black-box tracing scheme, the schemes of [7, 2] are known.1

While these are efficient in the sense that the size of a personal key is constant
and that of a header is linear only in the maximum number of traitors in a
coalition, the running time of the tracing algorithm is exponential in the max-
imum coalition size, hence impractical. The convergence time for the tracing
algorithm is improved to be practical in the schemes of [5, 9] by integrating the
mechanism of revocation of any number of subscribers into black-box tracing.
However, if it is assumed that a pirate decoder can take measures (e.g., it erases
all of the internal keys and shuts down once it detects tracing) that might escape
from tracing, tracing is impossible since the identities of suspects are revealed
in the inputs for black-box tracing. In this paper, we consider this type of pirate
decoders.

1.1 Our Result

We explain our contribution by comparing previous schemes against self-defen-
sive pirate decoders with ours. (See Table 1.) As mentioned above, in the scheme
of [2, 8] the tracer can only do black-box confirmation in which the number of
suspects examined in one test has to be limited to k, where k is the maximum
coalition size. Therefore, the black-box confirmation algorithm needs to be exe-
cuted on all of the possible

(
n
k

)
sets of suspects in the worst case, where n is the

total number of subscribers. This results in an impractical tracing algorithm.
Note that there is a trade-off between the running time of the tracing algorithm

1 The scheme of [7] is improved in [10, 8].

262 T. Matsushita and H. Imai

Table 1. Summary of our result (n: the total number of subscribers, k: the maximum
coalition size, c: a constant (0 < c < 1))

Personal-
key size Header size

of sets of suspects
required for tracing Type of tracing

[2, 8] O(1) O(k)
(

n
k

)
Black-box confirmation

[6] (c = 1/2) O(1) O(
√

n)
√

n Black-box list-tracing
Ours (k =

√
n/8) O(1) O(

√
n) n Black-box tracing

and the transmission overhead. For instance, if we set k = n−1, then the number
of sets of suspects required for tracing is reduced to n, but the size of a header
is linear in n, hence inefficient. It has been an open question to obtain a traitor
tracing scheme with both practical black-box tracing and sublinear header size,
as pointed out in [2].

In [6], a partial solution to this question is presented by introducing a re-
laxation idea called as list-tracing in which the output of the tracing algorithm
is a set of suspects, i.e., a suspect list, and it is guaranteed that at least one
traitor is included in it. The scheme of [6] is based on that of [4] and achieves
both practical black-box list-tracing and sublinear header size. Unfortunately,
this approach incurs another trade-off between the size of the suspect list and
that of a header. In order to reduce the header size the suspect list needs to be
larger, but the probability that the tracer detects a traitor correctly is in inverse
proportion to the size of the suspect list, if the tracer attempts to identify the
traitor only from the suspect list.

In this paper, we solve the open question without the list-tracing approach.
By applying the key-generation method of [9] to the scheme of [8], a sublinear
public-key black-box tracing scheme against self-defensive pirate decoders can be
obtained. Note that the improvement we achieve is not in the tracing algorithm
itself but in a concrete construction of a public-key black-box tracing scheme in
which the known tracing algorithm that can identify at least one traitor with
overwhelming probability from the self-defensive pirate decoder can be used
while keeping the size of a header sublinear.

The rest of the paper is organized as follows. In Sect. 2, the assumptions on the
pirate decoder are described. We propose a sublinear public-key black-box tracing
scheme in Sect. 3. The proposed scheme is analyzed in terms of security and effi-
ciency in Sect. 4 and Sect. 5, respectively. We present our conclusions in Sect. 6.

2 Assumptions on Pirate Decoders

Let a valid input denote a header for the normal broadcast and an invalid input
denote a header for black-box tracing. In this paper, we make two assumptions
on the pirate decoder.

Assumptions 1. The pirate decoder can take measures that might escape from
tracing if it detects tracing.

A Public-Key Black-Box Traitor Tracing Scheme 263

In Assumption 1 the pirate decoder outputs the correct plaintext only when
it gets a valid input or an invalid input which is indistinguishable from a valid
one. If the pirate decoder detects that it is examined in the tracing process, it
will evade tracing by, e.g., erasing all of the internal keys and shutting down. As
well as such self-defensive reaction, the pirate decoder can take aggressive coun-
termeasures (e.g., crashing the host system or releasing a virus) as described in
[6]. Note that (1) for simplicity we assume that the reaction is triggered deter-
ministically, i.e., it is activated once the pirate decoder detects tracing and (2)
our scheme can be easily extended to the general probabilistic case. In order
to identify efficiently traitors from the pirate decoder with the reaction mech-
anism, it is necessary that a tracing algorithm can decide at least one traitor
immediately when the reaction is triggered.

Assumptions 2. The tracer can reset the pirate decoder to its initial state each
time the tracer gives the input to it.

Assumption 2 means that each test during black-box tracing can be done
independently. We do not consider the pirate decoder that records the previous
inputs submitted by the tracer and reacts based on its record.

The pirate decoder assumed in the paper can be viewed as a type-2 pirate
decoder categorized in [6].

3 Proposed Scheme

First, we describe an outline of the proposed scheme. Secondly, an explicit con-
struction of our scheme is shown.

3.1 Outline

Our scheme consists of the four phases.

Key Generation: A trusted party generates and secretly gives every subscriber
a distinct personal key. The personal key is stored in the decoder.

Encryption: The data supplier encrypts (1) the contents with the session key
and (2) the session key itself as a header. Then, the data supplier broadcasts the
encrypted contents and the header. To avoid complication, we assume that (1)
a symmetric encryption algorithm used for encryption of the contents is secure
and publicly known and (2) a broadcast channel is reliable in the sense that the
received information is not altered.

Decryption: When receiving the header, subscribers compute the session key
(and consequently the contents) by inputting it to their decoders.

Black-Box Ttracing: Suppose that the pirate decoder is confiscated. In the
jth test, the tracer chooses a subscriber, uj , and builds the header in which the
subscribers, u1, . . . , uj , are revoked and the others are not, where u1, . . . , uj−1
has been selected in the (j−1)th test. The tracer inputs this header to the pirate
decoder and observes whether it decrypts correctly or not. If its output is (1)

264 T. Matsushita and H. Imai

correct on the input where a set of revoked subscribers is X and (2) incorrect
on the input where a set of revoked ones is X ∪{u}, then the tracer decides that
the subscriber, u, is a traitor.

3.2 Protocol

Let n be the total number of subscribers and k be the maximum number of
traitors in a coalition. Let p, q be primes s.t. q|p − 1 and q ≥ n + 2k − 1. Let g
be a qth root of unity over Z

∗
p and Gq be a subgroup of Z

∗
p of order q. Let U be

a set of subscribers (U ⊆ Zq\{0}). All of the participants agree on p, q, and g.
The calculations are done over Z

∗
p unless otherwise specified.

Key Generation: The key-generation method is similar to that of [9]. Split U
into � disjoint subsets U0, . . . ,U�−1. These subsets are publicly known. Choose
a0, . . . , a2k−1, b0, . . . , b�−1 ∈R Zq. Then, compute the public key e as follows:

e = (g, y0,0, . . . , y0,2k−1, y1,0, . . . , y1,�−1)
= (g, ga0 , . . . , ga2k−1 , gb0 , . . . , gb�−1).

Suppose that u ∈ U i. The subscriber u’s personal key is (u, i, fi(u)) where

fi(u) =
2k−1∑
j=0

ai,ju
j mod q,

ai,j =
{
aj (j �= i mod 2k),
bi (j = i mod 2k).

Encryption: Select the session key s ∈R Gq and random numbers R0, R1 ∈R Zq.
Build the header H = (H0, . . . ,H�−1) by repeating the following procedure for
0 ≤ i ≤ �− 1.
– Set ri = R0 or R1, and compute Hi as follows.

Hi = (ĥi, hi,0, . . . , hi,2k−1),

ĥi = gri ,

hi,j =
{
yri
0,j (j �= i mod 2k),
syri

1,i (j = i mod 2k).

Note that all of the subscribers in U i can be revoked by replacing syri
1,i with

gzi where zi ∈R Zq is a random number.

Decryption: Suppose that u ∈ U i. The subscriber u can correctly compute the
session key s from Hi as follows.{(

hi,0 × hu
i,1 × · · · × hu2k−1

i,2k−1

)/
ĥ

fi(u)
i

}1/ui mod 2k

=
{(

yri
0,0 × yriu

0,1 × · · · × yriu
i mod 2k

1,i × · · · × yriu
2k−1

0,2k−1

)/
grifi(u)

}1/ui mod 2k

=
{
sui mod 2k

gri
∑2k−1

j=0 ai,juj
/
grifi(u)

}1/ui mod 2k

= s.

A Public-Key Black-Box Traitor Tracing Scheme 265

Black-Box Tracing: The black-box tracing algorithm is based on that of [8].
The difference is that while in [8] suspects must be narrowed down to k sub-
scribers before the execution of black-box confirmation, in ours no such prepro-
cessing, which runs in exponential time, is needed. The inputs of the tracing
algorithm are U0, . . . ,U�−1 and the pirate decoder, and the output is a traitor’s
ID.

For simplicity, we assume that |U0| = · · · = |U�−1| = 2k, � = n/2k, 2k|n.
Label all of the elements in U0, . . . ,U�−1 as follows.

U0 = {u1, . . . , u2k},
U1 = {u2k+1, . . . , u4k},

...
U�−1 = {un−2k+1, . . . , un}.

For 1 ≤ j ≤ n, repeat the following procedure.

– Set ctrj = 0 and then repeat the following test m times. In each test, the
session key s and random numbers R0, R1 are chosen randomly.
1. Set X = {u1, . . . , uj} and build the header H = (H0, . . . ,H�−1) by

repeating the following procedure for 0 ≤ i ≤ �− 1. The same notations
are used as in the encryption phase and a random number zi ∈R Zq is
selected randomly in each time.

– If there exists a subset U t (0 ≤ t ≤ � − 1) s.t. X ∩ U t �= ∅ and
X ∩ U t �= U t, then first, suppose that U t \ X = {x1, . . . , xw} and
choose 2k − w − 1 distinct elements xw+1, . . . , x2k−1 ∈R Zq \ (U ∪
{0}) when 2k − w − 1 > 0. Secondly, find c0, . . . , c2k−1 ∈ Zq s.t.∑2k−1

j=0 cjx
j
α = 0 mod q for 1 ≤ α ≤ 2k − 1. Finally, compute Ht as

follows.

ĥt = gR1 ,

ht,j =
{
gcjyR1

0,j (j �= t mod 2k),
sgcjyR1

1,t (j = t mod 2k).

For i �= t, set ri = R0 if X ∩ U i = ∅. Otherwise (X ∩ U i = U i), set
ri = R0 or R1. Then, compute Hi as follows.

ĥi = gri ,

hi,j =

⎧⎪⎪⎨⎪⎪⎩
yR0
0,j (j �= i mod 2k, ri = R0),
gcjyR1

0,j (j �= i mod 2k, ri = R1),
syR0

1,i (j = i mod 2k,X ∩ U i = ∅),
gzi (j = i mod 2k,X ∩ U i = U i).

– Otherwise (X ∩ U i = ∅ or X ∩ U i = U i for any i), Hi is the same as
in the encryption phase.

266 T. Matsushita and H. Imai

2. Give H to the pirate decoder and observe its output.
3. If it decrypts correctly, then increment ctrj by one. (If a self-defensive

reaction is triggered, then decide that the subscriber uj is a traitor.)

Finally, find an integer j ∈ {1, . . . , n} s.t. ctrj−1 − ctrj is the maximum and
then decide that the subscriber uj is a traitor, where ctr0 = m.

4 Security

The security of our scheme is based on the difficulty of the Decision Diffie-
Hellman problem (DDH) [1]. Informally, the assumption that DDH in Gq is
intractable means that no probabilistic polynomial-time (p.p.t. for short) algo-
rithm can distinguish with non-negligible advantage between the two distribu-
tions 〈g1, g2, g

a
1 , g

a
2 〉 and 〈g1, g2, g

a
1 , g

b
2〉 where g1, g2 ∈R Gq and a, b ∈R Zq. We

call a 4-tuple coming from the former distribution as a Diffie-Hellman tuple. Let
MDDH be a p.p.t. algorithm which solves DDH in Gq. For two p.p.t. algorithms
M0,M1, we mean by M0 ⇒M1 that the existence of M0 implies that of M1
and byM0 ⇔M1 thatM0 ⇒M1 andM1 ⇒M0.

4.1 Indistinguishability of a Session Key

Theorem 1 (Indistinguishability of a Session Key). When given a header,
the computational complexity for the non-subscribers to distinguish the session
key corresponding to the header from a random element in Gq is as difficult as
DDH in Gq.

Proof. Let Mdist
Ū be a p.p.t. algorithm the non-subscribers use to distinguish

between the session key corresponding to the header and a random element in
Gq. We prove that Mdist

Ū ⇔ MDDH. First, it is clear that MDDH ⇒ Mdist
Ū .

Secondly, we show thatMdist
Ū ⇒MDDH by constructingMDDH usingMdist

Ū as
a subroutine. The construction ofMDDH is as follows.

Algorithm 1 (P.p.t. Algorithm MDDH).

Input: a challenge 4-tuple, (g1, g2, g3, g4).
Output: “Diffie-Hellman tuple” or “Random tuple.”

Step 1. Choose a set of subscribers U (⊆ Zq\{0}) and split U into � disjoint
subsets U0, . . . ,U�−1. For 0 ≤ i ≤ �−1, 0 ≤ j ≤ 2k−1, choose random numbers
μ, λi, aj ∈R Zq and compute the public key e = (g1, g

a0
1 , . . . , g

a2k−1
1 , gb0

1 , . . . ,

g
b�−1
1) where gbi

1 = gλi
1 gμ

2 .

Step 2. Select the session key s ∈R Gq and a random number r ∈R Zq. Compute
the header H = (H0, . . . ,H�−1) by repeating the following procedure for 0 ≤ i ≤
�− 1.

A Public-Key Black-Box Traitor Tracing Scheme 267

– Set Bi = 0 or 1 and compute Hi as follows.

Hi = (ĥi, hi,0, . . . , hi,2k−1),

ĥi = gBir
1 g3,

hi,j =

⎧⎨⎩
(
gBir
1 g3

)aj

(j �= i mod 2k),

s
(
gBir
1 g3

)λi
(
gBir
2 g4

)μ

(j = i mod 2k).

Observe that if the challenge 4-tuple is a Diffie-Hellman tuple, the session
key corresponding to the header is s. Otherwise, it is a random element in Gq.
Step 3. Give s,H, e to Mdist

Ū . If Mdist
Ū decides that s is the session key corre-

sponding to H, then output “Diffie-Hellman tuple.” Otherwise, output “Random
tuple.” SinceMdist

Ū behaves differently for session keys and random elements in
Gq, MDDH can solve the given DDH challenge. This completes the proof. �

4.2 Black-Box Traceability

Recall that valid and invalid inputs denote headers for the normal broadcast and
those for black-box tracing respectively. In our tracing algorithm subscribers in
X are revoked in invalid inputs. The following three lemmas are used to prove
black-box traceability of our scheme.

Lemma 1 (Indistinguishability of an Input). The computational complex-
ity for any coalition of k non-revoked subscribers to distinguish a valid input
from an invalid one is as difficult as DDH in Gq.

Proof. Let C be a set of k non-revoked subscribers in a coalition and Ddist
C be a

p.p.t. algorithm the coalition C uses to distinguish a valid input from an invalid
one. We prove that Ddist

C ⇔MDDH for any C with X ∩ C = ∅, |C| = k. First, it
is clear that MDDH ⇒ Ddist

C for any C with X ∩ C = ∅, |C| = k. Secondly, we
show that Ddist

C ⇒ MDDH for any C with X ∩ C = ∅, |C| = k by constructing
MDDH using Ddist

C as a subroutine. The construction ofMDDH is as follows.

Algorithm 2 (P.p.t. Algorithm MDDH).

Input: a challenge 4-tuple, (g1, g2, g3, g4).
Output: “Diffie-Hellman tuple” or “Random tuple.”

Step 1. Choose a set of subscribers U (⊆ Zq\{0}) and split U into � disjoint sub-
sets U0, . . . ,U�−1. Select a set of revoked subscribers X (⊆ U) with a condition
that there is at most one subset U i (0 ≤ i ≤ �− 1) s.t. U i ∩X �= ∅, U i ∩X �= U i.
Then, choose a set of k colluders C s.t. X ∩ C = ∅.
Step 2. Suppose that C = {x1, . . . , xk}. Choose k−1 distinct elements xk+1, . . . ,
x2k−1 ∈R Zq \ C and random numbers β1, . . . , βk, λ, μ, ψt, ωt ∈R Zq for k + 1 ≤
t ≤ 2k − 1. Then, there exists a unique polynomial α(x) =

∑2k−1
m=0 αmxm mod q

s.t. gα0
1 = gλ

1 g
μ
2 and

268 T. Matsushita and H. Imai

(α(x1), . . . , α(x2k−1))T = (β1, . . . , β2k−1)T

= (α0, . . . , α0)T + V (α1, . . . , α2k−1)T mod q,

gβt

1 = gψt

1 gωt
2 (k + 1 ≤ t ≤ 2k − 1),

where

V =

⎛⎜⎝ x1 . . . x2k−1
1

...
. . .

...
x2k−1 . . . x2k−1

2k−1

⎞⎟⎠ mod q.

Since V is the Vandermonde matrix, we obtain

(α1, . . . , α2k−1)T = V −1(β1 − α0, . . . , β2k−1 − α0)T mod q.

Let (vm,1, . . . , vm,2k−1) be the mth row of V −1. For 1 ≤ m ≤ 2k − 1, αm is
represented as follows.

αm = vm,1(β1 − α0) + · · ·+ vm,2k−1(β2k−1 − α0)
= vm,1β1 + · · ·+ vm,2k−1β2k−1 − α0(vm,1 + · · ·+ vm,2k−1) mod q.

Therefore, gαm
1 is calculated as follows.

gαm
1 = g

vm,1β1+···+vm,2k−1β2k−1
1

/(
gλ
1 g

μ
2

)vm,1+···+vm,2k−1
.

Suppose that xj ∈ U ij (1 ≤ j ≤ k, ij ∈ {0, . . . , � − 1}) and define J =
{ij |1 ≤ j ≤ k, xj ∈ U ij

}. Choose random numbers λi, μi ∈R Zq for 0 ≤ i ≤ �−1
and δij

∈R Zq for all ij ’s in J . Then, there exists a unique element γij
∈ Zq for

each ij ∈ J s.t.

δij
= bij

+ γij
− αij mod 2k (ij ∈ J),

gbi
1 = gλi

1 gμi

2 (0 ≤ i ≤ �− 1).

We plan to compute the subscriber xj ’s personal key (xj , ij , dj) as follows.

dj = α(xj) + δij
x

ij mod 2k
j

= α0 + α1xj + · · ·+ bij
x

ij mod 2k
j + · · ·+ α2k−1x

2k−1
j + γij

x
ij mod 2k
j .

To satisfy dj = fij
(xj) where f is the key-generation function defined in

3.2, the coefficients a0, . . . , a2k−1 are represented as follows. There are at least
k elements in {0, . . . , 2k − 1} \ {ij mod 2k|ij ∈ J } and we can select k such

elements θ1, . . . , θk. Then, compute g
α′

θ1
1 , . . . , g

α′
θk

1 s.t.

g

∑
τ∈{θ1,...,θk} α′

τ xτ
j

1 = g
γij

x
ij mod 2k

j

1

=
(
g

δij

1 g
αij mod 2k

1

/
g

bij

1

)x
ij mod 2k

j

(1 ≤ j ≤ k).

A Public-Key Black-Box Traitor Tracing Scheme 269

Finally, compute gam
1 (0 ≤ m ≤ 2k − 1) and build the public key e.

gam
1 =

{
gαm
1 (m �∈ {θ1, . . . , θk}),
gαm
1 g

α′
m

1 (m ∈ {θ1, . . . , θk}),

e = (g1, g
a0
1 , . . . , g

a2k−1
1 , gb0

1 , . . . , g
b�−1
1).

Step 3. Select the session key s ∈R Gq and a random number r ∈R Zq. Build the
header H = (H0, . . . ,H�−1) by repeating the following procedure for 0 ≤ i ≤
�− 1.

– If U i ∩ X = ∅, set Bi = 0. If U i ∩ X = U i, set Bi = 0 or 1. Otherwise
(U i ∩ X �= ∅, U i ∩ X �= U i), set Bi = 1. Then, compute Hi as follows.

Hi = (ĥi, hi,0, . . . , hi,2k−1),

ĥi =
{
gr
1 (Bi = 0),
g3 (Bi = 1),

hi,j =

⎧⎪⎪⎨⎪⎪⎩
g

ajr
1 (j �= i mod 2k,Bi = 0),
g

aj

3 (j �= i mod 2k,Bi = 1),
sgbir

1 (j = i mod 2k,Bi = 0),
sgλi

3 gμi

4 (j = i mod 2k,Bi = 1),

g
aj

3 =

{
g

αj

3 (j �∈ {θ1, . . . , θk}),
g

αj

3 g
α′

j

3 (j ∈ {θ1, . . . , θk}),

g
αj

3 = g
vj,1β1+···+vj,kβk

3

2k−1∏
t=k+1

(
gψt

3 gωt
4

)vj,t
/(

gλ
3 g

μ
4

)vj,1+···+vj,2k−1
,

where g
α′

θ1
3 , . . . , g

α′
θk

3 are computed from the following system of equations.

g

∑
τ∈{θ1,...,θk} α′

τ xτ
z

3 =
(
g

δiz
3 g

αiz mod 2k

3

/
g

λiz
3 g

μiz
4

)xiz mod 2k
z

(1 ≤ z ≤ k).

Observe that if the challenge 4-tuple is a Diffie-Hellman tuple, H is a valid
input. Otherwise, it is an invalid one in which the k colluders in C are not
revoked.

Step 4. Give H, e, (x1, i1, d1), . . . , (xk, ik, dk) to Ddist
C . If Ddist

C decides that H is
a valid input, then output “Diffie-Hellman tuple.” Otherwise output “Random
tuple.” Since Ddist

C behaves differently for valid inputs and invalid ones,MDDH

can solve the given DDH challenge.
Since C with X ∩ C = ∅, |C| = k can be chosen arbitrarily in Step 4.2, it

holds that Ddist
C ⇒ MDDH for any C with X ∩ C = ∅, |C| = k. This completes

the proof. �
Lemma 2 (Secrecy of a Session Key in an Invalid Input). When given
an invalid input, the computational complexity for any coalition of k subscribers
revoked in the invalid input to compute the session key corresponding to the input
is at least as difficult as DDH in Gq.

270 T. Matsushita and H. Imai

Proof. Let C be a set of k colluders revoked in the invalid input andMcomp
C be

a p.p.t. algorithm the coalition C uses to compute the session key corresponding
to the input. LetMdist

C be a p.p.t. algorithm the coalition C uses to distinguish
the session key corresponding to the input from a random element in Gq. We
prove thatMcomp

C ⇒MDDH for any C with C ⊆ X , |C| = k.
Since it is clear thatMdist

C can be constructed by usingMcomp
C as a subrou-

tine, it holds that Mcomp
C ⇒ Mdist

C for any C with C ⊆ X , |C| = k. Therefore,
we show that Mdist

C ⇒ MDDH for any C with C ⊆ X , |C| = k by constructing
MDDH usingMdist

C as a subroutine. The construction ofMDDH is as follows.

Algorithm 3 (P.p.t. Algorithm MDDH).

Input: a challenge 4-tuple, (g1, g2, g3, g4).
Output: “Diffie-Hellman tuple” or “Random tuple.”

Step 1. Choose a set of subscribers U (⊆ Zq\{0}) and split U into � disjoint sub-
sets U0, . . . ,U�−1. Select a set of revoked subscribers X (⊆ U) with a condition
that there is at most one subset U i (0 ≤ i ≤ �− 1) s.t. U i ∩X �= ∅, U i ∩X �= U i.
Then, choose a set of k colluders C s.t. C ⊆ X .

Step 2. Suppose that C = {x1, . . . , xk}. Construct the personal key (xj , ij , dj)
given to the subscriber, xj ∈ U ij

, and the public key e = (g1, g
a0
1 , . . . , g

a2k−1
1 ,

gb0
1 , . . . , g

b�−1
1) by executing the same procedure as in Step 4.2 of Algorithm 2.

Step 3. Select the session key s ∈R Gq and random numbers r, x, y ∈R Zq. Build
the header H = (H0, . . . ,H�−1) by repeating the following procedure to compute
Hi = (ĥi, hi,0, . . . , hi,2k−1) for 0 ≤ i ≤ �− 1.

– If X ∩ U i = ∅, then compute Hi as follows.

ĥi = gr
3,

hi,j =

{
g

ajr
3 (j �= i mod 2k),

s
(
gλi
3 gμi

4

)r

(j = i mod 2k).

– If X ∩ U i = U i, then set Bi = 0 or 1 and compute Hi as follows. In each
time, a random number zi ∈R Zq is selected randomly.

ĥi =
{
gr
3 (Bi = 0),
gx
1g

y
3 (Bi = 1),

hi,j =
{
h′

i,j (j �= i mod 2k),
gzi
1 (j = i mod 2k),

where if there exists a subset U t (0 ≤ t ≤ � − 1) s.t. X ∩ U t �= ∅ and
X ∩ U t �= U t, then

h′
i,j =

{
g

ajr
3 (Bi = 0),
g

cj

1 (gx
1g

y
3)aj (Bi = 1).

A Public-Key Black-Box Traitor Tracing Scheme 271

Otherwise (X ∩ U i = ∅ or X ∩ U i = U i for any i),

h′
i,j =

{
g

ajr
3 (Bi = 0),

(gx
1g

y
3)aj (Bi = 1),

– If X ∩U i �= ∅ and X ∩U i �= U i, then first, suppose that U i\X = {u1, . . . , uw}
and choose 2k − w − 1 distinct elements uw+1, . . . , u2k−1 ∈R Zq \ (U ∪ {0})
when 2k − w − 1 > 0. Secondly, find c0, . . . , c2k−1 ∈R Zq s.t.

∑2k−1
j=0 cju

j
α =

0 mod q for 1 ≤ α ≤ 2k − 1. Finally, compute Hi as follows.

ĥi = gx
1g

y
3 ,

hi,j =
{
g

cj

1 (gx
1g

y
3)aj (j �= i mod 2k),

sg
cj

1 (gx
1g

y
3)λi (gx

2g
y
4)μi (j = i mod 2k).

In this procedure, gaj

3 is computed as in Step 4.2 of Algorithm 2. Observe
that if the challenge 4-tuple is a Diffie-Hellman tuple, s is the session key corre-
sponding to H. Otherwise, it is not.

Step 4. Give s,H, e, (x1, i1, d1), . . . , (xk, ik, dk) to Mdist
C . If Mdist

C decides that
s is the session key corresponding to H, then output “Diffie-Hellman tuple.”
Otherwise output “Random tuple.” Since Mdist

C behaves differently for session
keys and random elements in Gq, MDDH can solve the given DDH challenge.

Since C with C ⊆ X , |C| = k can be chosen arbitrarily in Step 4.2, it holds
thatMdist

C ⇒MDDH for any C with C ⊆ X , |C| = k. This completes the proof.
�

Lemma 3 (Indistinguishability of a Suspect). The computational complex-
ity for any coalition of k subscribers to distinguish (1) an invalid input in which
a given subscriber other than the k ones is not revoked from (2) an invalid one
in which the subscriber is revoked is as difficult as DDH in Gq.

Sketch of Proof. Due to space limitation, we describe a sketch of the proof.
Let C be a set of k colluders. Let Adist

C be a p.p.t. algorithm the coalition C uses
to distinguish an invalid input in which the given subscriber is not revoked from
an invalid one in which the subscriber is revoked. Similarly in the proofs of the
other lemmas, we construct MDDH using Adist

C as a subroutine.

Algorithm 4 (P.p.t. Algorithm MDDH).

Input: a challenge 4-tuple, (g1, g2, g3, g4).
Output: “Diffie-Hellman tuple” or “Random tuple.”

Step 1. Choose a set of subscribers U (⊆ Zq\{0}) and split U into � disjoint
subsets U0, . . . ,U�−1. Select a set of k colluders C and one subscriber u ∈R U \C.
Suppose that u ∈ U t, U i ∩ X = U i for 0 ≤ i ≤ t − 1, and U i ∩ X = ∅ for
t + 1 ≤ i ≤ � − 1. There are three possible relations between U t and X : (1)
U t ∩ X �= U t, U t ∩ X �= ∅ both when u /∈ X and u ∈ X , (2) U t ∩ X = ∅ when

272 T. Matsushita and H. Imai

u /∈ X , and U t ∩ X = {u} when u ∈ X , (3) U t ∩ X = U t \ {u} when u /∈ X , and
U t ∩ X = U t when u ∈ X .

Step 2. Suppose that C = {x1, . . . , xk}. Construct the personal key (xj , ij , dj)
given to the subscriber, xj ∈ U ij , and the public key e = (g1, g

a0
1 , . . . , g

a2k−1
1 ,

gb0
1 , . . . , g

b�−1
1) by executing the same procedure as in Step 4.2 of Algorithm 2.

Step 3. Build the header H in which (1) if the challenge 4-tuple is a Diffie-
Hellman tuple, the subscriber u is not revoked and (2) otherwise, the subscriber
u is revoked, in each case. The construction of H is similar to that in Step 4.2
of Algorithm 3.

Step 4. Give u,H, e, (x1, i1, d1), . . . , (xk, ik, dk) to Adist
C . Since Adist

C behaves dif-
ferently for invalid inputs in which the subscriber u is not revoked and invalid
ones in which the subscriber u is revoked,MDDH can solve the given DDH chal-
lenge. �

From Lemma 1, Lemma 2, and Lemma 3, it follows that the next theorem
holds.

Theorem 2 (Black-Box Traceability). In the proposed scheme, from the pi-
rate decoder constructed by a coalition of at most k traitors, at least one of them
can be identified with probability 1− ε where ε is negligible.

Proof. Recall that ctrj (0 ≤ ctrj ≤ m) denotes the number of times of observing
that the pirate decoder decrypts correctly the input in which X = {u1, . . . , uj},
i.e., the subscribers u1, . . . , uj are revoked. Define j = 0 if X = ∅, i.e., the input
is valid. It is clear that ctr0 = m. From Lemma 2, it holds that ctrn = 0 with
overwhelming probability. From the triangular inequality, it follows that there
exists an integer j ∈ {1, . . . , n} s.t. ctrj−1 − ctrj ≥ m/n. If the subscriber uj is
not a traitor, ctrj−1−ctrj & m/n since it follows from Lemma 3 that the pirate
decoder cannot distinguish an invalid input in which X = {u1, . . . , uj−1} from an
invalid one in which X = {u1, . . . , uj} with non-negligible advantage. Therefore,
the subscriber uj is a traitor with overwhelming probability if ctrj−1 − ctrj is
the maximum.

Next, consider the case where the reaction mechanism is activated. From
Lemma 1, no such reaction is triggered as long as X ∩ C = ∅ where C denotes a
set of the colluders. Therefore, if the reaction is triggered in the input in which
X = {u1, . . . , uj}, it holds that {u1, . . . , uj}∩C �= ∅. In this case, if the subscriber
uj is not a traitor, the pirate decoder must have taken the reaction in the previous
input in which X = {u1, . . . , uj−1} since it follows from Lemma 3 that the pirate
decoder cannot distinguish an invalid input in which X = {u1, . . . , uj} from an
invalid one in which X = {u1, . . . , uj−1} with non-negligible advantage. Hence,
if the reaction is triggered in the input in which X = {u1, . . . , uj}, it holds that
the subscriber uj is a traitor with overwhelming probability. �

Note that our scheme can be easily applied to the case where the pirate
decoder takes the reaction in a probabilistic way.

A Public-Key Black-Box Traitor Tracing Scheme 273

5 Efficiency

In Table 2, the previous schemes and ours are compared from the viewpoints
of each subscriber’s storage, the transmission overhead, the number of sets of
suspects required for tracing, the detection probability, and the computational
cost for decryption. The scheme of [2] is omitted since its efficiency is almost the
same as that of [8] in the above criteria. We suppose that the standard ElGamal
encryption scheme is straightforwardly used in the scheme of [6].

Table 2. Efficiency comparison (P, S, H: sets of possible personal keys, session keys,
and headers respectively, n: the total number of subscribers, k: the maximum coalition
size, c: a constant (0 < c < 1), ε: negligible probability)

Each subscrib-
er’s storage
(log |P|/ log |S|)

Transmission
overhead
(log |H|/ log |S|)

of sets
of suspects
for tracing

Detection
probabil-
ity

of exp.’s
for decryp-
tion

[8] 1 2k + 1
(

n
k

)
1 − ε O(k)

[6] (1 − c)−1 (1 − c)−1n1−c n1−c n−c O((1 − c)−1)
[6] (c = 1/2) 2 2

√
n

√
n 1/

√
n O(1)

Ours 1 4k + n/2k + 2 n 1 − ε O(k)
Ours (k =

√
n/8) 1 2

√
2n + 2 n 1 − ε O(

√
n)

In the scheme of [6], the size of a personal key is determined by a constant
c (0 < c < 1) selected when initializing the system. In the other schemes, the
size of a personal key is constant. In the scheme of [8], the efficient transmission
overhead which is linear only in k is achieved where k is the maximum coalition
size. However, the scheme of [8] can only support black-box confirmation in which
only k suspects can be tested in one confirmation. Therefore, the tracer needs
to execute the confirmation algorithm on all of the possible

(
n
k

)
sets of suspects

at the worst case, where n is the total number of subscribers. Since the number
of sets of suspects required for tracing is directly affected to the running time
of the tracing algorithm, the scheme of [8] is impractical from this viewpoint.
On the other hand, in the scheme of [6] and ours the number of sets of suspects
required for tracing is drastically reduced and hence the practical convergence
time for tracing is achieved.

In the scheme of [6], the output of the tracing algorithm is the list of suspects
in which at least one traitor is included with overwhelming probability. If the
tracer attempts to identify the traitor only from the suspect list, the probability
that the tracer correctly detect the traitor is n−c, since the list size is nc. Due
to its combinatorial construction, there is a trade-off between the transmission
overhead and the detection probability in the scheme of [6]. The value of c
which gives the smallest header size and detection probability at the same time is
c = 1/2 and in this case the header size is O(

√
n) and the detection probability is

1/
√
n. Although the sublinear header size is achieved in the scheme, its detection

probability becomes smaller as n gets larger.

274 T. Matsushita and H. Imai

In our scheme, efficient black-box tracing is achieved without the above list-
tracing approach, i.e., there is no such trade-off. The header size is linear in k
and the number of subsets of subscribers. Especially, if we set k =

√
n/8, the

header size is O(
√
n), where we assume that the size of each subset is 2k. The

tracer can identify at least one traitor with overwhelming probability, regardless
of n. By applying the key-generation method of [9] to the scheme of [8], our
scheme enables the tracer to make it impossible for the revoked subscribers to
compute the session key by substituting a random value for the element used
only by the subscribers in one of the � disjoint subsets if all of them in the subset
are revoked. This helps to remove the restriction of the number of suspects in
the previous schemes with black-box confirmation and hence efficient black-box
tracing without sacrificing the detection probability is achieved. On the value of
m, which is the number of repetition times of the test in the tracing algorithm,
it is shown in [6] that at least one traitor can be identified with overwhelming
probability if m = O(n2 log2 n). By using this result, it can be said that the
running time of the tracing algorithm is O(n3 log2 n).

The main differences between the scheme of [6] and ours are the detection
probability and the computational cost for decryption. While in the scheme of [6]
the detection probability gets smaller as the value of n increases, in our scheme
it is independent of n and always overwhelming. On the other hand, the scheme
of [6] is efficient from the viewpoint of the computational cost for decryption. In
the previous scheme, only a few exponentiations are needed, while the number of
exponentiations required for decryption is O(k) in ours. This can be alleviated
by using a technique of vector-addition chain exponentiation [11, p.622].

6 Conclusions

In this paper, we have proposed a sublinear public-key black-box tracing scheme
against self-defensive pirate decoders. This can be viewed as a solution to the
open question to build a sublinear traitor tracing scheme that supports efficient
black-box tracing against self-defensive pirate decoders with negligible probabil-
ity of error.

References

1. D. Boneh: “The Decision Diffie-Hellman Problem”, In Proc. of the Third Algorith-
mic Number Theory Symposium, LNCS 1423, Springer-Verlag, pp. 48–63, 1998.

2. D. Boneh and M. Franklin: “An Efficient Public Key Traitor Tracing Scheme”, In
Proc. of CRYPTO ’99 , LNCS 1666, Springer-Verlag, pp. 338–353, 1999.

3. B. Chor, A. Fiat, and M. Naor: “Tracing Traitors”, In Proc. of CRYPTO ’94 ,
LNCS 839, Springer-Verlag, pp. 257–270, 1994.

4. B. Chor, A. Fiat, M. Naor, and B. Pinkas: “Tracing Traitors”, IEEE Transactions
on Information Theory, Vol. 46, No. 3, pp. 893–910, 2000.

5. Y. Dodis and N. Fazio: “Public Key Broadcast Encryption for Stateless Receivers”,
ACM Workshop on Digital Rights Management (DRM ’02), 2002.

A Public-Key Black-Box Traitor Tracing Scheme 275

6. A. Kiayias and M. Yung: “On Crafty Pirates and Foxy Tracers”, In Proc of Revised
Papers from the ACM CCS-8 Workshop on Security and Privacy in Digital Rights
Management (SPDRM ’01), LNCS 2320, Springer-Verlag, pp. 22–39, 2002.

7. K. Kurosawa and Y. Desmedt: “Optimum Traitor Tracing and Asymmetric
Schemes”, In Proc. of EUROCRYPT ’98 , LNCS 1403, Springer-Verlag, pp. 145–
157, 1998.

8. K. Kurosawa and T. Yoshida: “Linear Code Implies Public-Key Traitor Tracing”,
In Proc. of PKC ’02 , LNCS 2274, Springer-Verlag, pp. 172–187, 2002.

9. T. Matsushita: “A Flexibly Revocable Key-Distribution Scheme for Efficient Black-
Box Tracing”, In Proc. of ICICS ’02 , LNCS 2513, Springer-Verlag, pp. 197–208,
2002.

10. T. Matsushita and H. Imai: “Black-box Traitor Tracing against Arbitrary Pirate
Decoders”, In Proc. of the 1st Workshop on Information Security Applications
(WISA ’00), pp. 265–274, 2000.

11. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of Applied Cryp-
tography , CRC Press, 1996.

Batching Schnorr Identification Scheme with
Applications to Privacy-Preserving
Authorization and Low-Bandwidth

Communication Devices

R. Gennaro∗, D. Leigh∗∗, R. Sundaram∗∗∗,+, and W. Yerazunis†

∗IBM T.J.Watson Research Center, Yorktown Heights, NY, USA
rosario@watson.ibm.com

∗∗Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
leigh@merl.com

∗∗∗Northeastern University, Boston, MA, USA
koods@ccsneu.edu

†Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
yerazunis@merl.com

Abstract. We present a batch version of Schnorr’s identification scheme.
Our scheme uses higher degree polynomials that enable the execution
of several Schnorr’s protocol at a cost very close to that of a single
execution. We present a full proof of security that our scheme is secure
against impersonation attacks.

The main application of this result is a very efficient way for a party to
prove that it holds several secret keys (i.e. identities), where each identity
is linked to a specific authorization. This approach protects the privacy of
the prover allowing her to prove only the required set of authorizations
required to perform a given task, without disclosing whether she is in
possession of other privileges or not.

We also show that our scheme is suitable to be implemented on low-
bandwidth communication devices. We present an implementation of a
smart card employing recent technology for the use of LEDs (Light Emit-
ting Diodes) for bidirectional communication. Another contribution of
our paper is to show that this new technology allows the implementation
of strong cryptography.

1 Introduction

Identification, also known as entity authentication, is a process by which a ver-
ifier gains assurance that the identity of a prover is as claimed, i.e. there is
no impersonation [MOV97, Sch96]. An identification scheme enables a prover
holding a secret key to identify itself to a verifier holding the corresponding
public key.

+ This research funded by MERL.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 276–292, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Batching Schnorr Identification Scheme 277

The primary objectives of an identification protocol are completeness - in
the case of honest parties the prover is successfully able to authenticate itself to
the verifier, and soundness - a dishonest prover has a negligible probability of
convincing a verifier.

There are various grades of dishonesty and corresponding levels of security.
The goal of the adversary is to impersonate the prover. As per the standard se-
curity framework [FFS88], the adversary is allowed various attacks on the honest
prover, which complete before the impersonation attempt. A typical requirement
of identification protocols is that they be secure against impersonation under
passive attack, where the adversarial prover has access to transcripts of prover-
verifier interactions. A stronger requirement is that protocols be secure against
active attacks where the adversarial prover can actively play the role of a cheat-
ing verifier with the prover numerous times before the impersonation attempt.
Security against impersonation under active attack has been the traditional goal
of identification schemes.

However, in recent times interest has been growing in still stronger attacks,
e.g. concurrent attacks. In these attacks, just like with active attacks the ad-
versarial prover gets to play the role of cheating verifier prior to impersonation
with the key distinction that the adversary is allowed to interact with multiple
honest prover clones concurrently [FFS88].

It is very important to keep in mind that, in the real world, identification
protocols provide assurances only at the instant of time when the protocol is
successfully completed. It is therefore important to ensure that the identifica-
tion process is tied to some form of ongoing real-world integrity service. At some
level all identification schemes are vulnerable to the adversary who cuts in im-
mediately after the successful identification of the legitimate party.

Zero-knowledge Protocols. A paradigm introduced in [FFS88] to construct
identification protocols, is to construct zero-knowledge proofs of knowledge. These
are protocols which allow a prover to demonstrate knowledge of a secret while
revealing no information whatsoever other than the one bit of information re-
garding the possession of the secret [GMR85, FFS88].

A protocol is said to be honest-verifier zero-knowledge if it is zero-knowledge
when interacting with honest verifiers. An honest-verifier zero-knowledge proto-
col has a weaker security guarantee than a general zero-knowledge protocol since
it is possible that a dishonest verifier can extract information from the prover in
the former protocol.

However, when used as identification schemes, the ultimate measure of the
worth of a protocol lies in its security against impersonation attempts and a
protocol that is secure against impersonation against concurrent attacks is con-
sidered to be ”secure” even if it is “only” honest-verifier zero-knowledge. This
happens if one is able to show that whatever information is leaked to the dis-
honest verifier, it does not help him in any impersonation attack.

Schnorr in [Sch91] presents such a protocol, based on the hardness of comput-
ing discrete logarithms. The details are described in the body of the paper, but
here we just remark that Schnorr’s protocol is an honest-verifier zero-knowledge

278 R. Gennaro et al.

proof of knowledge of a discrete logarithm. Recently Bellare and Palacio in
[BPa02] showed that under a slightly stronger assumption on the security of
discrete logarithms, Schnorr’s protocol is a secure identification scheme against
concurrent attacks.

1.1 Authorization

Authorization is the conveyance to the verifier that the prover, has the sanction
to gain access to a particular resource set, or belongs to a certain privilege class.
Authorization may be effected by the proving of one or of multiple identities.

Consider now the following access control scenario. Users of a given system
belong to various privilege classes. Access control classes for the data are defined
using these privileges, i.e. as the users who own a given subset of privileges. For
example the access control class for a given piece of data D, is defined as the
users who own privileges P1, P2, P3.

A way to implement such an access control system is to give each user a certi-
fied public key. The certificate would indicate the subset of privileges associated
with this public key. Then in order to gain access, Alice performs an identifica-
tion protocol based on her public key, and if her privileges are a superset of the
ones required for the access she is attempting, access is granted.

There are several drawbacks with this approach. But the main one is a blatant
violation of Alice’s privacy. Whenever Alice proves her identity she reveals all
her privileges, when, theoretically, in order to gain access she should have had
to reveal only a subset of them.

It is clear that there are situation which warrant a privacy-preserving au-
thorization mechanism, in which Alice can gain access by proving she owns the
minimal set of required privileges.

This can be done by associating a different public key to each privilege. Then
Alice would prove that she knows the secret keys required for the authorization.
Using typical proofs of knowledge, like Schnorr’s, to prove knowledge of k keys
the user has to perform k proofs. Although these proofs can be performed in
parallel, keeping the round complexity the same, the computational complexity
goes up by a factor of k.

Thus an interesting question is if it is possible to perform a proof of knowledge
of d secrets at the cost of less than d proofs. We answer this question in the
affirmative (see below).

Another advantage of associating different keys to different privileges, is that
the latter can be easily transferred simply by transferring the corresponding
secret key.

1.2 Our Contributions

We present a batch version of Schnorr’s protocol. In our scheme the prover can
prove knowledge of d secret keys (discrete logarithms), at a cost slightly superior
to the cost of a single Schnorr’s protocol, thus saving a factor of d in computa-
tion and bandwidth over the best previously known solutions. We use degree d
polynomials to represent an ordered list of d identities. We show that the result-

Batching Schnorr Identification Scheme 279

ing scheme is not only honest-verifier zero-knowledge, but that it is also a secure
identification scheme against impersonation under concurrent attacks [BPa02].

This immediately yields a very efficient privacy-preserving authorization mech-
anism along the lines described in the previous section.

Finally, in order to showcase the efficiency of our proposal we present an
implementation in a very low-bandwidth environment. We use recently proposed
technology to use Light Emitting Diodes (LEDs) as bi-directional communication
devices. We believe that another interesting contribution of our paper is to show
that this new technology is robust enough to implement strong cryptographic
solutions.

1.3 Related Work

Besides the works cited above [GMR85, FFS88, Sch91], another widely used
protocol for identification is the one proposed by Guillou and Quisquateur in
[GQu88]. This scheme is more efficient than Schnorr’s and very suitable to low-
power computation devices. When proving multiple identities simultaneously,
our batch technique makes the advantage of using GQ over Schnorr’s disappear
very quickly. Indeed only for very small values of d (the number of identities
being proven), d parallel executions of GQ beat our batch Schnorr protocol in
efficiency1. It would be interesting to devise a batch version of the Guillou-
Quisquateur protocol, but we were not able to do so.

In any case, when comparing our scheme with running d Guillou-Quisquateur
schemes, one should remember that the GQ scheme is based on a different as-
sumption (RSA inversion) than the Schnorr’s protocol.

Our new identification scheme is related to the concept of batch verifica-
tion of signatures [BGR98]. As far as we know there has not been any work on
batch verification for identification protocols. A straightforward application of
the techniques in [BGR98] to our problem would yield a much less efficient pro-
tocol. Moreover, the mathematical techniques we use are fundamentally different
than the ones in [BGR98].

Recently the area of privacy-preserving protocol has received a lot of atten-
tion. We refer the reader especially to the works by Camenisch and Lysyanskaya
[CL01, CL02], where the concept of group signature is used to show how a user
can prove membership in a certain privilege class, without revealing her true
identity. These solutions offer a very strong privacy guarantee, as a user can
safely prove his privileges to various verifiers, who would not be able to link
her various transactions. On the other hand our solution does not protect the

1 Jumping ahead, assume we perform Schnorr’s scheme, with parameters p, q such
that |p| = 1024 and |q| = 160. Then one execution of the protocol costs about
240 multiplications for the prover (i.e. one exponentiation modp, with a 160-bit
exponent). On the other hand, if we perform the GQ scheme over a 1024-bit RSA
modulus, using a small public exponent (like 3), and security parameter 80, then the
prover’s cost is about 80 multiplications. Thus GQ is approximately 3 times as fast
as Schnorr’s. Which means that for d > 3, i.e. when proving more than 3 identities
simultaneously, our batch Schnorr protocol becomes more attractive than GQ.

280 R. Gennaro et al.

identity of the user, but simply allows her to prove the minimal set of privileges
required for a given transaction. But if verifiers collude they can link the user’s
transactions and reconstruct the set of privileges she holds. For example if Alice
proves to Bob that she belongs to privilege class P1, and to Charles that she
belongs to the P2 class, it is possible for Bob and Charles together to understand
that Alice holds both P1 and P2 privileges. On the other hand our solution is
much simpler and more efficient that solutions based on group signatures, thus
it could be preferable in a scenario in which collusion is not really a problem.
Moreover some of our batching techniques can be used to speed-up solutions
based on group signatures (since there, the proof of possession of several keys is
a subprotocol).

2 Preliminaries

In this section we recall the basic definition of proof of knowledge, the compu-
tational assumptions that we are going to need, and Schnorr’s protocol. In the
following the acronym PPT stands for “probabilistic polynomial-time”.

2.1 Proofs of Knowledge

Polynomial Time Relationships. Let R be a polynomial time computable
relationship, i.e. a language of pairs (y, w) such that it can be decided in polyno-
mial time in |y| if (y, w) ∈ R or not. With LR we denote the language induced
by R i.e. LR = {y : ∃w : (y, w) ∈ R}.

More formally an ensemble of polynomial time relationships PT R consists of
a collection of families PT R = ∪nPT Rn where each PT Rn is a family of poly-
nomial time relationships Rn. To an ensemble PT R we associate a randomized
instance generator algorithm IG that on input 1n outputs the description of a
relationship Rn. In the following we will drop the suffix n when obvious from
the context.

Example: The instance generator algorithm on input 1n outputs an n-bit prime
q, a poly(n)-prime p, such that q|p − 1 and an element g of order q in Z∗

p .
The corresponding relationship is that of pairs (y, w) ⊂ Z∗

p × Zq such that
y = gw mod p.

Proofs of Knowledge. In a proof of knowledge for a relationship R, two
parties, Prover P and Verifier V, interact on a common input y. The Prover also
holds a secret input w, such that (y, w) ∈ R. The goal of the protocol is to
convince V that P indeed knows such w. Ideally this proof should not reveal any
information about w to the verifier, i.e. be zero-knowledge.

The protocol should thus satisfy certain constraints. In particular it must
be complete: if P knows w then V should accept. It should be sound: for any
(possibly dishonest) prover who does not know w, the verifier should almost
always reject. Finally it should be zero-knowledge: no (poly-time) verifier (no
matter what possibly dishonest strategy she follows during the proof) can learn
any information about w.

Batching Schnorr Identification Scheme 281

A formal definition of proofs of knowledge can be found in [BGo93] (improving
on the original definition in [FFS88]). Informally, the concept of “knowing” w is
formalized by showing that w can be computed in polynomial-time if we have
black-box access to P. This is done by constructing a witness extractor which
runs in probabilistic polynomial time, and computes w with a probability related
to the probability that the Prover makes the Verifier accept.

The concept of zero-knowledge is formalized via the existence of a probabilis-
tic polynomial time simulator S that on input y and interacting with a possibly
cheating Verifier outputs transcripts with the same probability distribution as
the real prover (who knows w).

A formal definition follows. With [P(y, w),V(y)] we denote the output of the
protocol, i.e. 1 iff V accepts. With πP(n) we denote the probability that a prover
P makes the verifier accept, i.e.

πP(n) = Prob[Rn ← IG(1n) ; [P(y, ·),V(y)] = 1]

where the statement y can be chosen by P.

Definition 1. We say that (P,V) is a proof of knowledge for a relationship
(PT R, IG) if the following properties are satisfied:

Completeness. For all (y, w) ∈ Rn (for all Rn) we have that [P(y, w),V(y)]=1.

Witness Extraction. There exist a probabilistic polynomial time knowledge
extractor KE, a function κ : {0, 1}∗ → [0, 1] and a negligible function ε, such
that for all PPT P’, if πP′(n) > κ(n) then KE, given rewind access to P’, com-
putes w such that (y, w) ∈ Rn with probability at least πP′(n)− κ(n)− ε(n).

Zero-Knowledge. For every PPT Verifier V’ there exist a probabilistic poly-
nomial time simulator SIMV′ , such that for all (y, w) ∈ Rn the two random
variables

View[P(y, w),V′(y)]

View[SIMV′(y),V′(y)]

are indistinguishable.

The function κ is called the knowledge error and measures the probability,
inherent to the protocol, that a cheating prover can convince the verifier without
knowing w. What we require is that if a prover convinces the verifier with a prob-
ability higher than κ, then we can extract the witness with a success probability
related to the difference.

2.2 Identification Schemes

In an identification scheme a prover P and a verifier V interact on input a public
key (generated together with its matching secret key by a key generation algo-
rithm KG). The prover holds the matching secret key, and his goal is to convince
the Verifier of this fact, and thus of his identity.

282 R. Gennaro et al.

An impersonation attack is when an adversary A tries to convince the verifier
that he is the honest prover. This kind of attack is called a passive attack, if the
adversary attempts impersonation only after having witnessed several correct
executions of the identification protocol between the prover and honest verifiers.
We said that an attack, is active, if the adversary before trying to impersonate
the prover has engaged with him in the identification protocol, playing the role
of a (possibly dishonest) verifier.

Finally, and this is the notion we consider in this paper, we say that an
active impersonation attack is a concurrent attack if the interactions between the
adversary and the honest prover before the impersonation attack, can be carried
out in a concurrent fashion (i.e. with an arbitrary scheduling of messages).

So we can consider the following game. A pair of keys sk,pk is chosen according
to the distribution induced by KG on input 1n the security parameter. The prover
is given sk and pk is made public. Then the adversary A engages as a verifier in
several concurrent executions of the identification protocol with the prover. He
then finally runs one execution of the protocol, as the prover, with an honest
verifier. We denote with advA(n) the probability that A makes the verifier accept
at the end of this game.

Definition 2. We say that an identification protocol is secure against concur-
rent impersonation attack if advA(n) is negligible in n.

2.3 Discrete Logarithm Assumptions

Since its introduction in the seminal paper by Diffie and Hellman [DH78], the dis-
crete logarithm assumption has been widely used to construct cryptographic algo-
rithms. Here we are going to use a well established variant of the assumption that
considers the hardness of computing discrete logs in subgroups of prime order.

Consider the example we described above. On input a security parameter
1n, we generate an n-bit prime q, a poly(n)-prime p, such that q|p − 1 and an
element g of order q in Z∗

p (the multiplicative group of integers modp). In the
group generated by g we can consider the exponentiation function that maps
w ∈ Zq to y = gw mod p. The discrete log assumption says that if we choose w
at random then it is infeasible to compute w, when given only y.

Assumption 1. We assume that computing discrete logarithm is hard, i.e. for
every PPT Turing Machine I (for inverter) the following probability

advI(n) = Prob[I(p, q, g, y = gw mod p) = w]

is negligible in n. The probability is taken over the internal coin tosses of I, the
random choices of q as n-bit prime, p as a poly(n)-bit prime such that q|p − 1,
w ∈R Zq, while g is an arbitrary element of order q in Z∗

p .

In the following we are going to use a stronger variant of the discrete log as-
sumption, introduced in [BNPS01, BPa02]. In this variant once we have selected
p, q at random and chose g, we give the inverter I access to two oracles. The

Batching Schnorr Identification Scheme 283

challenge oracle Ch, when invoked outputs a random element in the group gener-
ated by g. The discrete log oracle DL when queried on a value y ∈ (g) will output
w such that y = gw mod p. The goal of I is to invert all the values issued to him
by the challenge oracle (and I must invoke Ch at least once), but is restricted
to invoke DL a number of times, which is strictly smaller than the number of
times he invoked Ch. We denote with advCh,DL

I (n) the probability (taken over the
choices of p, q and the internal coin tosses of I and Ch) that I succeeds in this
game.

Assumption 2. We assume that the problem of one more inversion of discrete
logarithms is hard, i.e. we assume that advCh,DL

I (n) is negligible in n.

Note that when the number of queries to Ch is equal to 1, this assumption
is equivalent to Assumption 1. Though Assumption 2 is new, it looks reason-
able and has the advantage enunciated in [BPa02] of reducing the security of
our identification scheme to the hardness of a well-specified number theoretic
problem.

2.4 Schnorr’s Identification Scheme

Let p and q be two primes such that q|p−1 and |q| = n. Let g �= 1 be an element
of order q in Z∗

p . Let Gq be the subgroup generated by g. The integers p, q, g are
known and can be common to a group of users.

An identity consists of a private/public key pair. The private key w is a
random non-negative integer less than q. The public key is computed as y =
g−w mod p.

The protocol is described in Figure 1.
It is well known that Schnorr is an honest-verifier zero-knowledge proof of

knowledge of w, the discrete logarithm of y. The reader is referred to [Sch91] for
details. The protocol is only honest-verifier ZK, because if a dishonest verifier
chooses the challenge e in a non-random way (particularly dependent on the first
message x) we are not able to simulate the interaction2.

However in [BPa02] it is shown that the Schnorr scheme is secure against
impersonation, under concurrent attacks, under the assumption that discrete
logarithm is secure under one more inversion in the underlying group.

3 The New Identification Scheme

In this section we present our generalization of Schnorr’s scheme to the case in
which the prover wants to prove multiple identities.

A naive generalization of Schnorr’s scheme would be to do the simultaneous
authentication of d identities by composing d rounds in parallel. In other words

2 Note that it is also necessary to check that y is in the proper group, by checking that
yq = 1 mod p, see [Bur90]. This can be added as a verification step, or the verifier
can trust the certification authority that certified y to have performed the test. A
similar requirement holds for our protocol.

284 R. Gennaro et al.

Schnorr

Common Input: p, q, g, y. A security parameter t.
Secret Input for the Prover: w ∈ Zq such that y = g−w mod p.

1. Commitment by Prover. Prover picks r ∈R Zq and sends x = gr mod p to
the Verifier.

Prover x = gr

� Verifier

2. Challenge from Verifier. Verifier picks a number e ∈R [1..2t] and sends it
to the Prover.

Prover e� Verifier

3. Response from Prover. Prover computes s = r + w · e mod q and sends it
to the Verifier.

Prover s = r + w · e � Verifier

The Verifier checks that x = gs ·ye mod p and accepts if and only if equality
holds.

Fig. 1. Schnorr’s protocol

the prover would send over d commitments and the verifier would reply with d
challenges - one per identity. Note that this scheme has a communication and
computation cost that is d times the cost of Schnorr’s original scheme. A possible
improvement would be to use the same challenge for all rounds, and apply batch
verification techniques (such as the ones in [BGR98]) to the last verification step.
Even with these improvements, the communication and computation cost of the
whole scheme would still be higher by a factor of d (the prover would still have
to send and compute d commitments).

We propose a more efficient scheme where the prover sends one commitment
and the verifier sends one challenge across all identities. The prover’s response
is generalized from a degree one polynomial to a degree d polynomial formed
from the d secret keys. We are able to show that the resulting scheme is sound
and further that it is secure against impersonation under concurrent attacks
by extending the corresponding arguments in [Sch91] and [BPa02] respectively.
We present two theorems that demonstrate that the new scheme is an honest-
verifier zero knowledge proof of knowledge and also a secure identification against
impersonation under concurrent attacks.

The parameters are very similar to Schnorr. Let p and q be two primes such
that q|p − 1. Let g �= 1 be an element of order q in Z∗

p . The integers p, q, g are
public, and can be common to a group of users.

Batching Schnorr Identification Scheme 285

We have d identities, each consisting of a private/public key pair indexed by
i. The private keys wi are non-negative integers less than q, chosen uniformly at
random. The public keys are computed as yi = g−wi mod p.

The Prover initiates the protocol by sending over the list of public keys yi

for which it claims to possess the corresponding private keys wi. The protocol is
described in Figure 2.

Batch-Schnorr

Common Input: p, q, g, y1, . . . , yd. A security parameter t.
Secret Input for the Prover: wi ∈ Zq such that yi = g−wi mod p.

1. Commitment by Prover. Prover picks r ∈R Zq and sends x = gr mod p to
the Verifier.

Prover x = gr

� Verifier

2. Challenge from Verifier. Verifier picks a number e ∈R [1..2(t+log d)] and
sends it to the Prover.

Prover e� Verifier

3. Response from Prover. Prover computes s = r + Σiwi · ei mod q and sends
it to the Verifier.

Prover s = r + Σiwi · ei
� Verifier

The Verifier checks that x = gy · Πiy
ei

i mod p, and accepts if and only if
equality holds.

Fig. 2. Batch version of Schnorr’s protocol

Theorem 1. Batch-Schnorr is an honest-verifier zero-knowledge proof of knowl-
edge for d discrete logarithms.

The complete proof is provided in [GLSY].
Notice that the protocol is not zero-knowledge in the general case since a

dishonest verifier could choose a challenge that is dependent on the commitment
making it difficult to generate transcripts with the same distribution, without
knowing the secret keys. Informally, however the reason no information is re-
vealed is that the numbers x and y, the commitment and the response, are
essentially random. This is the intuition behind the proof of security as an iden-
tification scheme.

The following theorem (Theorem 2) shows that Batch-Schnorr is an identifi-
cation scheme secure against impersonation under concurrent attacks. As men-
tioned before, this is our ultimate end goal. We extend the proof in [BPa02]

286 R. Gennaro et al.

(which shows the security of Schnorr’s scheme under this kind of attack) to our
scheme. We remind the readers that in a concurrent attack the adversarial prover
is allowed to play the role of the cheating verifier and interact concurrently with
multiple honest prover clones prior to the impersonation attempt. Similar to
[BPa02] our proof is based on the assumption that discrete exponentiation is
secure under d more inversions in the underlying group (Assumption 2).

Let A denote the adversary that first takes on the role of fraudulent verifier
and interacts concurrently with several honest prover clones before subsequently
taking on the role of fraudulent prover. Let advA(k) denote the probability that
A is successful at impersonation.

Theorem 2. If A succeeds in an impersonation attack on Batch-Schnorr with
probability advA(k) then there exists an inverter I such that for every k

advA(k) ≤ 2−t + (advCh,DL
I (k))1/(d+1).

Proof. We show how to construct an inverter I that interacts with A the imper-
sonation adversary. Via this interaction I will compute the discrete logarithm
of all the n points it gets from the challenge oracle, by querying the discrete log
oracle, at most n− d times.

First the inverter I queries Ch, the challenge oracle, d times and obtains d
random group elements yi = g−wi . It then runs A in cheating verifier mode
using the yi’s as the public key. For the jth clone prover the commitment xj is
obtained by querying the challenge oracle Ch. The third round response sj to
challenge ej is computed by querying the discrete log oracle DL on the value

xjΠ
d
k=1y

−ek
j

k . Notice that this is a perfect simulation of a real concurrent attack.
With n we denote the total number of queries to the challenge oracle. Notice
that I queried the discrete log oracle only n− d times.

Now I runs A in cheating prover mode d + 1 times, rewinding it each time
to the beginning (of the phase in which A acts as a prover). This in particular
means that the commitment issued by A stays the same, since its internal state
is the same. If any two challenges are the same then the inverter I fails.

Let x = gr be the commitment and let si be the response corresponding
to the distinct challenges ei. If the cheating prover A fails even once then the
inverter I fails. If the cheating prover A succeeds each of the d + 1 times, then
the inverter I has d + 1 equations of the form si = r + Σjwj · ej

i , with d + 1
unknowns, r and the d secret keys wj . By inverting the Van der Monde matrix
formed from these equations, they can be solved to obtain the wj ’s. These are
the answers to the first d queries I made to Ch.

Recall that I must answer all the challenges he received from Ch. But the
answer to each query xj can be easily computed as sj −Σkwk · ek

j .
Thus with n− d queries, I succeeds in inverting all the n points asked to the

challenge oracle. The probability of success is the probability that A succeeds
d + 1 times. We will now estimate this probability. We first prove an auxiliary
result that is a generalization of an equivalent result in [BPa02].

Batching Schnorr Identification Scheme 287

Lemma 1 (Generalized Reset Lemma). Consider any prover (potentially
cheating). Let A and B be random variables over the space of the random coins,
RP , of the prover. Let A denote the probability, taken over e, that the verifier
accepts. Let B denote the probability, taken over e’s, that when the verifier is
reset and run d + 1 times, a different e is generated each time and the verifier
accepts each time. Let acc = E(A) and res = E(B). Then acc ≤ 2−t+res1/(d+1).

Proof. Let 1/c = 2t+log d be the size of the challenge set i.e. #e. It is easy to see
that B ≥ A(A − c)(A − 2c) . . . (A − dc). This implies that B ≥ (A − dc)(d+1)

which yields that E(A) ≤ dc + E(B)1/(d+1) or E(A) ≤ 2−t + E(B)1/d+1.

Now observe that advA(k) = E(acc), where the expectation is taken over
the choice of yi and the knowledge gained as the cheating verifier. Similarly
advCh,DL

I (k) = E(res). Applying the reset lemma we see that

advA(k) = E(acc) ≤ E(2−t + (res)1/(d+1)) = 2−t + E((res)1/(d+1))

then by applying Jensen’s inequality

advA(k) ≤ 2−t + (E(res))1/(d+1) = 2−t + (advCh,DL
I)1/(d+1)

This completes the proof of Theorem 2.

The following corollary is a straightforward consequence of Theorem 2.

Corollary 1. Under Assumption 2, and if t = ω(log k), then Batch-Schnorr is
a secure identification scheme against i mpersonation under concurrent attack.

Note that the assumption that t is super-logarithmic in k is necessary, oth-
erwise the scheme can be broken by guessing the verifier’s challenge.

3.1 Efficiency Analysis

For a list of d identities Batch-Schnorr uses only O(logd) more bits of communi-
cation than Schnorr’s scheme for a single identity (assuming the same security
level).

In terms of computation Batch-Schnorr requires 2d extra modular multiplica-
tions for the prover. The verifier has to perform d+ 1 modular exponentiations,
while in Schnorr’s scheme it has to perform 2.

Notice that this is much faster than the known way of proving d identities
simultaneously, which consists of d copies of Schnorr’s protocol (in the particular
the verifier would have to perform 2d exponentiations instead of d + 1).

3.2 Authorization Using Multiple Identities

As we discussed in the Introduction, our identification scheme is suitable to
implement Authorization using multiple identities without incurring a huge ef-
ficiency cost.

When a user joins a particular privilege class he is given a new public key, its
matching secret key and a certificate that associates the key to that particular

288 R. Gennaro et al.

privilege class. Another possibility would be to have a unique key for each class,
but that would make revocation very difficult to handle, as revoking one user in
the class (say because her key was compromised or because she does not belong
to the class anymore), would involve replacing the key of all users in the class.

When a user needs to access certain data or services he uses our identification
protocol to prove possession of the minimal set of privileges required for that
access to take place.

Another advantage of our approach is that it is easy to transfer privileges
among parties. A motivating scenario for our application is having a smart card
be able to talk to another smart card and transfer a subset of privileges to it
(equivalent to a high ranking employee in a corporation enabling selective access
to a lower ranked employee). In our scheme using multiple identities it is a simple
matter to transfer the private keys corresponding to the selected list of privileges.

4 Implementation

In order to test the efficiency of our scheme we have performed an implementa-
tion of our scheme. To carry out the implementation we used a recently proposed
technology based on Light Emitting Diodes. We believe that another contribu-
tion of our paper is to show that this new technology allows the implementation
of strong cryptography.

Light Emitting Diodes, or LEDs, are one of the most ubiquitous interface
components. Their diverse applications include numeric displays, flashlights, ve-
hicle brake lights (and possibly even headlights [Hel03]), traffic signals and the
omni-present power-on indicator. LEDs are so commonly used as light emitters
that people often forget that they are fundamentally photodiodes and hence light
detectors. Although LEDs are not optimized for light detection they are very
effective at it. The interchangeability between solid-state light emission and de-
tection was widely publicized in the 1970s by Forrest W. Mims [Mim86, Mim93],
but has since largely been forgotten.

Recently, a novel microprocessor interface circuit was invented which can
alternately emit and detect light using an LED [DYL02]. In addition to the
LED and two digital I/O pins of the microprocessor, the circuit requires only a
single current limiting resistor. When forward-biased the LED emits light and
when back-biased it detects/measures the ambient light. The implications of
LED-based data communication are significant, since it is essentially a software
interface technique that uses existing hardware with minimal modification. ”Ev-
ery LED connected to a microprocessor can be thought of as a generic two-way
data port” [DYL02]. One can conceive of numerous applications e.g. using the
power light on consumer appliances as a maintenance port for reading service
information and uploading new firmware, or capturing a car stereo’s fault log
through the front panel display.

We show how to build smartcards that communicate via LEDs and implement
our Batch-Schnorr protocol.

Batching Schnorr Identification Scheme 289

4.1 Hardware

Batch-Schnorr was implemented using the Microchip PIC16LF628 microcon-
troller. The hardware was composed of a small printed circuit board 2cm by
4cm, a single push-button switch, an LED, a 3-volt lithium coin-cell battery, a
capacitor and two resistors. The PIC uses 8-bit instruction words and runs at 5
MIPS (million instructions per second). It has 16KB of write-able storage. The
prototypes were also equipped with an in-circuit programming connector, which
allowed us to download code into the microcontroller. We also devised a small
adapter board to convert this connector to Microchip’s standard RJ-11 in-circuit
debugging module. A mass produced version should cost less than a dollar more
than a similar LED keychain flashlight. The range of communication is a few
centimeters at best and the data rate is 250 bits/second in each direction. We
implemented Batch-Schnorr representing the prover in its full functionality. The
verifier was implemented as a LED directly controlled by a PC.

See Appendix B for a picture of our implementation.

4.2 Security

We chose a security parameter setting of t = 95. This is generally considered
adequate security (see [Sch96]) for most practical purposes. We used d = 32.
This made t+log d = 100. This forced the prime q to be 200 bits long because of
the existence of the O(q1/2) baby-step-giant-step algorithm for finding discrete
logs (see [Sch91]). In conjunction with the existence of the general number field
sieve (see [LOd91]) this, in turn, forced the prime p to be about 1500 bits long.

4.3 Prover

The bulk of the implementation effort lay in the code for the prover. An impor-
tant aspect of our implementation of Batch-Schnorr was that storage was at a
premium. This is common with most smart cards where the storage is needed
both for code as well as data.

The main operation performed by the prover is modular multiplication. We
initially attempted an implementation of the Fast Fourier Transform (see [Str88])
of Cooley and Tukey, which takes O(n log n) bit operations. However it turned
out that our practical implementations of this scheme had high code complexity,
even though it is more efficient asymptotically.

Hence, we adopted a scheme that utilizes a pre-computed table to substan-
tially save on both code complexity as well as computation time. For each of
the private keys we stored a pre-computed table of the residues modulo q of the
product of the private key with the powers of 2 up to 21+log q. Then to multiply
the private key with any given number we added the residues corresponding to
the powers of 2 present in the binary representation of that number. The residue
modulo q of 21+log q enabled us to reduce the overflow when doing addition, so
that we always had a number with log q bits. Upon receiving the challenge e we
first computed a similar table consisting of the residues modulo q of the product
of e with the powers of 2 up to 21+log q. We then used this table to compute

290 R. Gennaro et al.

the powers of e, and then used the pre-computed tables of the secret keys to
compute y = r+Σisi · ei mod q. This enhancement enabled the implementation
to run in less than 2 seconds for our choice of the security parameters.

5 Conclusion and Extensions

We have presented a batch version of Schnorr’s protocol. In our scheme a prover
can prove knowledge of d keys at essentially the same cost as proving knowledge
of a single key. We believe this protocol can find several applications in the
cryptography literature.

We discussed the application of privacy-preserving authorization mechanisms.
Also we presented an implementation of our protocol employing a new technol-
ogy to use Light Emitting Diodes as two-way communication devices. We believe
this to be another interesting contribution of our paper.

In terms of future research, it would be interesting to devise a batch version
of the Guillou-Quisquateur identification protocol.

References

[BGR98] M. Bellare, J. Garay and T. Rabin. “Fast batch verification for modular
exponentiation and digital signatures”. Advances in Cryptology- Euro-
crypt ’98 Proceedings, Lecture Notes in Computer Science Vol. 1403, K.
Nyberg ed, Springer-Verlag, 1998.

[BGo93] M. Bellare and O. Goldreich. “On defining proofs of knowledge”. Advances
in Cryptology - CRYPTO ’92 Proceedings, Lecture Notes in Computer
Science Vol. 740, E. Brickell ed, Springer-Verlag, 1993.

[BNPS01] M. Bellare, C. Namprempre, D. Pointcheval and M. Semanko. The one-
more RSA Inversion Problem. Financial Cryptography’01. Final version
available at http://eprint.iacr.org/2002/002

[BPa02] Bellare M., and Palacio A., ”GQ and Schnorr identification schemes: proofs
of security against impersonation under active and concurrent attacks,”
Advances in Cryptology-CRYPTO ’02, (2002).

[Bur90] Burmester M., ”A remark on the efficiency of identification schemes,”
EUROCRYPT ’90, pp. 493-495 (1990).

[CL01] J. Camenisch and A. Lysyanskaya. ”An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.”
EUROCRYPT’01 pp.93-118.

[CL02] J. Camenisch and A. Lysyanskaya. ”Signature schemes with efficient pro-
tocols.” Security in Communication Networks Workshop. 2002

[Cha90] Chaum D., ”Zero knowledge undeniable signatures,” Advances in Cryp-
tology - CRYPTO ’90, pp 458-464 (1990).

[CDM00] Cramer R., Damgard I., and MacKenzie P.D., ”Efficient zero-knowledge
proofs of knowledge without intractability assumptions,” Public Key
Cryptography ’00, pp. 354-372 (2002).

[CSh98] Cramer R., and Shoup V., ”A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack,” Advances in
Cryptology-CRYPTO ’98, pp. 13-25 (1998).

Batching Schnorr Identification Scheme 291

[CSh99] R.Cramer and V.Shoup. “Signature schemes based on the Strong RSA
assumption”. 6th ACM Conference on Computer and Communication Se-
curity 1999.

[DPr89] Davies D. W., and Price W. L., ”Security for computer networks,” Wiley
(1989).

[deR91] de Rooij P., ”On the security of the Schnorr scheme using preprocessing,”
EUROCRYPT ’91, pp. 71-80 (1991).

[DYL02] Dietz, P., Yerazunis W., and Leigh, D., ”Very low-cost sensing and
communication using bidirectional LEDs,” to appear in Ubicomp 2003.
http://www.merl.com/papers/TR2003-35/ (2002) patent pending.

[DH78] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654. 1976.

[DDN00] D.Dolev, C.Dwork and M.Naor. “Non-malleable Cryptography”. SIAM J.
Comp. 30(2):391–437, 2000.

[FFS88] Feige U., Fiat A., and Shamir A., ”Zero-knowledge proofs of identity,”
Journal of Cryptology, vol. 1, pp. 77-94 (1988).

[For94] Ford W., ”Computer communications security: principles, standard pro-
tocols and techniques,” Prentice Hall (1994).

[GHR99] Gennaro R., Halevi S. and Rabin T., “Secure Hash-and-Sign Signatures
Without the Random Oracle”. Eurocrypt ’99 LNCS no. 1592, pages 123-
139 (1999).

[GKR97] Gennaro R., Krawczyk H. and Rabin T., ”RSA-based undeniable signa-
tures,” Advances in Cryptography - CRYPTO ’97, pp 132-149 (1997). Also
in Journal of Cryptology, vol 13., pp 397-416 (2000).

[GLSY] Gennaro R., Leigh D., Sundaram R. and Yerazunis W., ”Batching Schnorr
Identification Scheme with Applications to Privacy-Preserving Autho-
rization and Low-Bandwidth Communication Devices,” Tech Report.
http://www.ccs.neu.edu/ koods/papers.html (2004).

[GMR85] Goldwasser S., Micali S., and Rackoff C., ”The knowledge complexity of
interactive proof-systems,” Proceedings of the 17th Annual ACM Sympo-
sium on Theory of Computing, pp. 291-304 (1985).

[GMR88] S.Goldwasser, S.Micali, and R.L.Rivest. “A digital signature scheme se-
cure against adaptive chosen-message attacks”. SIAM J. Computing,
17(2):281–308, April 1988.

[GQu88] Guillou L. C., and Quisquater J. -J., ”A practical zero-knowledge pro-
tocol fitted to security microprocessor minimizing both transmission and
memory,” EUROCRYPT ’88, pp. 123-128 (1988).

[GUg86] Guillou L. C., and Ugon M., ”Smart card: a highly reliable and portable se-
curity device,” Advances in Cryptology-CRYPTO ’86, pp. 464-479 (1986).

[GUQ92] Guillou L. C., Ugon M., and Quisquater J. -J., ”The smart card: a stan-
dardized security device dedicated to public cryptography,” Contempo-
rary Cryptology: The Science of Information Integrity, IEEE, pp. 561-613
(1992).

[Hel03] Helms N., ”Bright LEDs power headlights,” Electronics News,
http://www.dialelectronics.com.au/articles/1e/0c01631e.asp (2003).

[Kah67] Kahn D., ”The codebreakers: the story of secret writing,” Macmillan
(1967).

[LOd91] LaMacchia B. A., and Odlyzko A. M., ”Computation of discrete loga-
rithms in prime fields,” Designs, Codes and Cryptography, vol. 1, pp.
46-62 (1991).

292 R. Gennaro et al.

[Mim86] Mims F. M., ”Siliconnections: Coming of age in the electronic era,” Mc-
Graw Hill (1986).

[Mim93] Mims F. M., ”LED circuits and projects,” H. W. Sams and Co. (1993).
[MOV97] Menezes A. J., van Oorschot P. C., and Vanstone S. A.,

”Handbook of applied cryptography,” CRC Press (1997).
http://www.cacr.math.uwaterloo.ca/hac/

[MTh79] Morris R., and Thompson K., ”Password security: a case history,” Com-
munications of the ACM, vol. 22, pp. 594-597 (1979).

[NSc78] Needham R. M., and Schroeder M. D., ”Using encryption for authentica-
tion in large networks of computers,” Communications of the ACM, vol.
21, pp. 993-999 (1978).

[QGB89] Quisquater J. -J., Guillou L., and Berson T., ”How to explain zero-
knowledge protocols to your children,” Advances in Cryptology-CRYPTO
’89, LNCS 435, pp. 628-631 (1989).

[Sch96] Schneier B., ”Applied cryptography,” Wiley (1996).
[Sch91] Schnorr C. P., ”Efficient signature generation for smart cards,” Journal of

Cryptology, vol. 4, no. 3, pp. 161-174 (1991).
[Str88] Strang G., ”Linear algebra and its applications,” Harcourt Brace (1988).
[Ted02] Tedeschi, W., ”Trying to shift shape of PC screens,”

http://www.nytimes.com/2002/11/04/technology/04ECOM.html

A LightKey Image

Fig. 3. LightKey Image

Secret Handshakes from CA-Oblivious
Encryption

Claude Castelluccia1,2, Stanis�law Jarecki1, and Gene Tsudik1

1 Information and Computer Science, University of California, Irvine, CA 92697, USA
{ccastell, stasio, gts}@ics.uci.edu

2 INRIA Rhône-Alpes, 655 Avenue de l’Europe, 38334 Saint Ismier CEDEX, France
claude.castelluccia@inrialpes.fr

Abstract. Secret handshakes were recently introduced [BDS+03] to al-
low members of the same group to authenticate each other secretly, in the
sense that someone who is not a group member cannot tell, by engaging
some party in the handshake protocol, whether that party is a member
of this group. On the other hand, any two parties who are members of
the same group will recognize each other as members. Thus, a secret
handshake protocol can be used in any scenario where group members
need to identify each other without revealing their group affiliations to
outsiders.

The work of [BDS+03] constructed secret handshakes secure under
the Bilinear Diffie-Hellman (BDH) assumption in the Random Oracle
Model (ROM). We show how to build secret handshake protocols se-
cure under a more standard cryptographic assumption of Computational
Diffie Hellman (CDH), using a novel tool of CA-oblivious public key en-
cryption, which is an encryption scheme s.t. neither the public key nor
the ciphertext reveal any information about the Certification Authority
(CA) which certified the public key. We construct such CA-oblivious en-
cryption, and hence a handshake scheme, based on CDH (in ROM). The
new scheme takes 3 communication rounds like the [BDS+03] scheme,
but it is about twice cheaper computationally.

Keywords: authentication, privacy, anonymity, encryption.

1 Introduction

A secret handshake scheme, introduced by Balfanz et al. [BDS+03], allows two
members of the same group to identify each other secretly, in the sense that
each party reveals his/her affiliation to the other only if the other party is also
a group member. For example, a CIA agent Alice might want to authenticate
herself to Bob, but only if Bob is also a CIA agent. Moreover, if Bob is not a
CIA agent, the protocol should not help Bob in determining whether Alice is a
CIA agent or not. This secrecy property can be extended to ensure that group
members’ affiliations are revealed only to members who hold specific roles in the
group. For example, Alice might want to authenticate herself as a CIA agent
with security level one if and only if Bob is a CIA agent with security clearance
two, and vice versa.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 293–307, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

294 C. Castelluccia, S. Jarecki, and G. Tsudik

In other words, if A is a member of group Ga with role ra and B is a member
of Gb with role rb, a secret handshake scheme guarantees the following [BDS+03]:
– A and B authenticate each other if and only if Ga = Gb.1
– If Ga �= Gb then both parties learn only the sole fact that Ga �= Gb.
– A can choose not to reveal anything about herself unless B is a member with

particular role rb (and vice versa).2
– An eavesdropper or a man in the middle learn nothing from the protocol.

As observed in [BDS+03], secret handshakes seem to require new crypto-
graphic protocols since they can not be easily obtained from existing tools in
the “cryptographic toolbox”. For example, group signatures [CVH91, ACJT00]
might appear to be an attractive building block for secret handshakes. However,
they offer anonymity and unlinkability of group members’ signatures, not secrecy
of membership itself. In the interactive variant of group signatures, called iden-
tity escrow [KP98], one party can prove to another its membership in a group
in an anonymous fashion. However, what turns out to be quite difficult is the
seemingly simple issue of two parties proving group membership to each other
simultaneously, in such a way that one party never reveals its group membership
to another unless the former is also a member of the same group.

Secret Handshake Scheme as a “CA-oblivious PKI”. To be usable in practice, a
secret handshake scheme must provide efficient revocation of any group member
by the Group Authority (GA) which administers the group. To support this
functionality we will consider secret handshake schemes which, like the scheme
of [BDS+03], are similar to PKI’s (Public Key Infrastructures), where the role
of a group authority corresponds to that of a Certification Authority (CA) in a
PKI. Namely, to become a member of a group a party needs the GA to issue a
certificate on an ID bitstring which the CA agrees to assign to this party. The
certificate must include a CA-specific trapdoor which corresponds to this ID.3 To
revoke some party, the CA puts that party’s ID on a revocation list. To perform
a handshake, two parties first exchange their ID’s, and then proceed only if the
ID of the other party is not on the revocation list of their CA. Since the secret
handshake protocol must hide one’s group affiliation from outsiders, the ID’s
will be random strings picked from the same domain by all the CA’s.4

1 However, as noted by [BDS+03], a handshake protocol cannot be fair in the sense
that if Ga = Gb then one party is going to learn about it first and could abort the
protocol and thus withhold their group affiliation from the counterparty.

2 To simplify the presentation, we will ignore roles for most of the paper. However, as
we show in appendix A.1, they can be added easily.

3 For example, in an identity based encryption scheme, the trapdoor is a secret key
corresponding to the public key which can be recovered from ID and the public
parameters associated with the CA. In a standard PKI system, this correspondence
has an added level of indirection: The trapdoor t is a secret key corresponding to
the public key PK which is in turn bound to the ID string by a signature of CA on
the (ID|PK) pair.

4 To make protocol runs executed by the same party unlinkable, [BDS+03] propose
that a single user gets multiple (ID,certificate) pairs, each to be used only once.

Secret Handshakes from CA-Oblivious Encryption 295

In this setting, constructing a secret handshake scheme amounts to solving
the following protocol problem: For a given CA, Alice wants to prove to Bob
that she possesses a trapdoor tA issued by this CA on her IDA, but only if Bob
possesses a trapdoor tB issued by the same CA on his IDB (and vice versa).
Moreover, the protocol must be “CA-oblivious” in the sense that if a cheating
Bob is not in the group administered by a given CA, and hence does not hold
a CA-specific trapdoor tB associated with IDB , then his interaction with Alice
must not help him in guessing if Alice belongs to this group or not. (And vice
versa for an honest Bob and a cheating Alice.) While this protocol problem
can be solved in principle with general 2-party secure computation techniques,
the issue remains whether it can be solved with a practical protocol, at a cost
comparable to standard authentication protocols.

Existing Solutions Based on Bilinear Maps. The secret handshake protocol of
[BDS+03] is based on bilinear maps, which can be constructed using Weil pair-
ings on elliptic curves [Jou02, Gag02]. The protocol of [BDS+03] builds on the
non-interactive key-agreement scheme of [SOK00], and works as follows. As in the
identity based encryption scheme of [BF01], A and B can compute each other’s
public keys from each other’s ID’s and from the public parameters associated
with the CA. If Alice is a group member, she can use her trapdoor tA corre-
sponding to PKA to non-interactively compute a session key from (tA, PKB).
Similarly, if Bob is a group member he can compute the same session key from
(tB , PKA). The two parties can then verify if they computed the same key via
a standard MAC-based challenge-response protocol. Under the Bilinear Diffie-
Hellman (BDH) assumption, it is easy to show (in the Random Oracle Model)
that an attacker who does not hold the correct trapdoor cannot compute the
session key. Moreover, the MAC-based challenge response confirmation proto-
col has the needed property that without the knowledge of the key, one learns
nothing from the counterparty’s responses.

Thus, the “CA-obliviousness” property of the protocol of [BDS+03] follows
from two properties of cryptosystems built on bilinear maps: (1) that the re-
ceiver’s public key can be recovered by the sender from the receiver’s ID, and
thus the receiver does not need to send any information revealing his CA af-
filiation to the sender, and (2) knowing their public keys, the two parties can
establish a session key non-interactively, and thus they again do not reveal any
CA-specific information. Given that the first property relies on identity based
encryption, and that the only practical IBE known so far is based on bilinear
maps [BF01], it seems that BDH is indeed needed for secret handshakes.

Our Contributions. In this paper we show that efficient secret handshake (SH)
schemes can be built using weaker and more standard assumption than the
BDH, namely the Computational Diffie Hellman (CDH) assumptions. However,
our security arguments, just like those for the BDH-based scheme of [BDS+03]
remain in the so-called Random Oracle Model (ROM). Moreover, the proposed
scheme is computationally at least twice cheaper than the scheme of [BDS+03].

296 C. Castelluccia, S. Jarecki, and G. Tsudik

We show this in several steps: First, we generalize the IBE-based secret hand-
shake solution sketched above by showing that an efficient four-rounds secret
handshake protocol can be built using any PKI-enabled encryption with the ad-
ditional property of CA-obliviousness. We define the notion of (chosen-plaintext
secure) PKI-enabled encryption, which generalizes both the Identity Based En-
cryption schemes, and the standard encryption schemes used in the context of
a PKI system like X.509. We define the CA-obliviousness property for this no-
tion of PKI-enabled encryption, which requires that both the public-key-related
information which the receiver provides to the sender, and the ciphertext sent
from the sender to the receiver, do not reveal which CA issued the receiver’s
certificate. We then show that every CA-oblivious PKI-enabled encryption leads
to a four-round secret handshake protocol whose cost is one decryption and
one encryption for each party. We also show an alternative construction, which
creates a three-round secret handshake protocol using any CA-oblivious PKI-
enabled encryption equipped with the so-called zero-knowledge “signature of
knowledge” [CS97] of the private decryption key.

Next, we combine ElGamal encryption and Schnorr signatures to construct a
practical CA-oblivious PKI-enabled encryption secure under the CDH assump-
tion (in ROM), which thus leads to a four-round secret handshake protocol secure
under CDH. However, since this encryption admits a very practical (in ROM)
ZK signature of knowledge of the private key, which is simply the Schnorr sig-
nature scheme itself, this results in a secret handshake scheme which takes three
rounds, like the scheme of [BDS+03], and which involves one multiexponenti-
ation and one or two exponentiations per player. Compared to the cost of the
scheme of [BDS+03], where each player computes a pairing of two elements one
of which is known in advance, this is about twice less expensive, according to
the results of Barreto et al. [BKLS02].

We also improve the functionality of a secret handshake system by showing
that our CDH-based SH schemes support “blinded” issuance of the member
certificates in the sense that the CA does not learn the trapdoors included in
the certificate, and thus, in contrast to the BDH-based SH scheme of [BDS+03],
the CA cannot impersonate that member.

Finally, we note that the CA-oblivious encryption we devise can be also
applied to provide a CDH-based solution to the Hidden Credentials problem
[HBSO03], which generalizes the notion of secret handshakes to general PKI
trust evaluations where two communicating partners are not necessarily certified
by the same group/certification authority. This problem was also given only a
BDH-based solution so far, in [HBSO03].

Related Work. As described in [BDS+03], existing anonymity tools such as
anonymous credentials, group signatures, matchmaking protocols, or accumu-
lators, have different goals than secret handshakes, and it is indeed unclear how
to achieve a secret handshake scheme from any of them. Thus we will briefly
discuss here only the new work of [LDB03], which proposes a new notion “obliv-
ious signature-based envelopes”, which is closely related to the secret handshake
problem. The oblivious envelope notion they define is very similar to our notion of

Secret Handshakes from CA-Oblivious Encryption 297

PKI-enabled encryption, but with a weaker obliviousness property. Namely, they
only require that the encrypting party does not know if the receiver possesses a
CA-certified public/private key or not, but the protocol does not hide the iden-
tity of the CA itself from the receiver. In contrast, our CA-oblivious encryption
notion requires the protocol to hide this identify. Thus, while our CA-oblivious
encryption gives an oblivious signature-based envelope for Schnorr signatures,
the other direction is not clear. In particular, it remains an open problem if
CA-oblivious encryption and/or secret handshakes can be constructed based on
the RSA assumption.5

Organization. In section 2 we revise the definitions of an SH scheme [BDS+03],
restricting them to “PKI-like” SH schemes we consider here. In section 3 we
define the notion of a PKI-enabled encryption, and the CA-obliviousness property
for such encryption. In section 4 we construct a CA-oblivious encryption secure
under CDH in ROM. In section 5 we give two general constructions of SH schemes
from any CA-oblivious encryption. In appendix A we show how to support roles
and blinded issuing of CA certificates.

2 Definition of Secret Handshakes

We adapt the definition of a secure Secret Handshake [SH] scheme from [BDS+03]
to what we call “PKI-like” SH schemes. Our definitions might potentially restrict
the notion of a secret handshake scheme, but both the SH scheme of [BDS+03]
and our SH schemes fall into this category. We define an SH scheme as a tuple
of probabilistic algorithms Setup, CreateGroup, AddMember, and Handshake s.t.

– Setup is an algorithm executed publicly on the high-enough security parame-
ter k, to generate the public parameters params common to all subsequently
generated groups.

– CreateGroup is a key generation algorithm executed by a GA, which, on input
of params, outputs the group public key G, and the GA’s private key tG.

– AddMember is a protocol executed between a group member and the GA on
GA’s input tG and shared inputs: params, G, and the bitstring ID (called a
pseudonym in [BDS+03]) of size regulated by params. The group member’s
private output is the trapdoor t produced by GA for the above ID.

– Handshake is the authentication protocol, i.e. the SH protocol itself, executed
between players A,B on public input IDA, IDB , and params. The private
input of A is (tA, GA) and the private input of B is (tB , GB). The output of
the protocol for either party is either a reject or accept.

We note that AddMember can be executed multiple times for the same group
member, resulting in multiple (ID, t) authentication tokens for that member. We

5 In the poster advertising the preliminary version of these results in PODC’04, we
erroneously claimed that we know how to get RSA-based CA-oblivious encryption
scheme, but this claim was incorrect, and this issue is still an open problem.

298 C. Castelluccia, S. Jarecki, and G. Tsudik

also note that in all the SH schemes discussed here the output of the Handshake
protocol can be extended to include an authenticated session key along with the
“accept” decision.

2.1 Basic Security Properties

An SH scheme must be complete, impersonator resistant, and detector resistant:6

Completeness. If honest members A,B of the same group run Handshake with
valid trapdoors tA, tB generated for their ID strings IDA, IDB and for the same
group GA = GB , then both parties output “accept”.

Impersonator Resistance. Intuitively, the impersonator resistance property is vi-
olated if an honest party V who is a member of group G authenticates an adver-
sary A as a group member, even though A is not a member of G. Formally, we
say that an SH scheme is impersonator resistant if every polynomially bounded
adversary A has negligible probability of winning in the following game, for any
string IDV which models the ID string of the victim in the impersonation attack:

1. We execute params← Setup(1k), and (G, tG) ← CreateGroup(params).
2. A, on input (G, IDV), invokes the AddMember algorithm on any number of

group members IDi of his choice. (The GA’s inputs are IDi’s, G, and tG.)
3. A announces a new IDA string, different from all the IDi’s above. (This

models a situation where the IDi’s belong to group members who are mali-
cious but who might be revoked.)

4. A interacts with the honest player V in the Handshake protocol, on com-
mon inputs (IDA, IDV), and on V ’s private inputs G and tV , where tV ←
AddMember((G, IDV), tG).

We say that A wins if V outputs “accept” in the above Handshake instance.
We note that the above impersonator resistance property is rather weak,

and that stronger versions of this property are possible, and indeed advisable.
Namely, the attacker should be allowed to run the protocol several times against
V , and be able to ask for additional trapdoors after each attempt, before he
announces that he is ready for the true challenge. Also, the attacker could be al-
lowed to ask for trapdoors on additional IDi �= IDA strings during the challenge
protocol with V . We adopt the simplest and weakest definition here to reduce
the level of formalism in the paper. Nevertheless, we believe that our schemes
remain secure under these stronger notions as well.

Remark: We note that even such strengthened notion of impostor resistance is
not strong enough to be used in practice. For example, the resulting notion

6 Once we restrict the notion of SH schemes to the PKI-like SH schemes, the security
properties defined originally in [BDS+03] can be stated in a simpler way. Specifically,
their properties of impersonator resistance and impersonator tracing are subsumed
by our impersonator resistance, and their detector resistance and tracing is subsumed
by what we call detector resistance.

Secret Handshakes from CA-Oblivious Encryption 299

makes no claims of security against the man in the middle attacks, and no
claims if the adversary triggers a handshake protocol with an honest owner of
the IDA identity at any time before the adversary tries to authenticate himself
to V under this identity. Therefore we do not claim that the above impostor
resistance property is sufficient in practice. Instead, the above authentication-
like notion of impostor resistance has to be first extended to Authenticated Key
Agreement [AKE]. We discuss this further in the Section 2.2 below.

Detector Resistance. Intuitively, an adversary A violates the detector resistance
property if it can decide whether some honest party V is a member of some group
G, even though A is not a member of G. Formally, we say that an SH scheme
is detector resistant if there exists a probabilistic polynomial-time algorithm
SIM , s.t. any polynomially bounded adversary A cannot distinguish between
the following two games with the probability which is non-negligibly higher than
1/2, for any target ID string IDV :

Steps 1-3 proceed as in the definition of Impersonator Resistance, i.e. on
input IDV and a randomly generated G, A queries GA on adaptively chosen
IDi’s and announces some challenge string IDA, IDA �= IDi for all i.

4-1. In game 1, A interacts with an algorithm for the honest player V in the
Handshake protocol, on common inputs (IDA, IDV), and on V ’s private
inputs G and tV = AddMember((G, IDV), tG).

4-2. In game 2, A interacts with SIM on common inputs (IDA, IDV).
5. A can query GA on additional strings IDi �= IDA.
6. A outputs “1” or “2”, making a judgment about which game he saw.

Similarly to impersonator resistance, stronger notions of detector resistance
are possible and indeed advisable. In particular, the adversary should be able to
trigger several executions of the handshake protocol with player V , and he should
be able to interleave these instances with instances executed with the rightful
owner of the IDA identity. We adopt the above weak notion for simplicity, but
our schemes satisfy these stronger notion as well.

2.2 Extensions and Other Security Properties

Authenticated Key Exchange. As mentioned in the previous section, the impos-
tor resistance property defined above is only a weak authentication-like property
which does not give sufficient guarantees in practice. Moreover, in practice one
would like to extend the notion of a secret handshake from one where partic-
ipants’ outputs are binary decisions “accept” / ”reject”, to authenticated key
exchange, where parties output instead either “reject” or a secure session key.
We believe that the SH schemes we propose, just like the original SH protocol
of [BDS+03], can be easily extended to AKE protocols using the standard AKE
protocol techniques. However, the formal security analysis of the resulting proto-
cols requires adoption of AKE formalism [BR93, CK02, Sho99], which is beyond
the scope of this paper.

300 C. Castelluccia, S. Jarecki, and G. Tsudik

Group-Affiliation Secrecy Against Eavesdroppers. Our schemes also protect
secrecy of participants’ group affiliations against eavesdroppers, even if the eaves-
dropper is a malicious member of the same group. An observer of our SH proto-
cols does not even learn if the participants belong to the same group or not. We
do not formally define security against eavesdroppers, because it is very similar
to the security against active attackers which we do define, the impersonator
and detector resistance. Moreover, if the protocol participants first establish a
secure anonymous session, e.g. using SSL or IKE, and then run the SH protocol
over it, the resulting protocol is trivially secure against eavesdroppers.

Unlinkability. A potentially desirable property identified in [BDS+03], is unlink-
ability, which extends privacy protection for group members by requiring that
instances of the handshake protocol performed by the same party cannot be
efficiently linked. This can be achieved trivially (but inefficiently) by issuing to
each group member a list of one-time certificates, each issued on a randomly
chosen ID, to be discarded after a single use. Unfortunately, an honest mem-
ber’s supply of one-time certificates can be depleted by an active attacker who
initiates the handshake protocol enough times. Indeed, while one can run our
SH schemes using multiple certificates to offer some heuristic protections against
linking, constructing an efficient and perfectly unlinkable SH scheme remains an
open problem.

3 Definition of PKI-Enabled CA-Oblivious Encryption

We define the notion of PKI-enabled encryption, which models the use of stan-
dard encryption in the context of a PKI system, and also generalizes Iden-
tity Based Encryption. We define one-way security for PKI-enabled encryption,
adapting a standard (although weak) notion of one-way security of encryption to
our context, and we define a novel CA-obliviousness property for such schemes.

A PKI-enabled encryption is defined by the following algorithms:

– Initialize is run on a high-enough security parameter, k, to generate the pub-
lic parameters params common to all subsequently generated Certification
Authorities (CAs).

– CAInit is a key generation algorithm executed by a CA. It takes as inputs
the system parameters params and returns the public key G and the private
key tG of the CA.

– Certify is a protocol executed between a CA and a user who needs to be
certified by this CA. It takes CA’s private input tG, and public inputs G
(assume that G encodes params) and string ID which identifies the user,
and returns trapdoor t and certificate ω as the user’s outputs.

– Recover is an algorithm used by a sender, a party who wants to send an
encrypted message to a user identified by some string ID, to recover that
user’s public key. It takes inputs (G, ID, ω) and outputs a public key PK.

– Enc is the actual encryption algorithm which takes inputs message m and
the public key PK (assume that PK encodes params and G), and outputs
a ciphertext c.

Secret Handshakes from CA-Oblivious Encryption 301

– Dec is the decryption algorithm which takes as inputs the ciphertext c and
the trapdoor t (as well as possibly params, G, ID, and ω, all of which can
be encoded in t), and returns m.

The above algorithms must satisfy the obvious correctness property that the
decryption procedure always inverts encryption correctly.

It is easy to see (see footnote 3) that this notion of encryption indeed models
both regular encryption schemes in the PKI context as well as the Identity Based
encryption schemes.

One-Way Security. We define the security of PKI-enabled encryption only in the
relatively weak sense of so-called one-way security, namely that the attacker who
does not own a trapdoor for some public key cannot decrypt an encryption of a
random message. This is a weaker notion than the standard semantic security
for an encryption, but we adopt it here because (1) it simplifies the definition of
security, (2) one-way security is all we need in our construction of a secure SH
scheme, and (3) in the Random Oracle Model, it is always possible to convert
a one-way secure encryption into a semantically secure encryption, or even a
CCA-secure encryption using the method of Fujisaki and Okamoto [FO99].

The definition of security for PKI-enabled encryption is very similar to the
definition of security of an IBE scheme: We say that a PKI-enabled encryption
scheme is One-Way (OW) secure on message space M under Chosen-Plaintext
Attack (CPA), if every polynomially-bounded adversary A has only negligible
probability of winning the following game:
1. The Initialize and CAInit algorithms are run, and the resulting public key G

is given to A.
2. A repeatedly triggers the Certify protocol under the public key G, on ID

strings IDi of A’s choice. In each instance A receives (ti, ωi) from the CA.
3. A announces a pair (IDA, ω), where IDA �= IDi for all IDi’s queried above.
4. A receives c = EncPK(m) for a random message m ∈ M and PK =

Recover(G, IDA, ω).
5. A is allowed to trigger the Certify algorithm on new IDi �= IDA strings of

his choice, getting additional (ti, ωi) pairs from the CA.
6. A outputs a message m′. If m′ = m then we say that A wins.

CA-Obliviousness. Informally, PKI-enabled encryption is CA-oblivious if (1) the
receiver’s message to the sender, i.e., the pair (ID, ω), hides the identity of the
CA which certified this ID; and (2) the sender’s messages to the receiver, i.e.,
ciphertexts, do not leak any information about the CA which the sender assumed
in computing the receiver’s public key. Consequently, in a standard exchange of
messages between the receiver and the sender, neither party can guess which CA
is assumed by the other one. Formally, we call a PKI-enabled encryption scheme
CA-oblivious under two conditions:

(I) It is “Receiver CA-oblivious”, i.e., if there exists a probabilistic polynomial-
time algorithm SIM(R), s.t. no polynomially-bounded adversary A can distin-
guish between the following two games with probability non-negligibly higher
than 1/2, for any target ID string IDR:

302 C. Castelluccia, S. Jarecki, and G. Tsudik

1. The Initialize and CAInit algorithms are executed, and the resulting param-
eters params and the public key G is given to A.

2. A can trigger the Certify protocol on any number of IDi’s.
3-1. In game 1, A gets (IDR, ωR), where ωR is output by the Certify protocol on

G and IDR.
3-2. In game 2, A gets (IDR, r) where r = SIM(R)(params).

4. A can trigger the Certify protocol some more on any IDi �= IDR.
5. A outputs “1” or “2”, making a judgment about which game he saw.

(II) It is “Sender CA-oblivious”, i.e., if there exists a probabilistic polynomial-
time algorithm SIM(S) s.t. no polynomially-bounded adversary A can distin-
guish between the following two games, with probability non-negligibly higher
than 1/2:

1. The Initialize and CAInit algorithms are executed, and the resulting param-
eters params and the public key G is given to A.

2. A can trigger the Certify protocol any number of times, for public key G and
group members IDi’s of A’s choice.

3. A announces pair (IDR, ωR) on which he wants to be tested, where IDR �=
IDi for all i.

4-1. In game 1, A gets c = EncPKR
(m) for random m ∈ M and PKR =

Recover(G, IDR, ωR).
4-2. In game 2, A gets c = SIM(S)(params).

5. A can query GA on some more IDi’s s.t. ∀i, IDi �= IDR.
6. A outputs “1” or “2”, making a judgment about which game he saw.

4 Construction of CA-Oblivious Encryption

We construct a CA-oblivious PKI-enabled encryption scheme secure based on
the CDH assumption in the Random Oracle Model.7

– Initialize picks the standard discrete logarithm parameters (p, q, g) of security
k, i.e., primes p, q of size polynomial in k, s.t. g is a generator of a subgroup
in Z∗

p of order q. Initialize also defines hash functions H : {0, 1}∗ → Zq and
H ′ : {0, 1}∗ → {0, 1}k. (Both hash functions are modeled as random oracles,
but we note that H ′ is not essential in this construction and can be easily
removed.)

– CAInit picks random private key x ∈ Zq and public key y = gxmodp.
– In Certify on public inputs (y, ID), the CA computes the Schnorr signature

on string ID under the key y [Sch89], i.e., a pair (ω, t) ∈ (Z∗
p,Zq) s.t. gt =

ωyH(ω,ID) mod p. The user’s outputs are the trapdoor t and the certificate ω.
The signature is computed as ω = gr mod p, and t = r + xH(ω, ID) mod q,
for random r ← Zq.

7 We remark that since the Identity Based Encryption scheme of [BF01] is also a CA-
oblivious PKI-based encryption scheme, the SH construction of Section 5 applied to
that encryption scheme implies efficient BDH-based SH schemes.

Secret Handshakes from CA-Oblivious Encryption 303

– Recover(y, ID, ω) outputs PK = ωyH(ω,ID) mod p.
– EncPK(m) is an ElGamal encryption of message m ∈ {0, 1}k under the public

key PK: It outputs a ciphertext [c1, c2] = [gr mod p,m⊕H ′(PKr mod p)],
for random r ∈ Zq.

– Dec is an ElGamal decryption, outputing m = c2 ⊕H ′(ct
1 mod p).

Theorem 1. The above encryption scheme is CA-oblivious and One-Way se-
cure under the CDH assumption in the Random Oracle Model.

Proof (of One-Way Security). Assume that an adversary A breaks one-wayness
of this encryption scheme. This means that after receiving n Schnorr signatures
(ti, ωi) on IDi’s of his choice, A sends a tuple (ID, ω) s.t. ID �= IDi for all the
above IDi’s, and (in ROM), to break one-wayness Amust query the H ′ oracle on
ct
1modp where gt = ωyH(ω,ID) mod p. Therefore, A must exponentiate a random

element c1 it received to the exponent t. Hence, what we need to argue that,
even though A receives n signatures (ti, ωi) on her IDi’s, she cannot produce a
new pair (ID, ω) s.t. she can exponentiate a random elements c1 to exponent t
where gt = ω ∗ yh(ω,ID). Now, this is very similar to proving the chosen message
attack security of the underlying Schnorr signature scheme, where one argues
that, after receiving n signatures, A cannot produce a new triple (ID, ω, t) s.t.
gt = ω ∗ yh(ω,ID). Hence, our proof is very similar to the forking-lemma proof
for Schnorr signature security in [PS96]. However, here we reduce the successful
attack not to computing discrete logarithm, but to breaking the CDH assumption
by computing mx on input y = gx and a random value m.

To reduce A’s ability to succeed in this protocol to computing mx on the
Diffie-Hellman challenge (g, gx,m), we first simulate, as in the proof of Schnorr
signature security, the signatures (ti, ωi) that A gets on her IDi’s, by taking
random ti, ci, computing ωi = gti ∗ y−ci modp, and assigning H(ωi, IDi) to
ci. Since the verification equation is satisfied and ti, ci are picked at random,
this is indistinguishable from receiving real signatures. Then, as in the forking
lemma argument of [PS96], we can argue that if A’s probability of success is ε,
the probability that A executed twice in a row succeeds in both executions and
sends the same (ID, ω) challenge in both of them, is at least ε2/qh where qh is
the number of queries A makes to the hash function H (see [PS96]). The forking
lemma used in the security proof of the Schnorr signature scheme shows that if
two conversations with an adversary produce triples (t, ω, ID) and (t′, ω, ID),
where in first conversation H(ω, ID) = c and in the second H(ω, ID) = c′ for
some random c, c′, then x = DLg(y) can be computed as x = (s−s′)/(c−c′) mod
q, because gt = ω ∗ yc and gt′

= ω ∗ yc′
. By applying the same forking lemma

to our case, adversary A produces two exponentiations mt and mt′
, instead of

forgeries t, t′, but still we have that x = DLg(y) = (t − t′)/(c − c′). Therefore,
with probability ε2/qh we can break the CDH challenge and compute mx =
m(t−t′)/(c−c′) = (mt/mt′

)1/(c−c′) mod p.
Note that if the success probability ε is higher than negligible, and if A∗ is

an efficient algorithm and hence the number of queries qh is polynomial, then
the probability of CDH break ε2/qh is non-negligible as well.

304 C. Castelluccia, S. Jarecki, and G. Tsudik

Proof (of CA-Obliviousness). It is easy to see that neither ω nor the ciphertext
C = [c1, c2] reveal any information about the CA: Since ω = gr for random r,
ω is independent from CA’s public key y, and hence the scheme is receiver CA-
oblivious. Ciphertext C = [c1, c2] on a random message m is also independent
from the group key y, because c1 = gr for random r and c2 is computed by
xoring H ′(PKr) with the random m.

5 Secret Handshakes from CA-Oblivious Encryption

We first show how to built a secure four-rounds SH scheme using CA-oblivious
PKI-enabled encryption. Given a CA-oblivious one-way secure PKI-enabled
encryption scheme (Initialize, CAInit, Certify, Recover, Enc, Dec), and a hash
function H : {0, 1}∗ → {0, 1}k modeled as a random oracle, we specify a secret
handshake scheme as follows: Algorithms Setup, CreateGroup, and AddMember,
are simply set to Initialize, CAInit, and Certify, respectively, while algorithm
Handshake proceeds as follows. A’s inputs are (IDa, ωa, ta) and B’s inputs are
(IDb, ωb, tb).8

1. (B −→ A): IDb, ωb

– A obtains PKb = Recover(G, IDb, ωb)
– A picks ra ←M and cha ← {0, 1}k
– A computes Ca = EncPKb

(ra)
2. (A −→ B): IDa, ωa, Ca, cha

– B obtains PKa = Recover(G, IDa, ωa)
– B obtains ra = Dectb

(Ca)
– B picks rb ←M and chb ← {0, 1}k
– B computes Cb = EncPKa

(rb)
– B computes respb = H(ra, rb, cha)

3. (B −→ A): Cb, respb, chb

– A obtains rb = Decta(Cb)
– if respb �= H(ra, rb, cha), A outputs FAIL; otherwise A outputs ACCEPT.
– A computes respa = H(ra, rb, chb)

4. (A −→ B): respa

– if respa �= H(ra, rb, chb), B outputs FAIL; otherwise B outputs ACCEPT.

We note that the above protocol can be easily turned into an Authenticated
Key Exchange (AKE) protocol (secure in the ROM model) if the two parties
compute their authenticated session key as K = H(ra, rb).

Theorem 2. If the PKI-enabled encryption is CA-oblivious and One-Way se-
cure, the above construction yields a Secret Handshake scheme secure in the
Random Oracle Model (ROM).

8 Group member’s trapdoor on string ID in this SH scheme is a pair (ω, t) produced
by the Certify protocol. We can also assume that (IDa, IDb) are public inputs.

Secret Handshakes from CA-Oblivious Encryption 305

Proof (of Impersonator Resistance). Assume that A violates with non-negligible
probability ε the impersonator resistance property against some honest member
V identified by IDV . Assume that A plays the role of A and V plays the role of B
(the other case is easier because B has to speak first). Therefore with prob. ε, A
sends a valid respa = H(ra, rb, chb) response to B. In the ROM model, that can
happen with non-negligible probability only if A querries the oracle for H(·) on
the input (ra, rb, chb) s.t., in particular, rb was the value picked by V and sent to
A in the form of a ciphertext Cb = EncPKa

(rb) for PKa = Recover(G, IDa, ωa),
where (IDa, ωa) are sent by A in its first message to V . Therefore, in ROM, we
can use A to create a break A′ against the one-way security of the encryption
scheme:

On input G, A′ passes the public key G to A. When A can makes a querry
IDi, so does A′, passing back (ωi, ti) to A. When A announces that he is ready
for the impersonation challenge against V , A′ passes as his encryption challenge
the pair (IDa, ωa) sent by A in his first message to V . On encryption challenge
c = EncPKa

(m) where m is chosen at random inM, A′ passes the same challenge
as its response Cb = c to A, together with a random challenge value chb and
respb picked at random. The only way A can tell between this communication
and a conversation with an honest V is by querying H on (ra, rb, cha) for rb =
Decta

(Cb) = m. Otherwise, as we argued above, he queries H on (ra, rb, chb)
with probability almost ε. In either case, since A can make only polynomially-
many queries to H, A′ can pick one such query at random, and A′ will have a
non-negligible chance of outputing rb = m. Thus A′ breaks the one-wayness of
the encryption scheme.

Proof (of Detector Resistance). We will show a simulator SIM s.t. if A distin-
guishes between interactions with SIM and interactions with a group member,
we can break the one-way security of the encryption scheme. Assume again that
the adversary A plays the role of A and V plays the role of B. Assume that the
underlying encryption scheme is CA-oblivious, and therefore there exist sim-
ulators SIM(S) and SIM(R) which satisfy the two CA-obliviousness criteria.
We define a simulator SIM , running on input (IDA, IDV , params), as follows:
(1) To simulate V ’s first message SH-1, SIM sends IDb = IDV together with
ωb = SIM(R)(params), (2) To simulate B’s second message SH-3, SIM sends
respb and chb picked at random, and Cb = SIM(S)(params).

If A can distinguish a conversation with such SIM from a conversation with
a true group member V , then by a standard hybrid argument, since the SIM(S)
and SIM(R) simulators produce messages which are indistinguishable from the
messages of an honest B, it must be that A distinguishes random values respb

chosen by SIM from values respb = H(ra, rb, cha) computed by a real player.
But this can happen only if A makes an oracle query on the triple (ra, rb, cha),
in which case we can use A, exactly in the same manner as we did in the proof
of impersonator resistance, to attack the one-way security of the underlying
encryption scheme.

306 C. Castelluccia, S. Jarecki, and G. Tsudik

5.1 Three-Round Secret Handshake Scheme

We can eliminate one communication round in the above protocol using the zero-
knowledge signature of knowledge [CS97] of the trapdoor t that corresponds to
the public key PK = Recover(G, ID, ω), which we will denote sigt(m). One can
easily construct such signatures in ROM if this relation admits a 3-round honest-
verifier special-soundness proof system [CS97]. The protocol proceeds as follows,
using the same notation as above:

1. (B −→ A): (IDb, ωb, chb)
– A computes PKb = Recover(G, IDb, ωb) and c = EncPKb

(ra, sigta
(chb))

2. (A −→ B): (IDa, ωa, chaa, c)
– B accepts if c decrypts to (ra, sig) where sig verifies as a signature on chb

under the public key PKa = Recover(G, IDa, ωa)
3. (B −→ A): respb = H(ra, cha)

– A accepts if respb = H(ra, cha)

In the case of the CDH-based encryption of Section 4, the above signature of
knowledge is simply a Schnorr signature, and the resulting computational cost
is one or two exponentiation and one multiexponentiation per player.

References

[ACJT00] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and prov-
ably secure coalition-resistant group signature scheme. In CRYPTO’2000,
2000.

[BDS+03] D. Balfanz, G. Durfee, N. Shankar, D.K. Smetters, J. Staddon, and H.C.
Wong. Secret handshakes from pairing-based key agreements. In IEEE
Symposium on Security and Privacy, 2003.

[BF01] D. Boneh and M. Franklin. Identity based encryption from weil pairing.
In Advances in Cryptography - CRYPT0 2001, Santa Barbara, CA, August
2001.

[BKLS02] P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-
based cryptosystems. In Advances in Cryptography - CRYPT0 2002, pages
354–368, Santa Barbara, CA, August 2002.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution. In
Advances in Cryptology - CRYPTO’93, 1993.

[CK02] R. Canetti and H. Krawczyk. Universally composable notions of key ex-
change and secure channels. In Advances in Cryptology - EUROCRYPT
2002, 2002.

[CS97] Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Technical Report TR 260, ETH Zurich, 1997.

[CVH91] D. Chaum and E. Van Heyst. Group signatures. In Springer-Verlag, editor,
Advances in Cryptology - EUROCRYPT’91, volume 547, pages 257–265,
1991.

[FO99] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and sym-
metric encryption schemes. In Advances in Cryptology-CRYPTO’99, pages
537–554, August 1999.

Secret Handshakes from CA-Oblivious Encryption 307

[Gag02] Martin Gagne. Applications of bilinear maps in cryptography. Master’s
thesis, University of Waterloo, 2002.

[HBSO03] J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman. Hidden credentials.
In 2nd ACM Workshop on Privacy in the Electronic Society, October 2003.

[Jou02] A. Joux. The weil and tate pairings as building blocks for public key cryp-
tosystems. In Proceedings of the 5th International Symposium on Algorith-
mic Number Theory, 2002.

[KP98] J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptography -
CRYPT0 1998, Santa Barbara, CA, August 1998.

[LDB03] N. Li, W. Du, and D. Boneh. Oblivious signature-based enevelope. In Pro-
ceedings of 22nd ACM Symposium on Principles of Distributed Computing
(PODC 2003), Boston, Massachusetts, July 13-16 2003.

[PS96] D. Pointcheval and J. Stern. Security proofs for signatures. In Eurocrypt’96,
pages 387 – 398, 1996.

[Sch89] C. Schnorr. Efficient identification and signatures for smart cards. In Ad-
vances in Cryptography - CRYPT0 1989, Santa Barbara, CA, August 1989.

[Sho99] V. Shoup. On formal models for secure key exchange. Technical Report
RZ3120, IBM, April 1999.

[SOK00] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing.
In Symposium in Cryptography and Information Security, Okinawa, Japan,
January 2000.

A Achieving Additional Properties

A.1 Roles

Our schemes can easily be extended to handle group member roles (as in the SH
scheme of [BDS+03]), in a way that a member can choose not to reveal anything
about herself unless the other party is a member with a particular role r (and
vice versa). This functionality can be provided by modifiying the AddMember
and Recover procedures as follows:

- AddMember: takes as inputs params, G, t G and an arbritary string ID ∈
{0, 1}∗ and returns (ω, t) where t is a trapdoor and ω is a public parameter.
(ω, t) are constructed using the string ID|r (instead of ID as in the original
procedure), where r is the role that the CA is assigning to the user.

- Recover: takes as input params, G, ID and ω (provided by another user B).
It outputs a public key PK using as input ID|r (instead of ID as in the
original Recover procedure), where r is the role that A chooses to have a
secret hanshake with.

A.2 Trapdoor Secrecy

Since CA computes the user’s trapdoor t, it can impersonate that user. Would
that be problematic, AddMember can easily be modified to blind the trapdoor if
in the AddMember protocol the user supplies the CA with b = gδ mod p, where
δ is the user’s temporary secret. The CA can then reply with ω = gk ∗ b mod p,
where k is a random value in Zq, and t′ = k+H(ω, ID)∗ tG mod q, and the user
computes his trapdoor as t = t′ + δ mod q.

k-Times Anonymous Authentication
(Extended Abstract)

Isamu Teranishi, Jun Furukawa, and Kazue Sako

Internet Systems Research Laboratories, NEC Corporation,
1753 Shimonumabe, Nakahara-Ku, Kawasaki 211-8666, Japan

teranisi@ah.jp.nec.com, j-furukawa@ay.jp.nec.com, k-sako@ab.jp.nec.com

Abstract. We propose an authentication scheme in which users can be
authenticated anonymously so long as times that they are authenticated
is within an allowable number. The proposed scheme has two features
that allow 1) no one, not even an authority, identify users who have been
authenticated within the allowable number, and that allow 2) anyone to
trace, without help from the authority, dishonest users who have been
authenticated beyond the allowable number by using the records of these
authentications. Although identity escrow/group signature schemes allow
users to be anonymously authenticated, the authorities in these schemes
have the unnecessary ability to trace any user. Moreover, since it is only
the authority who is able to trace users, one needs to make cumber-
some inquiries to the authority to see how many times a user has been
authenticated. Our scheme can be applied to e-voting, e-cash, electronic
coupons, and trial browsing of content. In these applications, our scheme,
unlike the previous one, conceals users’ participation from protocols and
guarantees that they will remain anonymous to everyone.

1 Introduction

1.1 Background

Many applications, such as e-voting [19, 21, 27, 29, 32], e-cash [1, 9, 12, 16, 30],
electronic coupons [25, 26, 28], and trial browsing of content, often need to al-
low users to anonymously use these to protect privacy. At the same time, these
applications need to restrict the number of times users can use them. These ap-
plications have three common requirements. The first is that they should provide
honest users as much privacy as possible. The second is that they should be able
to trace dishonest users easily. The third is that they should be able to restrict
the number of times users can use applications.

However, if an application provider authenticates each user by receiving the
user’s signature when the user accesses it, a problem arises in that the provider
is able to know who is using the application.

By following the authentication procedure of an identity escrow/group signa-
ture scheme [2, 4, 6, 7, 15, 24, 22], instead of an ordinary authentication scheme,
users can be authenticated by the application provider without revealing their

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 308–322, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

k-Times Anonymous Authentication 309

ID to it. However, this method also does not fully satisfy all the requirements.
First, an authority called the group manager can identify honest users. Second,
providers needs to make cumbersome inquiries of the group manager to trace dis-
honest users. Third, there is no easy way for the provider to restrict the number
of times users can use applications.

1.2 Properties of Proposed Scheme

We propose an authentication scheme called k-times anonymous authentication
(k-TAA) that satisfies the three requirements mentioned in the previous sec-
tion. An authority called the group manager first registers users in the proposed
scheme. Each application provider(AP) then publishes the number of times a
user is allowed to use their application. The registered users can be authenti-
cated by various APs.

The proposed scheme satisfies the following properties:

1. No one, not even the group manager, is able to identify the authenticated
user, if authenticated user is honest.

2. No one, not even the group manager, is able to decide whether two authen-
tication procedures are performed by the same user or not, if the user(s)
is/are honest.

3. Any user who was accurately detected as having accessed more than the al-
lowed number of times can be correctly traced using only the authentication
log of the AP and public information.

4. No colluders, not even the group manager, are able to be authenticated by
an AP provider on behalf of an honest user.

5. Once a user has been registered by the group manager, the user does not
need to access the group manager.

6. Each AP can independently determine the maximum number of times a
registered user can anonymously access the AP.

We stress that the group manager of our scheme has less authority than one
of an identity escrow/group signature scheme. He cannot trace honest users. His
sole role is registering users.

The proposed scheme also has directly uses as a k-times anonymous signature.
We formalize security requirements of k-TAA, then prove that the proposed

scheme is secure under strong RSA assumption and DDH assumption.

1.3 Comparison with Related Work

Using known schemes, one can construct a scheme that has similar properties to
ours. However, these schemes have some problems.

Blind Signature Scheme. Using the blind signature scheme [13], one can con-
struct a scheme that has similar properties to ours. In each authentication, a
user receives the group manager’s blind signature and sends this signature to an
AP. The AP accepts the authentication if the signature sent is valid. However,
the scheme does not work well when there are multiple APs and their allowed
number of access times is more than one.

310 I. Teranishi, J. Furukawa, and K. Sako

Electronic Cash That Can be Spent k-times. Using multi-show cash [9] (i.e.,
electronic cash that one can spend multiple times), we can construct another
scheme that has similar properties to ours. The group manager plays the role
of the bank. Before accessing an AP for the first time, a user asks the bank to
give him digital cash that can be spent k times, where k is the number of the
access times allowed by the AP. This cash plays the role of a ticket that allows
users to access the AP, i.e., users send the digital cash to the AP when they are
authenticated by the AP.

This scheme, however, has three drawbacks. First, the scheme is not efficient
in the sense that users must access the group manager every time they access
a new AP. Second, the group manager can learn which APs each user wants to
be authenticated by. Third, one can determine whether two payment protocols
have been performed by the same user or not by comparing the multi-show cash
that was used in the protocols.

Electronic Coupon. By using electronic coupons [25] as tickets, instead of elec-
tronic cash, one can construct another scheme, which also has similar properties
to ours. This scheme, however, has the same problems that identity escrow/group
signature schemes have. That is, the group manager can trace honest users, and
an AP needs to make cumbersome inquiries of the group manager to trace dis-
honest users. The scheme also has a problem in that one can sometimes determine
whether two authentication procedures have been performed by the same user
or not1.

List Signature and Direct Anonymous Attestation. Independently proposed
schemes [5] and [11] are similar to ours. However, these schemes are unmatched
to our purpose. 1) These scheme cannot use two or more times signature. 2)
A verifier of [5] cannot trace dishonest user without help of an authority. The
scheme [11] has no way to trace dishonest user. 3) An authority of [5] can identify
the authenticated user.

1.4 Applications

An example of an application of the k-TAA is trial browsing of content. Each
provider wants to provide users with a service that allows them to browse content
such as movies or music freely on trial. To protect user privacy, the providers
allow users to use them anonymously. To prevent users from using the service
too many times, the providers want to restrict the number of times that a user
can access the service.

This privileged service is only provided to certain group members, say a
member of the XXX community. The head of this community plays the role of
the group manager, and registers users on behalf of providers in advance.

1 Although the authors of [25] claim that no one can determine this, it does not. The
reason is nearly same as that k-TAA scheme which an AP is able to know how many
times users accesses to him. See 1) of 3.4.

k-Times Anonymous Authentication 311

The properties of the proposed scheme enables all honest users to browse
content anonymously for an permitted number, but users who access beyond
the allowed number of times are identified.

It can also be applied to voting, transferable cash, and coupons. In the one- or
multiple-voting scheme constructed with the proposed scheme, a voter computes
one- or k-times anonymous signatures on his ballot, and sends these anonymously
to an election administrator. In this scheme, even authorities are unable to know
whether a user has voted or not.

We can add transferability to the electronic cash scheme [9] with our scheme.
To transfer cash to another entity, the owner of the cash computes a one-time
anonymous signature on the electronic cash, and sends it with the signature to
the receiver. Although a transferable electronic cash scheme has already been
proposed in [16], our scheme has an advantage in that users does not need to
access the bank each time they transfers cash to another entity.

One can construct an electronic coupon scheme by applying the k-times
anonymous signature scheme directly. Our method has an advantage in that
even an authority can not trace an honest user while anyone can trace a dishon-
est user.

2 Model

2.1 Entities

Three types of entities take part in the model, namely, the group manager (GM),
users, and application providers (AP). The k-TAA scheme is comprised of the
following five procedures: setup, joining, bound announcement, authentication,
and public tracing.

In the setup, the GM generates a group public key / group secret key pair, and
publishes the group public key. Joining is done between the GM and user who
wants to join the group. After the procedure, the user obtains a member public
key / member secret key pair. A user who has completed the joining procedure
is called a group member.

In the bound announcement procedure, an AP announces the number of
times each group member is allowed to access him. The AP v publishes his IDv,
and the upper bound kv.

An authentication procedure is performed between a user and an AP. The
AP accepts the user if the user is a group member and has not accessed him
more than the allowable times. The AP detects and rejects the user if he is not a
group member, or if he is a group member but has accessed him more times than
the announced bound allows. The AP records the data sent by the accepted or
detected user in the authentication log.

Using only the public information and the authentication log, anyone can
do public tracing. The procedure outputs some user ID i, “GM”, or “NO-ONE”,
which respectively mean “the user i is authenticated by the AP more times than
the announced bound”, “the GM published the public information maliciously
”, and “the public tracing procedure cannot find malicious entities”. Note that

312 I. Teranishi, J. Furukawa, and K. Sako

we allow AP to delete some data from the log. Even if a member has been
authenticated over the number of times, the tracing outputs NO-ONE if the AP
deletes data about the member’s authentication.

2.2 Requirements

A secure k-TAA must satisfy the following requirements:

– (Correctness): An honest group member will be accepted in authentication
with an honest AP.

– (Total Anonymity): No one is able to identify the authenticated member,
or to decide whether two accepted authentication procedures are performed
by the same group member, if the authenticated user(s) has followed the
authentication procedure within the permitted number of times per AP.
These are satisfied even if other group members, the GM, and all APs collude
with each other.

– (Detectability): Public tracing using an honest AP’s authentication log
does not output “NO-ONE”, if a colluding subset of group members has been
authenticated beyond the total number of times each colluding group mem-
ber is able to be authenticated by the AP.

– (Exculpability for Users): Public tracing does not output the ID of an
honest user, even if other group members, the GM, and all APs collude with
each other.

– (Exculpability for the GM): Public tracing does not output GM if the
GM is honest. This is satisfied even if every group members and every APs
collude with one another.

Note that these requirements implies the followings:

– (Unforgeability): Without the help of the GM or group members, no col-
luding group non-members can be authenticated as group members.

– (Coalition Resistance): A colluding subset of group members cannot gen-
erate a member public key/private key pair, which is not generated in the
joining procedures.

– (Traceability): Any member who is detected of having accessed an AP
predetermined bound can be traced from public information and the AP’s
authentication log.

As reasons the unforgeability and the coalition resistance properties are satis-
fied are almost the same as for the group signature case [7], we have not included
an explanation. Traceability property is clearly satisfied.

3 Proposed Scheme

3.1 Notations and Terminologies

Let N and Zn denote the ring of natural numbers and natural numbers from 0
to n− 1, and QR(n) be the multiple group of quadratic residues of Zn. Let HX

k-Times Anonymous Authentication 313

denote a full domain hash function onto set X. Let PROOF(x s.t. R(x)) denote
the proof of knowledge of x that satisfies the relation R(x). We call prime p
a safe prime if (p − 1)/2 is also a prime number. We call n a rigid integer if
natural number n can be factorized into two safe primes of equal length. Let G
be a group with known order q, on which DDH problem is hard to solve. For
simplification, we assume the bit length of q is equal to a security parameter κ.

3.2 Key Ideas

The proposed scheme is a modification of a group signature scheme. The GM is
disabled from tracing an honest member, and anyone can identify who accessed
over a number of times. Say an AP wishes to set the bound at k. Every time a
member wants to be authenticated by the AP, he computes k intrinsic basis B1,
. . ., Bk of AP which is called a tag base, then picks a tag base Bi which he has
not used before. As long as the member uses different tag bases, he will not be
identified. However, if he used the same tag base, anyone can identify who used
the tag base twice.

3.3 Summary of Proposed Scheme

Let G be a group on which DDH problems are hard to solve. In the setup, the
GM publishes a rigid integer n, elements a, a0 ∈U QR(n), and an element b of
G.

In joining, the a user and GM compute a member public key/secret key pair
((A, e), x) such that an equation axa0 = Ae is satisfied, x and e are elements of
some previously determined intervals, and e is prime, and add bx and his ID to
public list, which is called identification list.

A tag base is a pair (t, ť) of elements of the group G. They must be a hash
values of some data, to prevent to be known the discrete logarithm of each others.
In each authentication, an AP sends random number � to a member, then the
member sends back a tag (τ, τ̌) = (tx, (b�ť)x) with a validity proof. If the member
does not have computed two tags using the same tag base, no one is able to trace
that user, since DDH problem on G is hard to solve. However, if the member
computes another tag (τ ′, τ̌ ′) = (tx, (b�′

ť)x) using the same tag base, AP can
search these from his authentication log since these satisfy τ = τ ′, and one can
compute (τ̌/τ̌ ′)1/(�−�′) = ((b�ť)x/(b�′

ť)x)1/(�−�′) = bx. Since identification list
preserves user ID which corresponds bx, one can identify the member.

3.4 Concerns

To construct the scheme we propose, we need to consider the followings:
1) If an AP is able to know, w, the member accesses to him, the total anonymity
property is not satisfied. Suppose the number of times, w1, that member M1 has
accessed to an AP does not equals the number of times, w2, that member M2
has accessed to the same AP. If w �= w1 is satisfied, the AP can affirm that the
member is not M1.
2) If one can know the discrete logarithm of two tag bases, one can identify mem-
bers using the equation β = (τ̌1

z/τ̌2)1/(l1z−l2). Here, β is a part of the public key

314 I. Teranishi, J. Furukawa, and K. Sako

of a member, τ̌1 and τ̌2 are second coordinate of tags computed by the member
using tag bases t1 and t2 which satisfy t2 = t1

z. Similerly, If τ1
x1 = τ1

x2 are
satisfied, a user who know x1 can perform as a user who know x2
3) An AP can add false data to the log.
4) In joining, a secret key x of a member must be selected randomly, since “one
more unforgeability” of member key pair is assured only if the condition is sat-
isfied. (See Lemma 2).
5) In joining, a user must add bx to the identification list before he know (A, e). If
a user can know (A, e) before he adds bx, he can stop the joining procedure, and
get a member key pair (x, (A, e)) such that bx is not written in the identification
list. Therefore, he can be anonymously authenticated any number of times since
bx is needed to tracing procedure.
6) As a similar reason plain signature schemes needs CA, the proposed scheme
needs some mechanizm to assure the correctness of the correspondence between
each entity and his public key.
7)If G is unknown order group, the number of exponentiations of public trac-
ing is linear to the size of members. In this case, since one cannot compute
(τ̌/τ̌ ′)1/(�−�′), one must cumbersomely compute β(�−�′) for each element β of
the identification list and then check whether β(�−�′) = τ̌/τ̌ ′ is satisfied.

To avoid attacks of 1), . . ., 5), we construct the proposed scheme which
satisifes the following: 1) the validity proof conceals w, 2) tag bases are hash
values of some data, 3) an authentication log contains validity proofs which
members have computed, 4) x is randomized by the GM, and 5) bx is added to
the identification list before the GM computes A = (axa0)1/e mod n.

To avoid attacks of 6), we assume the GM’s public key is distributed by some
trust entity. Additionally, we assume some assumption about the identification
list, to assuer the correspondence between each member and his public key. See
4.2 for more detailed discussion.

To avoid inefficient tracing descibed in 7), we set G as a known order group,
especially G �= QR(n).

3.5 Description of Proposed Scheme

PARAMETERS

The security parameters of our scheme are ν, ε, μ, and κ. Let λ and γ be
parameters which are determined by the security parameters. (See Section 5 for
a detailed description). We set Λ, Γ as sets of integers that were in (0, 2λ) and
(2γ , 2γ + 2λ) respectively. Let {Gκ}κ∈N be a set of cyclic groups with a known
order. Let G be Gκ.

The parameters ν, ε, μ, and κ respectively control the difficulty of solving
flexible RSA problem (the problem is also called strong RSA problem) on Zn,
the tightness of the statistical zero-knowledge property, the soundness of the
scheme, and the difficulty of solving DDH problem on G. We set, for example,
ν = 1024, ε = μ = κ = 160, and set G as an elliptic curve group.

k-Times Anonymous Authentication 315

SETUP

1. The GM randomly chooses 2ν-bit rigid integer n. Then, it randomly chooses
μ-bit string RGM, and computes ((a′, a′

0), b) = HZn
2×G(RGM) and (a, a0) =

(a′2, a′
0
2) mod n ∈ QR(n)2. The group secret key is (p1, p2) and the group

public key is (n,RGM, a, a0, b).

JOINING

1. User Ui selects x′ ∈U Λ, and sends its commitment C to the GM with a
validity proof.

2. The GM verifies the proof, and sends x′′ ∈U Λ to Ui.
3. User Ui confirms that x′′ ∈ Λ is satisfied, computes x = ((x′ + x′′) mod 2λ)

and (α, β) = (ax mod n, bx), and then adds new data (i, β) to the identifica-
tion list LIST. Then, Ui sends (α, β) to the GM with a validity proof.

4. The GM verifies (i, β) is an element of the identification list, and the proof is
valid. Then, the GM generates a prime e ∈U Γ , computes A = (αa0)1/e mod
n, and sends (A, e) to user Ui.

5. User Ui confirms that equation axa0 = Ae mod n is satisfied, e is a prime,
and e is an element of Γ . The new member Ui’s secret key is x, and his
public key is (α,A, e, β).

BOUND ANNOUNCEMENT

1. AP V publishes (IDV, kV). Here, IDV is his ID.

Let (t1, ť1) = HG2(IDV, kV, 1), . . ., (tkV , ťkV) = HG2(IDV, kV, kV). We call
(tw, ťw) the w-th tag base of the AP.

AUTHENTICATION

1. Member M increases counter CIDV,kV . If value w of counter CIDV,kV is greater
than kV, then M sends ⊥ to V and stops.

2. AP V sends random integer � ∈U [0, 2μ+ε] ∩ N to M.
3. Member M computes tag (τ, τ̌) = (txw, (b

�ťw)x), using M’s secret key x and
the w-th tag base (tw, ťw), computes proof (τ, τ̌) is correctly computed, and
sends (τ, τ̌) and the validity proof to V.

4. If the proof is valid and if τ is different from all search tags in his authenti-
cation log, V adds tuple (τ, τ̌ , �) and the proof to the authentication log LOG
of V, and outputs accept.

PUBLIC TRACING

1. From LOG, one finds two data (τ, τ̌ , �, PROOF) and (τ ′, τ̌ ′, �′, PROOF′) that sat-
isfy τ = τ ′ and � �= �′, and that PROOF and PROOF′ are valid. If one cannot
find such data, then one outputs NO-ONE.

316 I. Teranishi, J. Furukawa, and K. Sako

2. One computes β′ = (τ̌/τ̌ ′)1/(�−�′) = ((b�ť)x/(b�′
ť)x)1/(�−�′) = bx, and searches

pair (i, β) that satisfies β = β′ from the identification list. Then, one outputs
a member’s ID i. If there is no such (i, β), then one affirms that the GM has
deleted some data from the identification list, and outputs GM.

3.6 Details

• setup.
- The GM must additionally publish 1) (g, h) ∈U QR(n)2, which shall be used

by users to compute commitment C in joining, 2) a zero-knowledge proof
that n is a rigid integer, and 3) a zero-knowledge proof that (g, h) is an
element of QR(n). The GM provides the proof 2) using the technique of
[10], and provide the proof 3) by proving knowledge of (g̃′, h̃′) ∈ Zn

2, which
satisfies (g̃′2, h̃′2) = (g, h) mod n.

• joining.
- At step 1, the user must compute ((a′, a′

0), b) = HZn
2×G(RGM), and verify

equation (a, a0) = (a′2, a′
0
2) mod n, and the proofs.

- Commitment C is gx′
hs′

mod n. Here s′ is a (2ν + ε)-bit random natural
number.

- The formal description of validity proofs of step 1 and 3 are, respectively,
PROOF1 = PROOF((x̃′, s̃′) s.t. x̃′ ∈ Λ ∧ C = gx̃′

hs̃′
mod n) and PROOF2 =

PROOF((x̃, θ̃, s̃′), which satisfies the (a), . . ., (d) below.), where (a) x̃ ∈ Λ,
(b) ax̃ = α mod n, (c) Cgx′′

= gx̃(g2λ

)θ̃hs̃′
mod n, and (d) bx̃ = β. These

proofs must be statistically zero knowledge on security parameter ε. We have
omitted a detailed description of proofs. See [8] for the proof that committed
number lies in the interval.

• authentication.
- At step 4, if the proof is invalid, V outputs reject and stops. If τ is already

written in the identification list, V adds tuple (τ, τ̌ , �) and the proof to the
LOG of the AP, outputs (detect, LOG) and stops.

- The proof of step 3 is rather more complex. Its details are described in the
full version of this paper.

3.7 Efficiency

The proposed scheme satisfies the followings:

– (Compactness). The GM is able to add new members to the group without
modifying any keys which was previously generated. In particular, the size
of the member’s key pair does not depend on the group size.

– Once a user has been registered by the GM, the user does not need to access
the GM.

– Each AP is able to solely determine the bound of himself.
– The computational cost of authentication is O(kV). However, if G is taken

as an elliptic curve group, the factor which depend on kV is small, since the
exponentiation on G is faster than that on Zn.

– The number of exponentiations of public tracing is independent of the size
of an authentication log and the identification list.

k-Times Anonymous Authentication 317

3.8 Variants of Proposed Scheme

1) Although the proposed scheme merely restricts the number of authentications,
one can construct, using the “and/or”-proof technique, a scheme such as “a trace
procedure identifies a user if and only if the user is authenticated either 1) k1
times from AP V1 or 2) k2 times from AP V2 and k3 times from AP V3”.
2) By changing a data in LIST from (i, β) to (H(β), Eβ(i)), one can construct
a k-TAA scheme in which no one, except a member himself and the GM, can
detect who is a member of the group. Here, H is a hash function and E is a
symmetric encryption scheme. To trace dishonest user, one computes β as in
the proposed scheme, and then computes H(β), searches (h, e) from LIST that
satisfies h = H(β), and decrypts e.

4 Formal Security Requirements

4.1 Notations

We describe the five procedures for a k-TAA scheme as SETUP, JOIN = (UJOIN-GM,
UJOIN-U), BOUND-ANNOUNCEMENT, (abbrev. BD-ANN), AUTH = (UAUTH-U,UAUTH-AP), and
TRACE. The procedures UJOIN-GM and UJOIN-U (resp. UAUTH-AP and UAUTH-U) are what
the GM and user (resp. AP and user) follow in joining (resp. authentication).
Let (gpk, gsk) and (mpk, msk) denote the public key/secret key pair of group
manager and member respectively.

4.2 List Oracle Model

We must assume the existence of an infrastructure which enables to assure the
correct correspondence between each member and his public key to formalize
the security requirements. If we do not assume such thing, no scheme satisfies
the exculpability properties for users as in a group signature case[7]. One of a
such infrastructure is a PKI, but a formalization on the PKI model is rather
complicated, since it must include description of the signing oracle, what an
adversary can do in a PKI key setup, etc. To simplify, we introduce new model
list oracle model. In the model, it is assumed the existence of a list oracle OLIST,
which manages the identification list2 LIST. The oracle OLIST allows anyone to
view any data of LIST. However, it allows entities to write data (i, mpki) to LIST
only if the entity is user i or i’s colluder and to delete data of LIST only if the
entity is the GM or GM’s colluder. We need to stress that even the GM cannot
write data (i, mpki) without colluding with the user i, and even user i cannot
delete data (i, mpki) without colluding with the GM. A more formal definition is
described in Figure 1, where X is a set of entities which collude with an entity
who accesses to OLIST

Note that a scheme on the list oracle model can be easily transformed into
a scheme on the PKI model, by changing (i, mpki) to (mpki,σi(mpki)) and LIST

2 Although the LIST of the proposed scheme stores a parts of public keys, β, we deal
with the case LIST stores the whole public key, to simplify.

318 I. Teranishi, J. Furukawa, and K. Sako

to (LIST,σGM(LIST)). Here, σi(·) is a signature of an entity i. The authority of
the GM in the list oracle model to delete data from LIST corresponds to the
authority of the GM in the PKI model to publish (LIST′,σGM(LIST′)) in spite of
(LIST,σGM(LIST)). Here LIST′ = LIST \ {(mpki,σi(mpki))}.

4.3 Experiments

An adversary is allowed the following in experiments on security properties:

– If an adversary colludes with the GM, the adversary can maliciously execute
SETUP and UJOIN-GM(gpk, gsk).

– If an adversary colludes with a user i, the adversary can maliciously execute
UJOIN-U(gpk, i) and UAUTH-U(gpk, msk) where msk is a secret key of i.

– If an adversary colludes with an AP, the adversary can choose the public
information (ID, k) of the AP and maliciously execute UAUTH-AP(gpk, (ID, k)).
Moreover, the adversary can use different AP information (ID, k) for each
authentication.

– An adversary is only allowed to execute many joining and authentication
procedures sequentially.

Total Anonymity. An adversary is allowed to collude with the GM, all APs, and
all users except target users i1 and i2. It is also allowed to authenticate the oracle
OQUERY(b, gpk, (i1, i2), (ID, k), (d, ·)) once only for d = 0, 1. If it sends (d,M) to
OQUERY, oracle OQUERY regards M as data sent by a member and executes UAUTH-U
using the key pair of user ib⊕d+1 and the APs public information (ID, k). Recall
that k-TAA schemes provide anonymity only if a member has been authenticated
less than the allowed number of times. Therefore, the adversary must authen-
ticate user i1 or i2 using (ID, k) within k times. If the adversary keeps to the
rule and outputs b, the adversary wins. See Figure 1 for the formal definition of
OQUERY. Here, SQUERY is a set, using which OQUERY memorize the session IDs.

Contrary to [7, 22], the secret key of the target users is not input to an
adversary. If the secret keys is input to an adversary, the adversary is able to
determine b as follows: it colludes with AP publishing (ID, k), authenticated
k times from the AP using i1’s secret key, and obtains the log LOG for the
authentications. Then, it communicates with OQUERY(b, gpk, (i1, i2), (ID, k), (0, ·))
and obtains the log L of the authentications. Secret b equals to 0 if and only if
TRACEOLIST(∅,·)(gpk, LOG ∪ {L}) = i1 is satisfied.

Detectability. An adversary is allowed to collude with all of group members. If
the adversary succeeds in being accepted by some AP in more than kn authenti-
cations, the adversary wins. Here, k is the number of times the AP allows access
for each user, and n is the number of users who collude with the adversary.

Exculpability (for users, and for GM). An adversary is allowed to collude with
all entities except the target entity. If the adversary succeeds in computing the
log with which the public tracing procedure outputs the ID of the target entity,
the adversary wins.

k-Times Anonymous Authentication 319

***Expanon-((i1,i2),(ID,k),b)
A,H (ω)***

(gpk, St) ← A(1ω)
b′ ← AOLIST({i1,i2}c,·),OJOIN-U(gpk,·),OAUTH-U(gpk,·),OQUERY(b,gpk,(i1,i2),(ID,k),(·,·))(St)
If (OQUERY has output OVER) Return ⊥.
Return b′.

***OLIST(X, M) ***
Parse M as (command, i, mpk).
If(command = view and mpk =“-”)

If(∃mpk′ s.t. (i, mpk′) ∈ LIST)
Return mpk′.

If(command = add)
If(i ∈ X and �mpk′ s.t. (i, mpk) ∈ LIST)
LIST ← LIST ∪ {(i, mpk)}.

Else if(command = delete)
If (GM ∈ X) LIST ← LIST \ {(i, mpk)}.

Return ⊥.
OQUERY(b, gpk, (i1, i2), (ID, k)(d, M))
If(d /∈ {0, 1}) Return ⊥.
If(�sid s.t. (d, sid) ∈ SQUERY)

Choose new session ID sid
which has been ever used.

SQUERY ← SQUERY ∪ {(d, sid)}.
Return

OAUTH-U(gpk, (sid, i1+(b⊕d), (ID, k)||M)).

***Expdecis
A,H (ω)***

(gpk, gsk) ← SETUP(1ω)
AOLIST({GM}c,·),OJOIN-GM(gpk,gsk,·),OAUTH-AP(gpk,·,·)(1ω).
If (∃(ID, k) ∈ SAUTH-AP s.t. #LOGID,k > k · #LIST)

Return TRACEOLIST(∅,·)(gpk, LOGID,k).
Return ⊥.

***Expexcul-i1
A,H (ω)***

(gpk, St) ← A(1ω).
LOG ← AOLIST({i1}c,·),OJOIN-U(gpk,·),OAUTH-U(gpk,·)(St).
Return TRACEOLIST(∅,·)(gpk, LOG).

***Expexcul-GM
A,H (ω)***

(gpk, gsk) ← SETUP(1ω)
LOG ← AOLIST({GM}c,·),OJOIN-GM(gpk,gsk,·)(ω).
Return TRACEOLIST(∅,·)(gpk, LOG).
Comments:
1. To simplify, we abbreviate
the hash oracle OH.
2. OAUTH-U(gpk, (·, i, ·)) outputs OVER
if A authenticate user i
more than allowed number of times.

Fig. 1. The oracles and the experiments

Figure 1 denotes the experiments, formally. OJOIN-GM, OJOIN-U, OAUTH-U, and
OAUTH-AP are the oracles that manage and execute multiple sessions of UJOIN-GM,
UJOIN-U, UAUTH-U, and UAUTH-AP respectively, and ω is the security parameter. The
set SAUTH-AP contains all AP’s information that was used by OAUTH-AP, and LOGID,k
is the log of authentications engaged by OAUTH-AP using AP’s information (ID, k).
See the full version of this paper for a formal definition of the oracles.

4.4 Definition

Definition 1. Let ω be a security parameter, A be an adversary, b be an ele-
ment of {0, 1}, i1 and i2 be natural numbers, and (ID, k) is a some AP’s public
information.

If Advanon-((i1,i2),(ID,k))
A (ω) = |Pr(Expanon-(0,(i1,i2),(ID,k))

A,H (ω) = 1)

− Pr(Expanon-(1,(i1,i2),(ID,k))
A,H (ω) = 1)| is negligible for security parameter ω for

all (A, i1, i2, (ID, k)), we say a k-TAA scheme satisfies total anonymity.
If Advdecis

A (ω) = Pr(Expdecis
A,H (ω) = NO-ONE) is negligible for security pa-

rameter ω for all A, we say a k-TAA scheme satisfies detectability.

320 I. Teranishi, J. Furukawa, and K. Sako

If Advexcul-i1
A (ω) = Pr(Expexcul−i1

A,H (ω) = i1) is negligible for security pa-
rameter ω for all (A, i1), we say a k-TAA scheme satisfies exculpability for
users.

If Advexcul-GM
A (ω) = Pr(Expexcul−GM

A,H (ω) = GM)) is negligible for security
parameter ω for all A, we say a k-TAA scheme satisfies exculpability for users.

5 Security of Proposed Scheme

To prove the security of the proposed scheme, we use two key lemmata. First,
since each member generates element ax of QR(n) and element bx of G using
the same x, we must be particularly concerned about secrecy. We will prove the
difficulty of a variant in the DDH problem, where two components of a DH-tuple
are elements of QR(n) and the other two components are elements of G:

Lemma 1. (Separation Lemma) Let a be an element of QR(n), and b be an el-
ement of G. Then, the following two distributions are statistically indistinguish-
able: 1) the distribution of (ax mod n, bx) ∈ QR(n) × G, where x is randomly
chosen from Λ, and 2) the distribution of (α, β) ∈ QR(n) × G, where α and β
are randomly chosen from QR(n) and G respectively.

Since |Λ| is ε times greater than |QR(n)×G|, the variation distance between
the two distributions is less than 1/2ε, and therefore, Lemma 1 holds. Note
that, if we injudiciously choose a narrow Λ, the security of the proposed scheme
will rely on a non-standard assumption that those two distributions will still be
computationally indistinguishable.

Detectability and GM’s exculpability of the proposed scheme depends on
“one more unforgeability” of a ((A, e), x):

Lemma 2. If a) a member’s secret key is randomly generated in each joining
procedure, and if b) for all x ∈ Λ and e ∈ Γ , x < e is satisfied, then no adversary
can generate a (x,A, e) which satisfies axa0 = Ae, x ∈ Λ, and e ∈ Γ , and which
has not been made in the joinings.

The proof for Lemma 2 is almost same as the proof for Theorem 1 of [2].
The proposed scheme satisfies the conditions for Lemma 2. Conditions a) and

b), respectively, follow the method of choosing x in the joining procedure, and
the choice of (λ, γ).

Using these lemmata, we can prove the security of the proposed scheme. See
the full version of this paper for the detailed proof.

Theorem 1. Let λ be 2ν+κ+ε, and γ be λ+μ+ε+8. Then, the proposed scheme
on list oracle model satisfies the security requirements of Definition 1 under the
strong RSA assumption, the DDH assumption on {Gκ}, and the random oracle
assumption.

k-Times Anonymous Authentication 321

References

1. How to Date Blind Signatures, M. Abe, and E. Fujisaki, In ASIACRYPT 1996,
LNCS 1163, pp. 244-251, Springer-Verlag, 1996.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and Provably
Secure Coalition-Resistant Group Signature Scheme. In CRYPTO 2000, LNCS
1880, pp. 255-270, Springer-Verlag, 2000.

3. Giuseppe Ateniese and Breno de Medeiros. Efficient Group Signatures without
Trapdoors. In ASIACRYPT 2003, LNCS 2094, pp. 246-268, Springer-Verlag, 2003.

4. G. Ateniese and G. Tsudik. Some Open Issues and New Directions in Group Sig-
natures. In Financial Cryptography ’99, LNCS 1648,pp. 196-211, Springer-Verlag,
1999.

5. Direct Anonymous Attestation. Ernie Brickell, Jan Camenisch, and Liqun Chen.
ZISC Information Security Colloquium SS 2004, June 2004
http://www.hpl.hp.com/techreports/2004/HPL-2004-93.pdf

6. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi, Foundations of Group
Signatures: Formal Definitions, Simplified Requirements, and a Construction
Based on General Assumptions In EUROCRYPT 2003, LNCS 2656, pp. 614-629,
Springer-Verlag, 2003.

7. Mihir Bellare, Haixia Shi, and Chong Zhang, Foundations of Group Signatures:
The Case of Dynamic Groups. http://eprint.iacr.org/2004/077.ps

8. Fabrice Boudot. Efficient Proofs that a Committed Number Lies in an Interval. In
EUROCRYPT 2000, LNCS 1807, pp. 255-270, Springer-Verlag, 2000.

9. Stefan Brands. An Efficient Off-line Electronic Cash System Based On The Rep-
resentation Problem. Technical Report CS-R9323, Centrum voor Wiskunde en In-
formatica,

10. Jan Camenisch and Markus Michels. Proving in Zero-Knowledge that a Number is
the Product of Two Safe Primes. In EUROCRYPT’99, LNCS 1592, pp. 107-122,
Springer-Verlag, 1999.

11. Sébastien Canard and Jacques Traoré List Signature Schemes and Application to
Electronic Voting. In International Workshop on Coding and Cryptography 2003.
pp.24-28, March 2003.

12. A. Chan, Y. Frankel, and Y.Tsiounis, Easy Come - Easy Go Divisible Cash. EU-
ROCRYPT ’98, LNCS 1403, pp. 614-629, Springer-Verlag, 1998.

13. D. Chaum. Blind signature system, In CRYPTO’83, pp. 153-153, Plenum Press,
1984

14. D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms, Communications of the ACM, vol. 24, No. 2, pp. 84-88, (1981).

15. D. Chaum and E. van Heijst. Group signatures. In EUROCRYPT ’91, vol. LNCS
547, pp. 257-265, Springer-Verlag, 1991.

16. D. Chaum, T. Pedersen, Transferred Cash Grows in Size, In EUROCRYPT’92,
LNCS 658, pp. 390-407, Springer-Verlag, 1993.

17. R.Cramer, I.Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In CRYPTO’94, LNCS 2139, pp. 174-187,
Springer-Verlag, 1994.

18. Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, Victor Shoup. Anonymous
Identification in Ad Hoc Groups. In EUROCRYPT 2004, LNCS 3027, pp. 609-
626, Springer-Verlag, 2004.

19. I. Damg̊ard and M. Jurik. A Generalization, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-key system. In Proceedings. of Public Key
Cryptography 2001. LNCS 1992, pp. 119-136, Springer-Verlag, 2001.

322 I. Teranishi, J. Furukawa, and K. Sako

20. A. Fiat and A. Shamir. How to prove yourself: practical solution to identification
and signature problems. In CRYPTO’86, LNCS 263, pp. 186-194, Springer-Verlag,
1987.

21. Jun Furukawa, and Kazue Sako. An Efficient Scheme for Proving a Shuffle. In
CRYPTO 2001, LNCS 2139, pp. 368-387, Springer-Verlag, 2001.

22. Aggelos Kiayias, and Moti Yung. Group Signatures: Provable Se-
cure, Efficient Constructions and Anonymity from Trapdoor Holders.
http://eprint.iacr.org/2004/076.ps

23. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable Signatures. In EU-
ROCRYPT 2004, LNCS 3027, pp. 571-589, Springer-Verlag, 2004.

24. Joe Kilian, and Erez Petrank. Identity Escrow. In CRYPTO’98, LNCS 1462, pp.
169-185, Springer-Verlag, 1998.

25. Toru Nakanishi, Nobuaki Haruna, and Yuji Sugiyama. Unlinkable Electronic
Coupon Protocol with Anonymity Control, In ISW’99, LNCS 1729, pp. 37-46,
Springer-Verlag, 1999.

26. Toru Nakanishi, Nobuaki Haruna, and Yuji Sugiyama. Electronic Coupon Ticket
Protocol with Unlinkable Transcripts of Payments. In Proceedings of the 1999 Sym-
posium on Cryptography and Information Security, pp. 359-363, 1999. (Japanese).

27. C.A. Neff, A Verifiable Secret Shuffle and its Application to E-Voting, ACMCCS
01 pp. 116-125 2001.

28. Tatsuaki Okamoto and Kazuo Ohta. One-Time Zero-Knowledge Authentications
and Their Applications to Untraceable Electronic Cash. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, vol E81-A,
No. 1, pp. 2-10, 1998.

29. M. Ookubo, F. Miura, M. Abe A. Fujioka, and T. Okamoto. An improvement of a
practical secret voting scheme. In ISW’99, LNCS 1729, pp. 37-46, Springer-Verlag,
1999.

30. Chris Pavlovski, Colin Boyd, and Ernest Foo. Detachable Electronic Coins.
In Information and Communication Security, Second International Conference,
ICICS’99, LNCS 1726, pp. 54-70, Springer-Verlag, 1999.

31. K. Sako. Restricted Anonymous Participation. In Proceedings of the 2000 Sympo-
sium on Cryptography and Information Security, B12, January 2000. (Japanese).

32. K. Sako and J. Kilian. Secure Voting using Partially Compatible Homomorphisms.
In CRYPTO ’94, LNCS 839, pp. 411–424, Springer-Verlag, 1994.

33. Isamu Teranishi and J. Furukawa. Tag Signature. (Preliminary version of this pa-
per). In Proceedings of the 2003 Symposium on Cryptography and Information
Security, 6C-2, January 2003.

The XL-Algorithm and a Conjecture from
Commutative Algebra

Claus Diem

Institute for Experimental Mathematics, University of Duisburg-Essen,
Essen, Germany

Abstract. The “XL-algorithm” is a computational method to solve
overdetermined systems of polynomial equations which is based on a
generalization of the well-known method of linearization; it was intro-
duced to cryptology at Eurocrypt 2000.

In this paper, we prove upper bounds on the dimensions of the spaces
of equations in the XL-algorithm. These upper bounds provide strong
evidence that for any fixed finite field K and any fixed c ∈ N the median
of the running times of the original XL-algorithm applied to systems of
m = n+c quadratic equations in n variables over K which have a solution
in K is not subexponential in n. In contrast to this, in the introduction
of the original paper on XL, the authors claimed to “provide strong
theoretical and practical evidence that the expected running time of this
technique is [. . .] subexponential if m exceeds n by a small number”.

More precise upper bounds on the dimensions of the spaces of equa-
tions in the XL-algorithm can be obtained if one assumes a standard
conjecture from commutative algebra. We state the conjecture and dis-
cuss implications on the XL-algorithm.

Keywords: Cryptanalysis, algebraic attacks, overdetermined systems of
polynomial equations, extended linearization, Fröberg’s Conjecture.

1 Motivation and Introduction

The security of many cryptographic systems would be jeopardized if one could
solve certain types of systems of polynomial equations over finite fields. For
example, it has been pointed out in [8] that one can with a high probability
recover an AES-128 key from one AES-128 plaintext-ciphertext pair if one can
solve certain systems with 1600 variables and 8000 quadratic equations over F2,
and it has been pointed out in [14] that one can achieve the same goal if one can
solve certain systems with 3986 variables and 3840 (sparse) quadratic equations
as well as 1408 linear equations over F28 .

Of particular importance for cryptological applications are so-called overde-
termined (or overdefined) systems of quadratic equations as for example the ones
we just mentioned. Let us consider a system of quadratic polynomial equations

f1(X1, . . . ,Xn) = 0 , . . . , fm(X1, . . . ,Xn) = 0 , (1)

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 323–337, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

324 C. Diem

where the fj are polynomials in n indeterminates X1, . . . ,Xn over an “effective”
field K (the field being finite in the cryptological applications). We say that the
system is overdetermined if the dimension of the K-vector space generated by
the fj is greater than n.

In [7], Courtois, Klimov, Patarin and Shamir propose a computational method
called eXtended Linearization (XL) or XL-algorithm to solve such systems of
polynomial equations (see the next section for a description of the method). In
the same paper certain heuristics on the running time of this method are stated.
These heuristics have subsequently been criticized by Moh ([13]) as being too
optimistic, and in Sect. 4 of [13], the method is analyzed with heuristic upper
bounds on the dimensions on the spaces of equations in the XL-algorithm. As
however the assumptions on which the heuristic in [13–Sect. 4] relies are not very
precisely stated, the question whether this heuristic or the original heuristic is
more credible remained an open problem among cryptologists. In a recent work
by Chen and Yang ([4]), the heuristic of [13–Sect. 4] is stated as a special case
of a theorem ([4–Theorem 2]).1 However, the proof of [4–Theorem 2] (and of
[4–Theorem 7]) has some serious flaws.

The main purpose of this paper is to show that under the assumption of a
widely believed conjecture of commutative algebra, one can indeed derive the
non-trivial upper bounds on the dimensions of the spaces of equations in the
XL-algorithm conjectured by Moh and stated in [4–Corollary 6, 1] (see Theorem
1 in Sect. 5 for a more general statement). Moreover, we state upper bounds on
the dimensions of the spaces of equations in the original XL-algorithm which
can be proven without the assumption of this conjecture. These upper bounds
provide strong evidence that for any fixed finite field K and any fixed c ∈ N the
median of the running times of the original XL-algorithm applied to systems of
m = n + c quadratic equations in n variables over K which have a solution in
K is not subexponential in n (see the next section for details).

2 The XL-Algorithm and Our Analysis

Let us fix the system of quadratic equations (1) which we assume to have a
solution in K and some D ∈ N. The main idea of the XL-algorithm is to try to
solve (1) by linearization of the system of all polynomial equations

k∏
�=1

Xi�
· fj(X1, . . . ,Xn) = 0 , (2)

where k ≤ D − 2.
Let UD be K-vector space generated by the polynomials

∏k
�=1 Xi�

· fj with
k ≤ D − 2.

According to [7–Definition 1], the XL-algorithm is as follows. (Except for
changes in the notation, the description is verbatim.)

1 Theorem 2 of [4] is equivalent to the heuristics of [13] if D < q as can be seen by
expanding the polynomial in item 1 of Corollary 6 in [4].

The XL-Algorithm and a Conjecture from Commutative Algebra 325

The XL-Algorithm. Execute the following steps:

1. Multiply: Generate all the products
∏k

�=1 Xi�
· fj ∈ UD with k ≤ D − 2.

2. Linearize: Consider each monomial in Xi of degree ≤ D as an independent
variable 2 and perform Gaussian elimination on the equation obtained in 1.
The ordering on the monomials must be such that all the terms containing
one [specific] variable (say X1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the pow-
ers of X1. Solve this equation over the finite fields (e.g. with Berlekamp’s
algorithm).3,4

4. Repeat: Simplify the equations and repeat the process to find the values of
the other variables.

Remark 1. In the description of the method in [7], it seems that D is fixed
beforehand. As the authors do however not say how D should be determined,
it seems to be reasonable to assume that the authors of [7] had in mind that
D is in fact a variable which is small (e.g. 2) in the beginning, and that the
the XL-algorithm goes to Step 1 with an incremented D whenever in Step 3 no
univariate equation in X1 with a solution in K is found.

Remark 2. In an “extended version” ([6]) of [7], the description of the method is
the same as the one in [7] (and the one we present here) except that the authors
have inserted the sentence “In all the following notations we suppose the powers
of variables taken over K, i.e. reduced modulo q to the range 1, . . . , q−1 because
of the equation aq = a of the finite field K.” after the third paragraph of Sect.
3. (But the field is not assumed to be finite in the second paragraph of Sect.
3 and the number q is not mentioned before.) Apart from this insertion, there
is no substantial difference between Sect. 3 to 7 of [7] and of [6]. Of course, if
one identifies the monomials

∏k
�=1 Xi�

and Xq ·
∏k

�=1 Xi�
the method becomes

much faster if q, the field size, is small, q = 2, 3, 4, 5 say. According to the way
the heuristics in Sect. 6 of [7] and [6] were conducted, this identification was
however not made in the heuristic analysis of [7] and [6].

Definition 1. We call the above computational method the original XL-algo-
rithm. The variant introduced in [6] is called reduced XL-algorithm.

Remark 3. Whereas the original XL-algorithm should only be applied to overde-
termined systems of (quadratic) polynomial equations, if the field is finite and
not too large, it makes sense to apply the reduced XL-algorithm to any system
of (quadratic) polynomial equations.

2 The authors of [7] obviously mean that each monomial of degree ≤ D should be
considered as a new variable.

3 Note however that according to the second paragraph in [7–Sect. 3], the ground field
is not necessarily finite.

4 It should be avoided to repeatedly select univariate polynomial equations which
have more than one solution in K. Moreover, if a univariate polynomial equation is
found which does not have a solution in K, the method should terminate and output
“unsolvable”.

326 C. Diem

Remark 4. Neither of the two computational methods terminates for every input
(even if they are only applied to overdetermined systems which have a solution
in K); thus in contrast to their names, they are not algorithms (not even ran-
domized algorithms) in the usual sense (cf. [11–Chapter 1, 1.1]).

As we will see in the next section, there is a strong connection between the
original and the reduced XL-algorithm (see Proposition 1). Because of this con-
nection, one can use an analysis of (a generalization of) the original XL-algorithm
to analyze also the reduced XL-algorithm (see Theorem 1 and Corollary 1). In
order to state the main ideas of our analysis and to compare our results with the
conjectures of [7], in this section, we concentrate on the original XL-algorithm.

For D ∈ N, let K[X1, . . . ,Xn]≤D be the K-vector space of polynomials in
X1, . . . ,Xn of (total) degree ≤ D, and let

χ(D) := dimK(K[X1, . . . ,Xn]≤D)− dimK(UD) . (3)

One can surely obtain a non-trivial univariate polynomial by (Gaussian) elim-
ination on (2) if χ(D) ≤ D. (This is because the K-vector space K[X1]≤D has
dimension D + 1, thus if χ(D) ≤ D, then dimK(UD) + dimK(K[X1]≤D) >
dimK(K[X1, . . . ,Xn]≤D), and this implies that UD ∩K[X1]≤D �= {0}.) In order
to analyze the running time of the XL-algorithm, it is of greatest importance to
study the question for which D one can expect this condition to hold (if such a
D exists at all). We thus define Dmin be the minimal D with χ(D) ≤ D (if no
such D exists, we set Dmin =∞).

The starting point for our analysis of the XL-algorithm is the interpretation
of the original XL-algorithm via the theory of homogeneous polynomial ideals
pointed out by Moh ([13]). This interpretation opens the door for the usage of
well-established methods from commutative algebra – the keywords are Hilbert
Theory, Hilbert functions, Hilbert series and Hilbert polynomials.

A crucial observation is that in order to derive lower bounds on χ(D) (i.e.
upper bounds on dimK(UD)) it suffices to study the dimensions of the homoge-
neous parts of algebras defined by generic systems of homogeneous polynomials.
(This notion will be made precise in Sect. 4.) For m ≤ n + 1, these dimensions
are known, and this information suffices to prove that for m = n + c, c ≥ 1,

Dmin ≥
n√

c− 1 + 1
(4)

(see Proposition 6.) In contrast to this inequality, it was suggested in [7–Sect.
6.4] that “even for small values of c”, c ≥ 2, one has

Dmin ≈
√
n . (5)

Let us fix the field K and c ≥ 2 and study the asymptotic behavior of the
running time of the original XL-algorithm for n −→ ∞ (and m = n + c): If (5)
was true, the XL-algorithm in [7] would have a running time (in field operations)
which is subexponential in n. (This hope was expressed at the end of Sect. 6.1 of

The XL-Algorithm and a Conjecture from Commutative Algebra 327

[7] as well as at the end of the introduction of [7].) However by (4), the running
time of all instances for which UD ∩ K[X1]≤D = {0} for all D < Dmin is not
subexponential in n.

If K is a finite field and #K and n are not “too small” it seems very reasonable
to expect: Under all systems (1) which have a solution in K, the portion of
systems for which UD ∩K[X1]≤D �= {0} for some D < Dmin is negligible. This
suggests that for any fixed c ≥ 1 the median of the running times of the original
XL-algorithm applied to systems of m = n+c quadratic equations in n variables
over K which have a solution in K is not subexponential in n. The hope stated
at the end of Sect. 1 of [7] that “the expected running time of this technique is
... subexponential if m exceeds n by a small number” should be abandoned.

For c ≥ 3, much more precise lower bounds on Dmin then the ones in (4)
can be obtained if one assumes a certain conjecture which implies what the
dimensions of homogeneous parts of algebras defined by generic systems of ho-
mogeneous polynomials should be (see Sect. 5). This conjecture – which is now
approximately 20 years old – states that certain linear maps are either injective
or surjective, that is, they have maximal rank. Because of this, we speak of the
maximal rank conjecture (MR-conjecture).

3 A Generalization of the Original and the
Reduced XL-Algorithm

The original as well as the reduced XL-algorithm of can easily be general-
ized to more general than quadratic systems of polynomial equations (see also
[5–Sect. 2]).

For these generalizations, we start off with a system of m polynomial equa-
tions

f1(X1, . . . ,Xn) = 0, . . . , fm(X1, . . . ,Xn) = 0 . (6)

The generalization of the original XL-algorithm works just as the original XL-
algorithm stated in the previous section with the difference that for some D ∈
N, one applies Gaussian elimination to the linearized system of all polynomial
equations

k∏
�=1

Xi�
· fj(X1, . . . ,Xn) = 0 , (7)

where k + deg(fj) ≤ D.
Clearly, the reduced XL-algorithm can be generalized in a similar manner.

From now on, we refer to these generalizations also as the “original” and the
“reduced” XL-algorithm.

Let us fix the following notations.

– As in the previous section, let

UD := 〈
∏k

�=1 Xi�
· fj(X1, . . . ,Xn) with k ≤ D − deg(fj)〉K (8)

328 C. Diem

– and
χ(D) := dimK(K[X1, . . . ,Xn]≤D)− dimK(UD) . (9)

Let K = Fq.
– If f ∈ K[X1, . . . ,Xn]≤D, we denote by f red the “reduction” of f , i.e. f red

is the polynomial obtained by maximally reducing all exponents in the
monomials according to the relations

∏k
�=1 Xi�

− Xq
i ·
∏k

�=1 Xi�
= 0. Note

that (. . .)red is a homomorphism of K-vector spaces and that (UD)red ≤
(K[X1, . . . ,Xn]≤D)red is the space of equations generated in the reduced
XL-algorithm.

– In order to analyze the reduced XL-algorithm, we set

χred(D) := dimK((K[X1, . . . ,Xn]≤D)red)− dimK((UD)red) . (10)

– Let ŨD be defined just as UD with respect to the system of m+n polynomials
f1, . . . , fm,Xq

1 − X1, . . . ,X
q
n − Xn, and let χ̃(D) be defined as χ(D) with

respect to ŨD.

The proof of the following proposition can be found in Appendix A.

Proposition 1. We have χred(D) = χ̃(D).

Because of this proposition, the results on the original XL-algorithm can
easily be carried over to the reduced XL-algorithm. What remains is to derive
non-trivial lower bounds on χ(D).

4 The XL-Algorithm and Hilbert Theory

In the following discussion, we assume that the reader is familiar with basic
notions of commutative algebra as can for example be found in the first three
chapters of [1].

As mentioned in Sect. 2, our analysis of the XL-algorithm relies on an in-
terpretation via homogeneous polynomial ideals. The main idea is to consider
(for some field K, some n ∈ N and some D ∈ N) the homogeneous polynomials
of degree D in n + 1 variables instead of the polynomials of degree ≤ D in n
variables.

Let K be an arbitrary field, n ∈ N, and let f1, . . . , fn ∈ K[X1, . . . ,Xn].
We use the notations of the previous sections, and additionally we denote by
K[X0, . . . ,Xn]D the K-vector space of all homogeneous polynomials of degree D.
More generally, for any positively graded K[X0, . . . ,Xn]-module M , we denote
the homogeneous part of degree D of M by MD.

Let Fj ∈ K[X0, . . . ,Xn] be the homogenization of fj , that is, Fj is the
unique homogeneous polynomial in K[X0, . . . ,Xn] of the same degree as fj with
Fj(1,X1, . . . ,Xn) = fj(X1, . . . ,Xn).

Let
Φ : K[X1, . . . ,Xn]≤D −→ K[X0, . . . ,Xn]D

The XL-Algorithm and a Conjecture from Commutative Algebra 329

be the “degree D homogenization map”, that is, the K-linear map given by

k∏
�=1

Xi�
�→ XD−k

0

k∏
�=1

Xi�
.

Then under the isomorphism Φ, the K-vector space UD corresponds to

〈
k∏

�=1

Xi�
· Fj(X0,X1, . . . ,Xn) with k = D − deg(Fj)〉K ,

where the products are taken over the variables X0, . . . ,Xn. This space is nothing
but the Dth homogeneous component of the homogeneous ideal

I := (F1, . . . , Fm) � K[X0, . . . ,Xn] ,

denoted ID. We have

χ(D) Def= dimK(K[X1, . . . ,Xn]≤D)− dimK(UD)
= dimK(K[X0, . . . ,Xn]D)− dimK(ID)
= dimK(K[X0, . . . ,Xn]D/ID)
= dimK((K[X0, . . . ,Xn]/I)D) .

(11)

Let R := K[X0, . . . ,Xn]. Recall the following definitions (see e.g. [16–Sect.
1]).

Definition 2. Let M =
⊕

i∈N0
Mi be any finitely generated positively graded

R-module. Then the function

χM : N0 −→ N0, χM (i) := dimK(Mi)

is called the Hilbert function of M .
The power series with integer coefficients

HM :=
∑
i∈N0

χM (i)T i

is called the Hilbert series of M .

Note that the above equation (11) states that

χ(D) = χR/I(D) for all D ∈ N . (12)

Let us denote by Xi the monomial corresponding to the multiindex i ∈
N

{0,...,n}
0 . The following definition can be found in [10].

Definition 3. A form (i.e. a homogeneous polynomial) G =
∑

i aiX
i ∈ R of

degree d is generic if all monomials of degree d in R have coefficients ai in G,
and these coefficients are algebraically independent over the prime field of K.

A generic system of forms is a system of generic forms Gj =
∑

i a
(j)
i Xi as

above (not necessarily of the same degree) such that all a
(j)
i are algebraically

independent over the prime field of K. An ideal I generated by a generic system
of forms is called generic, and so is the R-algebra R/I.

330 C. Diem

Lemma and Definition 4. The Hilbert series of an ideal generated by a generic
system G1, . . . , Gm of forms of degrees d1, . . . , dm depends only on the charac-
teristic of the field, the number n and the tuple of numbers (d1, . . . , dm). If the
characteristic of the field is 0, we speak of the generic Hilbert series of type
(n + 1;m; d1, . . . , dm).

Proof. Let K and L be two fields over the same prime field F , and let
G1, . . . , Gm ∈ K[X0, . . . ,Xn], G′

1, . . . , G
′
m ∈ L[X0, . . . ,Xn] be two generic sys-

tems of forms such that deg(Gj) = deg(G′
j) for all j. Let Gj =

∑
i a

(j)
i Xi,

G′
j =
∑

i a
′
i
(j)

Xi. Let k and l respectively be the subfields of K and L generated
by the coefficients of Gj and G′

j over F . Then there exists a (unique) isomor-

phism between k and l under which a
(j)
i corresponds to a′

i
(j). We thus have for

all D ∈ N0

χK[X0,...Xn]/(G1,...,Gm)(D) = dimK((K[X0, . . .Xn]/(G1, . . . , Gm))D) =
dimk((k[X0, . . .Xn]/(G1, . . . , Gm))D) =
diml((l[X0, . . .Xn]/(G′

1, . . . , G
′
m))D) =

dimL((L[X0, . . .Xn]/(G′
1, . . . , G

′
m))D) = χL[X0,...Xn]/(G′

1,...,G′
m)(D) .

�

Together with (12), the following proposition is crucial for our analysis of the
XL-algorithm.

Proposition 2. Let K be any field (of any characteristic), and let F1, . . . , Fm ∈
R = K[X0, . . . ,Xn] be forms of degree d1, . . . , dm (not necessarily generic).
Let Hg be the generic Hilbert series of type (n + 1;m; d1, . . . , dm). Let I :=
(F1, . . . , Fm) � K[X0, . . . ,Xn]. Then we have the coefficient-wise inequality

HR/I ≥ Hg .

This proposition seems to be well-known in commutative algebra (see e.g.
Sect. 4 of [16]); for the lack of a suitable reference we include the proof in
Appendix B.

Because of (12) and this proposition the task is now to study generic Hilbert
series. The following proposition is a well-known statement from commutative
algebra.

Proposition 3. Let m ≤ n+1, and let G1, . . . , Gm−1, Gm = G be a generic sys-
tem of forms in R = K[X0, . . . ,Xn], where G has degree d. Let
J := (G1, . . . , Gm−1) � R. Then for all D ∈ N0 the multiplication map

G· : (R/J)D −→ (R/J)D+d, F �→ G · F

is injective, in particular we have a short exact sequence

0 −→ (R/J)D
G·−→ (R/J)D+d −→ (R/(J,G))D+d −→ 0 .

(Here by (J,G) we denote the ideal of R generated by J and G.)

The XL-Algorithm and a Conjecture from Commutative Algebra 331

Indeed, this proposition is nothing but a reformulation of the well-known
statement that a generic system of forms in K[X0, . . . ,Xn] with at most n + 1
elements forms a regular sequence (cf. [16–Sect. 4], Page 318). (The fact that a
generic system of forms is a regular sequence can be seen as follows: By Lemma
3 in Appendix B, it suffices to prove that for all (d1, . . . , dn+1) ∈ Nn+1 there
exist some forms F1, . . . , Fn+1 ∈ R of degrees d1, . . . , dn+1 which form a regular
sequence, and by [12–Theorem 16.1], the forms Xd1

0 , . . . ,X
dn+1
n do form a regular

sequence.)

Note that the Hilbert series of R = K[X0, . . . ,Xn] is

HR =
∑

i

(
n + i

i

)
T i =

1
(1− T)n+1 (13)

(see e.g. [16–Sect. 1]). Proposition 3 and (13) imply by induction on m:

Proposition 4. Let m ≤ n+1, and let G1, . . . , Gm be a generic system of forms
of degrees d1, . . . , dm in R. Then the Hilbert series of R/(G1, . . . , Gm) is∏m

j=1(1− T dj)
(1− T)n+1 .

For simplicity we now concentrate until the end of this section on the case of
quadratic equations.

Proposition 5. Let m = n + c for some c ≥ 1. Let F1, . . . , Fm be quadratic
forms in R = K[X0, . . . ,Xn]. Then the Hilbert series of R/(F1, . . . , Fm) is
coefficient-wise greater-or-equal

(1− (c− 1)T 2)(1 + T)n+1 .

Proof. By Proposition 2 we only have to prove that the generic Hilbert series of
type (n + 1;m; 2, . . . , 2) is coefficient-wise greater-or-equal (1 − (c − 1)T 2)(1 +
T)n+1.

So let K be a field of characteristic 0, let R = K[X0, . . . ,Xn], and let
G1, . . . , Gm be a generic system of quadratic forms in R. (The assumption
on the characteristic is not necessary for the following argument.) Let R′ :=
R/(G1, . . . , Gn+1), and let I ′ be the ideal generated by Gn+2, . . . , Gm in R′.
Note that by the above proposition, the Hilbert series of R′ is (1 + T)n+1. We
have R/(G1, . . . , Gm) % R′/I ′, thus

χR/(G1,...,Gm)(D) = χR′/(Gn+2,...,Gm)(D) = dimK(R′
D)− dimK(I ′

D) .

Now, for D ≥ 2, I ′
D =

∑m
j=n+2 Gj · R′

D−2, where by definition Gj · R′
D−2 is

the image of R′
D−2 under the multiplication map Gj · : R′

D−2 −→ R′
D. It follows

that
dimK(I ′

D) ≤ (m− n− 1) dimK(R′
D−2) .

332 C. Diem

All in all, we have

χR/(G1,...,Gm)(D) ≥ χR′(D)− (c− 1)χR′(D − 2) ,

thus

HR/(G1,...,Gm) ≥ HR′ − (c− 1)T 2HR′ = (1− (c− 1)T 2)(1 + T)n+1 .

Proposition 6. Let K be any field, let m = n + c with c ≥ 1, let f1, . . . , fm ∈
K[X1, . . . ,Xn] be quadratic polynomials, and as in Sect. 2, let Dmin be the min-
imal D with χ(D) ≤ D, where χ(D) is defined as above with respect to these
polynomials. Then

Dmin ≥
n√

c− 1 + 1
.

Sketch of the Proof. Let c ≥ 1, m = n + c, f1, . . . , fm and χ(D) be as in the
proposition. By (12) and the above proposition, we have

χ(D) ≥ (
(n−D + 2)(n−D + 3)

(D − 1)D
− (c− 1)) ·

(
n + 1
D − 2

)
for all D ≥ 2. The proposition follows from the statement that ((n−D+2)(n−D+3)

(D−1)D −
(c−1)) ·

(
n+1
D−2

)
> D for all D < n√

c−1+1 . We only show the slightly weaker state-

ment that (n−D+2)(n−D+3)
(D−1)D − (c− 1) > 0 for all D < n√

c−1+1 .
Let D < n√

c−1+1 . Then D
√
c− 1 + D < n, thus D2(c− 1) < (n−D)2. This

implies that (D − 1)D(c− 1) < (n−D + 2)(n−D + 3), i.e. (n−D+2)(n−D+3)
(D−1)D −

(c− 1) > 0. �

Remark 5. For an application of the XL-algorithm to a system with m = n
quadratic equations, one can easily see with Propositions 2 and 4 and (12) that
one always has χ(D) ≥ 2n, and for m = n + 1 quadratic equations, one has
Dmin ≥ n + 1. Both these results are consistent with conjectures in [7].

5 The Maximal Rank Conjecture

The maximal rank conjecture (MR-conjecture) which we now state can be thought
to be a (potential) generalization of Proposition 3.

Conjecture. Let K be a field of characteristic 0, and let G1, . . . , Gm−1, Gm = G
be a generic system of forms in R = K[X0, . . . ,Xn], where G has degree d. Let
J := (G1, . . . , Gm−1) � R. Then for all D ∈ N0 the multiplication map

G· : (R/J)D −→ (R/J)D+d, F �→ G · F

has maximal rank, that is it is injective if dimK((R/J)D) ≤ dimK((R/J)D+d)
and it is surjective if dimK((R/J)D) ≥ dimK((R/J)D+d).

The XL-Algorithm and a Conjecture from Commutative Algebra 333

This conjecture – which is also known under the name “Fröberg’s Conjecture”
– can (in an equivalent formulation) be found in [10]. It is also stated in Sect. 4
of the informative overview article [16]. (Note however that the formulations at
the beginning of Sect. 4 of [16] are a bit vague.) Interesting facts about this and
related conjectures can be found in [15].

The conjecture is known to hold if one of the following five conditions is
satisfied: m ≤ n + 1 (see Proposition 3), n = 1, n = 2, m = n + 2, D =
minj{deg(Gj)}+ 1 (see [10–3.2.] and the citations in [16–Sect. 4]).

The conjecture is equivalent to the statement that

χR/(J,G)(D) = max{χR/J(D)− χR/J(D − d) , 0}

as one can easily see (cf. [16–Sect. 4]). (Here, we set χR/J(i) = 0 for i < 0.)
Obviously, if χR/(J,G)(D) = 0, then χR/(J,G)(D′) = 0 for all D′ > D. Using

this fact, the conjecture can be reformulated via Hilbert series as:

HR/(I,G) = |(1− T d)HR/I | , (14)

where for some power series p(T) with integer coefficients, |p(T)| denotes the
power series q(T) =

∑
i qiT

i, where

qi = pi if pj > 0 for all j ≤ i
0 if pj ≤ 0 for some j ≤ i .

Assumption. From now on, we assume that the maximal rank conjecture is
valid.

Let K be a field of characteristic 0, let G1, . . . , Gm be a generic system of
forms in R, and let dj := deg(Gj). Let I := (G1, . . . , Gm). Using (13), (14) and
Lemma 5 in Appendix C, we have

HR/I =

∣∣∣∣∣
∏m

j=1(1− T dj)
(1− T)n+1

∣∣∣∣∣ . (15)

Definition 5. (see [16]) We call the right-hand side of the above equation the
expected Hilbert series of a generic algebra of type (n + 1;m; d1, . . . , dm).

Proposition 2 implies:

Proposition 7. Let K be any field (of any characteristic), and let F1, . . . , Fm ∈
R = K[X0, . . . ,Xn] be forms of degree d1, . . . , dm (not necessarily generic). Let
He be the corresponding expected Hilbert series. Let I := (F1, . . . , Fm). Then we
have the coefficient-wise inequality

HR/I ≥ He .

Together with (12), this proposition has the following implication for the
original XL-algorithm.

334 C. Diem

Theorem 1. Let K be any field, let f1, . . . , fm be non-trivial polynomials in
K[X1, . . . ,Xn] with degrees d1, . . . , dm. Let D ∈ N, and let χ(D) be defined as in
(9). Then χ(D) is greater-or-equal to the Dth term of the expected Hilbert series
of a generic algebra of type (n + 1;m; d1, . . . , dm).

By Proposition 1, this theorem has the following corollary which can be used
to analyze the reduced XL-algorithm.

Corollary 1. With the notations of the theorem, let K = Fq, and let χred(D)
be defined as is (10). Then χred(D) is greater-or-equal to the Dth term of the ex-
pected Hilbert series of a generic algebra of type (n+1;m+n; d1, . . . , dm, q, . . . , q).

Remark 6. Let Dn,m be the degree of the expected Hilbert series of a generic
algebra of type (n + 1;m; 2, . . . , 2). One can use the methods presented in [2–
Sect. 5] to study asymptotic behaviors of Dn,m. A corresponding study is carried
out in [3]. One obtains Dn,n+c ∼ n

2 for any fixed c ≥ 2 and n −→ ∞. (More
precise results for various small c can also be found in [3].) For a fixed α > 1, a
reformulation of a result in [3] gives Dn,αn ∼ (α−

√
α2 − α− 1

2) ·n for n −→∞.
For example, one has Dn,2n ∼ C · n with C = 3

2 −
√

2 ≈ 0.0858 (which is
consistent with the “Comparison with 2n equations over Q” on page 13 of [2]).

Acknowledgment

I thank G. Böckle, T. Bröcker, C. Cid, A. Conca, G. Frey, S. Galbraith, J. Herzog,
J. Scholten, A. Wiebe and B.-Y. Yang for discussions. I am particularly in debt
to J. Herzog and A. Wiebe for pointing out the “maximal rank conjecture” to
me.

Support by the IST Programme “Ecrypt” of the European Union is gratefully
acknowledged.

References

[1] M. Atiyah and I. Macdonald. Introduction to Commutative Algebra. Addison-
Wesley, Reading, 1969.

[2] M. Bardet, J.-C. Faugère, and B. Salvy. Complexity of Gröbner basis computations
for Semi-regular Overdetermined sequences over F2 with solutions in F2. INRIA
Rapport de recherche No. 5049, 2003.

[3] J.-M. Chen and B.-Y. Yang. All in the XL Familiy: Theory and Practice.
manuscript from June 2004.

[4] J.-M. Chen and B.-Y. Yang. Theoretical Analysis of XL over Small Fields.
In H. Wang, J. Pieprzyk, V. Varadharajan, editors, Information Security and
Privacy, volume 3108 of LNCS, pages 277-288, Springer-Verlag, Berlin, 2004.

[5] N. Courtois. Higher Order Correlation Attacks, XL algorithm, and Cryptanalysis
of Toyocrypt. In P.J. Lee, C.H. Lim, editors, Advances in Cryptology — ICISC
02, volume 2587 of LNCS, pages 182–199, Springer-Verlag, Berlin, 2002.

[6] N. Courtois, A. Klimov, J. Pararin, and A. Shamir. Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. ”extended
version”, available under http://www.minrank.org/xlfull.pdf (as of August 24,
2004).

The XL-Algorithm and a Conjecture from Commutative Algebra 335

[7] N. Courtois, A. Klimov, J. Pararin, and A. Shamir. Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In B. Preneel,
editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807 of LNCS,
pages 392–407. Springer-Verlag, Berlin, 2000.

[8] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Y. Zheng, editor, Advances in Cryptology — ASIACRYPT
2002, volume 2501 of LNCS, pages 267–287. Springer-Verlag, Berlin, 2002.

[9] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry.
Springer-Verlag, New York, 1995.

[10] R. Fröberg. An inequality for Hilbert series of graded algebras. Math. Scand.,
56:117–144, 1985.

[11] D. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, 1973.
[12] H. Matsumura. Commutative Ring Theory. Cambridge University Press, Cam-

bridge, UK, 1986.
[13] T. Moh. On the method of ”XL” and its inefficiency to TTM. manuscript from

January 28, 2000, available under http://eprint.iacr.org/2001/047.
[14] S. Murphy and M.J.B. Robshaw. Essential algebraic structure within the AES.

In M. Yung, editor, Advances in Cryptology — CRYPTO 2002, pages 1–16, 2002.
[15] K. Pardue. Generic Sequences of Polynomials. manuscript from March 30, 2000.
[16] G. Valla. Problems and Results on Hilbert Polynomials of Graded Algebras. In

J. Elas and J. Giral, editors, Six Lectures on Commutative Algebra, volume 166 of
Progress in Mathematics. Birkhäuser, Basel, 1996.

A On the Connection Between the Original and
the Reduced XL-Algorithm

The purpose of this section is to prove Proposition 1.
As in Proposition 1, let K = Fq. Let

VD := 〈
k∏

�=1

Xi�
· (Xq

i −Xi) with k + q ≤ D〉K ≤ K[X1, . . . ,Xn]≤D .

Lemma 1. Let U be any K-vector subspace of K[X1, . . . ,Xn]≤D. Then we have
a short exact sequence

0 −→ U ∩ VD −→ U −→ U red −→ 0 .

Proof. It is obvious that U∩VD is contained in the kernel of (. . .)red. The converse
follows from the following lemma. �

Lemma 2. Let f ∈ K[X1, . . . ,Xn]. Then there exist polynomials p1, . . . , pn of
degree ≤ deg(f)− q with

f = p1 · (Xq
1 −X1) + · · · pn · (Xq

n −Xn) + f red .

336 C. Diem

Proof. By the linearity of (. . .)red, it suffices to prove the statement for mono-
mials, and for monomials it is obvious by the very definition of (. . .)red. �

Let us use the definitions of Sect. 3.
We have by Lemma 1

(K[X1, . . . ,Xn]≤D)red % K[X1, . . . ,Xn]≤D/VD ,

(UD)red % UD/(UD ∩ VD) % (UD + VD)/VD % ŨD/VD ,

thus

(K[X1, . . . ,Xn]≤D)red/(UD)red % (K[X1, . . . ,Xn]≤D/VD)/(ŨD/VD)
% K[X1, . . . ,Xn]/ŨD .

This implies:

χred(D) = dimK((K[X1, . . . ,Xn]≤D)red/(UD)red)
= dimK(K[X1, . . . ,Xn]≤D/ŨD) = χ̃(D) .

B Hilbert Series of Generic and Arbitrary Algebras

The purpose of this section is to prove Proposition 2. Let us before we come to
the proof state two lemmata.

Lemma 3. Let A be a domain with quotient field Q. Let K be a field and let
ϕ : A −→ K be a homomorphism, and let Φ : A[X0, . . . ,Xn] −→ K[X0, . . . ,Xn]
be the canonical extension of ϕ. Let I � A[X0, . . . ,Xn] be a homogeneous ideal
(that is, an ideal generated by homogeneous polynomials). Then we have the
coefficient-wise inequality

HK[X0,...,Xn]/(Φ(I)) ≥ HQ[X0,...,Xn]/(I) .

Proof. Let D ∈ N0. The map ϕ : A −→ K induces a canonical map

(A[X0, . . . ,Xn]/I)D −→ (A[X0, . . . ,Xn]/I)D ⊗A K
% (A[X0, . . . ,Xn]/I ⊗A K)D % (K[X0, . . . ,Xm]/(Φ(I)))D.

This implies that
χK[X0,...,Xn]/(Φ(I))(D)

= dimK((A[X0, . . . ,Xn]/I)D ⊗A K)
≥ dimQ((A[X0, . . . ,Xn]/I)D ⊗A Q) by Lemma 4 below
= dimQ((Q[X0, . . . ,Xn]/(I))D)
= χQ[X0,...,Xn]/(I)(D) .

Lemma 4. Let A be a domain with quotient field Q, and let M be a finitely
generated A-module. Let K be a field and let ϕ : A −→ K be a homomorphism.
Then

dimK(M ⊗A K) ≥ dimQ(M ⊗A Q) .

The XL-Algorithm and a Conjecture from Commutative Algebra 337

Proof. Let m be the kernel of ϕ. Then M ⊗A K % Mm ⊗Am K and M ⊗A Q %
Mm ⊗Am Q. We can thus assume that A is a local ring with maximal ideal
m = ker(ϕ). As the dimension of a vector space is stable under base-change, we
can further assume that ϕ is surjective. Now if m1, . . . ,mr form modulo m a
basis of M ⊗A K over K then by Nakayama’s Lemma ([9–Corollary 4.8]) they
generate the A-module M , thus they generate M ⊗A Q over Q. �

Proof of Proposition 2. We keep the notations of the proposition. The propo-
sition follows from Lemma 3 applied to the multivariate polynomial ring A =
Z[{a(j)

i }], the ideal I = (G1, . . . , Gm), where G1, . . . , Gm with Gj =
∑

i a
(j)
i Xi

and deg(Gj) = dj is a generic system of forms, and the specialization homomor-
phism ϕ : A −→ K sending a

(j)
i to the corresponding coefficient of Fj . (Note

that the quotient field of A is Q({a(j)
i }) which has characteristic 0.) �

C A Lemma on Power Series

The following lemma generalizes [10–Lemma 4]. For the convenience of the
reader, we include a proof.

Lemma 5. Let p(T) be a power series with integer coefficients, let d ∈ N. Then

|(1− T d)p(T)| = |(1− T d)|p(T)|| .
Proof. Note that ((1− T d)p(T))i = pi for i < d and ((1− T d)p(T))i = pi− pi−d

for i ≥ d.
Thus the coefficients whose index is < d of both sides agree. Furthermore, if

pi < 0 for some i < d, then both sides are equal.
Let us assume that for all i = 0, . . . , d− 1, we have pi > 0.
If now for all i we have pi−pi−d > 0, then we also have pi > 0 for all i as can

easily be seen by induction on i. In this case, both sides agree with (1−T d)p(T).
Assume that this is not the case and let a be the least natural number for

which pa − pa−d ≤ 0.
Then for each i < a, we have pi > 0 again by induction on i.
There are two cases: Either pa > 0. Then |p(T)|a−|p(T)|a−d = pa−pa−d < 0

by definition of a. Or pa ≤ 0. Then |p(T)|a − |p(T)|a−d = −pa−d < 0.
We conclude that for i ≤ d− 1, the i-th coefficient of both sides agrees with

pi, for d < i < a, the i-th coefficient of both sides agrees with pi − pi−d, and for
i ≥ a, the i-th coefficient of both sides is 0. �

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT.

The information in this document reflects only the author’s views, is provided
as is, and no guarantee or warranty is given that the information is fit for any
particular purpose. The user thereof uses the information at its sole risk and
liability.

Comparison Between XL and
Gröbner Basis Algorithms

Gwénolé Ars1, Jean-Charles Faugère2, Hideki Imai3,
Mitsuru Kawazoe4, and Makoto Sugita5

1 IRMAR, University of Rennes 1,
Campus de Beaulieu 35042 Rennes, France

gwenole.ars@univ-rennes1.fr
2 LIP6/CNRS/INRIA, University of Paris VI,

8 rue du Capitaine Scott Paris 75015 Paris, France
Jean-Charles.Faugere@lip6.fr

3 Institute of Industrial Science, University of Tokyo,
4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan

imai@iis.u-tokyo.ac.jp
4 Department of Mathematics and Information Sciences, Osaka Prefecture University,

1-1 Gakuen-cho Sakai Osaka 599-8531, Japan
kawazoe@mi.cias.osakafu-u.ac.jp

5 IT Security Center, Information-technology Promotion Agency, Japan
2-28-8 Honkomagome, Bunkyo-ku Tokyo, 113-6591, Japan

m-sugita@ipa.go.jp

Abstract. This paper compares the XL algorithm with known Gröbner
basis algorithms. We show that to solve a system of algebraic equations
via the XL algorithm is equivalent to calculate the reduced Gröbner basis
of the ideal associated with the system. Moreover we show that the XL
algorithm is also a Gröbner basis algorithm which can be represented as
a redundant variant of a Gröbner basis algorithm F4. Then we compare
these algorithms on semi-regular sequences, which correspond, in con-
jecture, to almost all polynomial systems in two cases: over the fields F2

and Fq with q � n. We show that the size of the matrix constructed by
XL is large compared to the ones of the F5 algorithm. Finally, we give
an experimental study between XL and the Buchberger algorithm on the
cryptosystem HFE and find that the Buchberger algorithm has a better
behavior.

Keywords: Multivariate polynomial equations, Algebraic attacks, Solv-
ing Systems, Gröbner basis, XL algorithm, Semi-regular Sequences.

1 Introduction

Algebraic attacks are among the most efficient attacks for public key cryptosys-
tems, block ciphers and stream ciphers. They try to recover a secret key by
solving a system of algebraic equations. Algebraic attacks were first applied to
Matsumoto-Imai Public Key Scheme in [19] by Jacques Patarin and a similar

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 338–353, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Comparison Between XL and Gröbner Basis Algorithms 339

attack was also applied in [15]. Algebraic attacks were also applied to block
ciphers in [6], where the complexity for attacking AES and Serpent was evalu-
ated. Moreover, algebraic attacks were applied to stream cipher in [7], [8], [9]
and improved in [1].

As a general method to solve a system of algebraic equations, we know
Gröbner basis algorithms. The fastest of such algorithms previously known are
the F4 and F5 algorithms introduced in [11] and [12], respectively.

The XL algorithm was proposed as an efficient algorithm for algebraic at-
tacks. It was first introduced in [20] and applied to an attack for HFE which is
an improved version of Matsumoto-Imai Public Key Scheme. It was improved
in [5]. As stated in [20], in cryptographic scheme, a system of algebraic equa-
tions we are interested in has a unique solution over its defining field. The XL
algorithm was proposed as a powerful technique to solve such special systems.
In [20], it was stated that the XL algorithm does not try to calculate a whole
Gröbner basis and therefore it should be more efficient.

Recently, by using the algorithms F4 and F5, 80-bit HFE were first cryptana-
lyzed in [14], whereas the XL algorithm was not applicable to 80-bit HFE. Time
results with an implementation under Magma are presented on A. Steel’s web
page (http://magma.maths.usyd.edu.au/users/allan/gb/). As we stated above,
the F4 and F5 algorithms are Gröbner basis algorithms. Why did algebraic crypt-
analysis based on these Gröbner basis algorithms exceed XL? We give an answer
for this question in this article.

In this paper we clarify a relation between the XL algorithm and Gröbner ba-
sis algorithms. Moreover, we study the XL algorithm on semi-regular sequences,
which correspond, according to a conjecture in a report [3], to almost all overde-
fined polynomial systems, and on the cryptosystem HFE.

More precisely, we show the following:

1. The XL algorithm does not introduce explicitly a monomial ordering. But
we have proved that if the XL algorithm terminates, it will also terminate
with a lexicographic ordering.

2. To solve a system of algebraic equations whose solution in a given finite field
is unique amounts to nothing but to calculate the reduced Gröbner basis for
the ideal associated with that system.

3. By 2, the XL algorithm is actually a Gröbner basis algorithm. Moreover it
is essentially the same as the one treated in [17] and can be viewed as a
redundant variant of a Gröbner basis algorithm F4.

4. We study the XL algorithm on semi-regular sequences.
On F2, that the degree D of the parameter needed for the XL algorithm is
almost the same as the degree of the polynomials in the matrix constructed
by the F5 algorithm. But the complexity of these two algorithms is specified
by the size of the matrix: for example, for a quadratic multivariate polynomi-
als with n = 128 and m = 130, both algorithms reached the same degree 17
and the matrices generated by the XL algorithm will have about 170× 1020

rows and 6× 1020 columns compared to squared matrices with only 6× 1020

rows and columns for the F5 algorithm.

340 G. Ars et al.

On the field Fq, with q very large compared to n, we show the XL algo-
rithm terminates for a degree higher than Gröbner basis algorithms with a
DRL order. Then it is obvious that XL matrices are huge compared to F5
matrices.

5. We complete this study on generic systems with a comparison of the XL
algorithm and the Buchberger algorithm for a cryptosystem HFE. For this
cryptosystem, a Gröbner basis algorithm finds a structure in the multivariate
systems and never exceeds a low degree, whereas, for the XL algorithm, the
degree seems to still increase with the number of variables n.

The XL algorithm was proposed to be a more efficient algorithm to solve a
system of equations under a special condition without trying to calculate a whole
Gröbner basis. But our results imply that the XL algorithm is not so efficient as
it was expected to be.

In Section 2, we recall the description of the XL algorithm. In Section 3,
we give an overview of the theory of Gröbner bases. In Section 4, we clarify a
relation between the XL algorithm and the F4 algorithm. In Section 5, we study
the behavior of the XL algorithm on semi-regular sequences. In Section 6, we
give experimental results on HFE systems and in Section 7, we conclude this
report.

2 The Basic Principle of XL

The XL algorithm is given as an algorithm which solves systems of quadratic
equations having a solution in kn for a finite field k = Fq. Let A be a system
of multivariate equations fj = 0, (1 ≤ j ≤ m) for fj ∈ k[x] := k[x1, . . . , xn].
We denote the ideal generated by all fj in A by IA. Then, XL is described as
follows [20].

Algorithm 1 (The XL Algorithm). For a positive integer D, execute the
following steps:

1. Multiply: Generate all the products
∏r

j=1 x�j
∗fi ∈ IA with r ≤ D−2 and

total degree ≤ D.
2. Linearize: Consider each monomial in the xi of degree ≤ D as a new variable

and perform the Gaussian elimination on the equations obtained in Step 1.
The ordering on the monomials must be such that all the terms containing
one variable (say x1) are eliminated last.

3. Solve: Assume that step 2 yields at least one univariate equation in the
powers of x1. Solve this equation over the finite fields (e.g., with Berlekamp’s
algorithm).

4. Repeat: Simplify the equations and repeat the process to find the values of
the other variables.

In the original definition of the XL algorithm in [20], only quadratic equations
are treated. If we change the condition ”with r ≤ D − 2 and total degree ≤ D”

Comparison Between XL and Gröbner Basis Algorithms 341

in Step 1 to ”with r ≤ D − deg(fi)”, we can apply XL to a system of equations
including a non-quadratic equation. Note that this change does not contradict
the original XL setting when a system of equations consists of quadratic equa-
tions. So hereafter, we use this generalized version in order to work in general
case.

Remark 1. We can replace Step 1 of the XL algorithm by considering f∗
i the

homogenization of fi: f∗
i = Zdf(x1

Z , . . . , xn

Z) ∈ k[x,Z] and products mf∗
i with m

a monomial with degree D−deg(f∗
i). All the computation is exactly the same. So

the behavior of XL is the same on the homogenization of the system A as on A.
We will use this remark on section 5, and for more properties of homogenization,
we refer to [4].

3 Gröbner Basis and Some Algorithms

3.1 Basic Notation and Definitions

Let k[x] = k[x1, . . . , xn] be a polynomial ring with variables x1, . . . , xn over a
field k. For a monomial xα = xα1

1 · · ·xαn
n , |α| :=

∑n
i=1 αi is called the total degree

of this monomial. In the following, the set of all monomials in variables x1, . . . , xn

is denoted by M(x1, · · · , xn), or simply by M . In the theory of Gröbner bases,
we need to consider a monomial ordering (cf. [10]). One of such ordering is the
degree reverse lexicographical order (DRL) defined as follows:

Definition 1 (cf. [14]). For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn
≥0, We say

xα >DRL xβ if |α| =
∑n

i=1 αi > |β| =
∑n

i=1 βi, or |α| = |β| and the right-most
nonzero entry of the vector α− β ∈ Zn is negative.

There are many monomial orderings. We choose one of such orderings on T
and write it as <.

A nonzero polynomial f in k[x] is written as f =
∑

α cαxα, cα �= 0. We use
the following notations:

T (f) = {c(α1,··· ,αn)x
α1
1 · · ·xαn

n | c(α1,··· ,αn) �= 0} : the set of terms of f
M(f) = {xα1

1 · · ·xαn
n | c(α1,··· ,αn) �= 0} : the set of monomials of f

We denote the total degree, the leading term, the leading coefficient and the
leading term with respect to <, by deg(f), LM(f), LC(f) and LT(f) respectively.
(For each definition, see [10].)

The ideal in k[x] generated by a subset F is denoted by 〈F 〉. We also denote
by 〈I1, . . . , In〉 the minimal ideal containing ideals I1, . . . , In.

Under the above notation, a Gröbner basis is defined as follows.

Definition 2. Let M be the set of all monomial of k[x] with a fixed ordering.
A finite subset G = {g1, . . . , gm} of an ideal I is called a Gröbner basis if

〈LT(g1), . . . ,LT(gm)〉 = 〈LT(I)〉.

For a given ideal I, its Gröbner basis is not unique. But the reduced Gröbner
basis, which is defined as follows, is uniquely determined.

342 G. Ars et al.

Definition 3. A Gröbner basis G = {f1, . . . fm} of an ideal I is called reduced
Gröbner basis if for all i, LC(fi) = 1 and any monomial of fi is not divisible by
any element of LM(G\{fi}).

3.2 The Buchberger Algorithm

An algorithm which calculates a Gröbner basis is called a Gröbner basis algo-
rithm. The Buchberger algorithm is one of them.

Definition 4. Let f, g ∈ k[x] be nonzero polynomials. The S-polynomial of f
and g is the combination

S(f, g) := LC(g)
lcm(LM(f),LM(g))

LM(f)
f − LC(f)

lcm(LM(f),LM(g))
LM(g)

g.

For a finite set G of polynomials in k[x] and a polynomial f ∈ k[x], we denote
by f̄G, a remainder of f on division by G. (For the definition of division by a
finite set of polynomials, see [10] for example.)

Theorem 1. A basis G = {g1, . . . gm} of an ideal I in k[x] is a Gröbner basis

if and only if for all pairs i �= j, S(gi, gj)
G

= 0.

As a result of Theorem 1, we have the The Buchberger algorithm:

Algorithm 2 (The Buchberger Algorithm).

Input: an ordered set F = (f1, . . . , fm) in k[x]
Output: a Gröbner basis G = {g1, . . . , gs} for I = 〈f1, . . . , fm〉 with F ⊂ G
G := F
Repeat

H := G
For each pair (p, q), p �= q in H,

If S := S(p, q)
H �= 0, Then G := G ∪ {S}

Until H=G

We remark that the reduced Gröbner basis is calculated in a finite number
of steps from a Gröbner basis.

3.3 Some Other Algorithms

D. Lazard in the articles [17] describes a relationship between the method of the
computation of Gröbner bases and the one based on Gaussian Eliminations on
matrix for the systemA. Moreover there are some other Gröbner basis algorithms
based on Gaussian elimination: F4 [11], FGLM [13] and F5 [12]. We explain now
the relationship between polynomials and matrices.

For a system A of equations fj = 0 (j = 1, 2, . . . ,m), let us consider a finite
list G = (g1, . . . , gm) of elements of the ideal generated by fj , the ordered set
MG = [t1, . . . , tl] of monomials of all gi with respect to a fixed order <. A matrix
A whose (i, j)-entry is given as the coefficient of tj in gi is called the coefficient

Comparison Between XL and Gröbner Basis Algorithms 343

matrix of G. Note that tG = A tMG where tG and tMG mean the transpose of
each. Let Ã be the row echelon form of A obtained by using elementary row
operations in a standard linear algebra1. Then we call G̃ given by tG̃ := Ã tMG

the row echelon basis of G. When we take the reduced row echelon form of G,
we say G̃ the reduced row echelon basis of G (In [11], this is called the row
echelon basis). Calculation of the reduced row echelon basis is an essential part
of F4.

4 Relation Between XL and Gröbner Basis Algorithms

4.1 The Choice of a Monomial Ordering

To compare the XL algorithm with Gröbner basis algorithms, we need to give
an explicit monomial ordering for XL. As the XL algorithm does not give an
explicit monomial ordering, we need to introduce the following lemma :

Lemma 1. Let A be a system of m multivariate equations with n variables.

XL terminates for a degree D ⇐⇒ XL terminates for a degree D
with the Lexicographic ordering

Proof. Let be M (respect. M ′) the coefficient matrix of the list {(
∏k

j=1 xij
)∗fi}

with k ≤ D − deg(fi) for XL (respect. with the Lexicographic ordering). So we
can write M =

(
A B

)
and M ′ =

(
A′ B′) such that B (respect. B′) corresponds

to the columns for the univariate monomials. Moreover M ′, A′ and B′ are only
column permutations of M , A and B.

If XL terminates for a degree D, it means that rank(M) > rank(A). Then
rank(M ′) > rank(A′) and then XL will find an univariate polynomial with the
lexicographic ordering. �

4.2 Pre-assumption of the XL Algorithm

Let k = Fq be a finite field with q elements and let A be a system of multivariate
equations fj = 0 (1 ≤ j ≤ m) where fj ∈ k[x1, . . . , xn]. As stated implicitly in
the introduction of [20], XL was proposed to be an efficient algorithm to solve a
system of multivariate equations satisfying the following condition.

Condition 1. The system A has only one solution (x1, . . . , xn) = (a1, . . . , an)
in kn. (i.e. A has a solution (a1, . . . , an) in kn and no other solution in kn.)

Note that the system A under Condition 1 can have another solution in Kn

for some extension field K(�= k) of k. To determine the solution in kn, we need
extra equations xq

i − xi = 0 (i = 1, . . . , n). Thus the ideal we have to consider is
generated by fj (j = 1, . . . ,m) and xq

i − xi (i = 1, . . . , n). We denote this ideal
by ĨA. Then we have the following important theorem.

1 This procedure is so-called the Gaussian elimination.

344 G. Ars et al.

Theorem 2. Let A be a system of multivariate equations fj = 0, j = 1, 2, . . . ,m
in k[x1, . . . , xn] with k = Fq. Let ĨA be the ideal 〈f1, . . . , fm, xq

1−x1, . . . , x
q
n−xn〉.

Then a solution (x1, . . . , xn) = (a1, . . . , an) ∈ kn of A is unique in kn if and
only if ĨA = 〈x1 − a1, . . . , xn − an〉.

Proof. If (x1, . . . , xn) = (a1, . . . , an) is a unique solution in kn of A, ĨA ⊂
〈x1 − a1, . . . , xn − an〉 and (a1, . . . , an) is a unique solution in k̄n of a system
which consists of fj = 0 (j = 1, . . . ,m) and xq

i − xi = 0 (i = 1, . . . , n) for an
algebraic closure k̄ of k because xq

i − xi = 0 has solutions only in k. Then from
Hilbert’s Nullstellensatz (cf. [10]), for each i = 1, . . . , n, there exists a positive
integer �i such that (xi−ai)�i ∈ ĨA. Since xi−ai = gcd(xq

i−xi, (xi−ai)�i) ∈ ĨA,
we have ĨA = 〈x1 − a1, . . . , xn − an〉. For the converse, it is obvious. �

By this theorem, Condition 1 is equivalent to the following condition.

Condition 2. The reduced Gröbner basis with respect to DRL of the ideal
ĨA = 〈f1, . . . , fm, xq

1 − x1, . . . , x
q
n − xn〉 is {x1 − a1, . . . , xn − an}.

Thus the problem to solve A defined over k = Fq under the Condition 1
coincides with the problem to calculate the reduced Gröbner basis of the ideal
generated by equations in A and field equations xq

i −xi = 0 under the Condition
2, which is not a new problem. In particular, if the XL algorithm can solve
a system A of algebraic equations over Fq under the Condition 1, it actually
computes the reduced Gröbner basis of the ideal ĨA.

4.3 Relation Between XL and the F4 Algorithm

We use the same notation as in (3.1). Here we show the XL algorithm gives
a Gröbner basis algorithm which can be viewed as a redundant variant of the
F4 algorithm. (For the description of the original F4, see [11].) To give such a
description, we need the following definition.

Definition 5. (1) A critical pair of two polynomials (fi, fj) is an element of
M2 × k[x]×M × k[x], Pair(fi, fj) := (lcmij , ti, fi, tj , fj) such that

lcm(Pair(fi, fj)) = lcmij = LM(tifi) = LM(tjfj) = lcm(LM(fi),LM(fj)).

(2) For a critical pair pij = Pair(fi, fj), deg(lcmij) is called the degree of pij

and denoted by deg(pij). Let P be a list of critical pairs. For p = Pair(f, g) ∈ P
and d ∈ N, we define two functions XLLeft(p, d) = {(t, f)|t ∈M,deg(t∗f) ≤ d},
and XLRight(p, d) = {(t, g)|t ∈ M,deg(t ∗ g) ≤ d}. We write XLLeft(P, d) =⋃

p∈P XLLeft(p, d) and XLRight(P, d) =
⋃

p∈P XLRight(p, d).

For a list of critical pairs P and a positive integer d ∈ N, we set

Sel(P, d) := {p ∈ P | deg(lcm(p)) ≤ d}.

Now we give an F4-like description of the XL algorithm.

Comparison Between XL and Gröbner Basis Algorithms 345

Algorithm 3 (The XL Algorithm).

Input:
{
F : a finite subset of k[x]
Sel : fixed as above.

Output: a finite subset of k[x].
G := F , F̃+

0 := F and d := 0
P := {Pair(f, g)|f, g ∈ G with f �= g}
While P �= φ Do

d := d + 1
Ld := XLLeft(P, d) ∪XLRight(P, d)
Pd := Sel(P, d)
P := P \ Pd

F̃+
d := Reduction(Ld)

For h ∈ F̃+
d Do

P := P ∪ {Pair(h, g)|g ∈ G}
G := G ∪ {h}

Return G

Reduction
Input: a finite subset L of M × k[x]
Output: a finite subset of k[x] (possibly an empty set).

F := Symbolic Preprocessing(L)
F̃ := Reduction to Row Echelon Basis of F w.r.t. <
F̃+ := {f ∈ F̃ |LM(f) �∈ LM(F)}

Return F̃+

Symbolic Preprocessing
Input: a finite subset L of M × k[x]
Output: a finite subset of k[x]

F := {t ∗ f | (t, f) ∈ L}
Return F

Remark 2. In the original description of XL, it seems that the bound D is taken
globally at once. However, to implement XL, there seems to be the following
four ways to realize the process determining the optimal value of D. Let A be a
system of equations you want to solve. Then each way is described as follows.

1. Begin with D = 1. Do XL described as in Definition 1 for A. If you cannot
obtain the solution, set D := D+ 1 and do XL again for A with the new D.

2. Begin with D = 1. Iterate ’Multiply’ and ’Linearize’ described as in Def-
inition 1 for A by adding new equations obtained by ’Linearize’ to A. If
you cannot solve the resulting system, then return to the original A, set
D := D + 1 and iterate the same procedure as for D = 1. Repeat until you
obtain the solution.

3. Begin with D = 1. Do XL described as in Definition 1 for A. If you cannot
obtain the solution, then set D := D + 1, replace A by the resulting system
obtained by ’Linearize’ in the previous XL and do XL again for the new A
and D. Repeat until you obtain the solution.

346 G. Ars et al.

4. Begin with D = 1. Iterate ’Multiply’ and ’Linearize’ described as in Defini-
tion 1 for A by adding new equations obtained by ’Linearize’ to A. If you
cannot solve the resulting system A′, then replace A by A′, set D := D + 1
and iterate the same procedure as for D = 1. Repeat until you obtain the
solution.

The first two processes are slightly different from the others. The degree
reached for the third and the fourth ones can be lower than the degree of the
others. The Gaussian elimination of polynomials with degree D can give poly-
nomials with lower or equal to D − 1. For example, let us consider the sys-
tem x2

2 + x3 = 0, x1x2 − x2 = 0, x3
3 + x1 = 0. For D = 3, the polynomial

x3x1 − x3 = (x1 − 1)(x2
2 + x3) − x2(x1x2 − x2) appear in resulting system ob-

tained by ’Linearize’, and then for D = 4, the third and fourth methods find the
univariate polynomial x2

1 − x1 = (x1 − 1)(x3
3 + x1) − x2

3(x3x1 − x3). Whereas,
the two first methods need a degree D = 5 to find this polynomial because
x2

1 − x1 = (x1 − 1)(x3
3 + x1)− (x2

3x1 − x2
3)(x

2
2 + x3) + x2

3x2(x1x2 − x2).
In the above description of XL, we take the third one. You may take one of

the other three realizations but the rest of our result holds for all of them. We
should remark that XL taking D as in the first one is essentially the same as
the Gröbner basis algorithm treated in [17].

In the above description of the XL algorithm, we keep some redundancy in the
description to show the similarity to the F4 algorithm. Note that in algebraic
attacks using XL, the input F should be a set of polynomials which comes
from all equations in a given system of equations A whose solution in kn is
unique and all field equations xq

i − xi = 0 for all variables xi. ’Multiply’ in
XL corresponds to the calculation of Ld and ”Symbolic Preprocessing”. And
’linearize’ corresponds to ”Reduction”. Note that, XL in the above description
can be viewed as a redundant variant of F4. This is because XLLeft and XLRight
collect more polynomials and therefore the set of polynomials constructed in
”Symbolic Preprocessing” is much larger than the one in F4. In fact, XL collects
all the products

∏r
j=1 xlj ∗ fi with r ≤ D − deg(fi), whereas F4 collects only

polynomials needed in the Gaussian elimination.
The above description enables us to prove the following theorem.

Theorem 3. Let F be a finite set of polynomials in k[x]. Then Algorithm 3
computes a Gröbner basis G for the ideal 〈F 〉 in k[x] such that F ⊆ G.

Proof. Let d be a positive integer and Gd the set G obtained for that d in the
while-loop. If F̃+

d �= φ, then deg h ≤ d for any h ∈ F̃+
d and hence h ∈ Ld+1 in the

next loop. Then it is obvious that h �∈ F̃+
d+1. Since any g ∈ Gd−1 of deg g ≤ d is

contained in Ld, h �∈ Gd−1 for any h ∈ F̃+
d and hence we have Gd−1 � Gd when

F̃+
d �= φ.

First, we show that Algorithm 3 terminates in a finite number of steps. Sup-
pose that Algorithm 3 does not terminate. Then there is an infinite sequence
(di) of positive integers such that di < di+1 and F̃+

di
�= φ for all i. From the

Comparison Between XL and Gröbner Basis Algorithms 347

above observation, we have an infinite ascending chain Gdi
� Gdi+1 � · · · . But

it contradicts to the fact that the ring k[x] is noetherian.
Now we show the output G of Algorithm 3 is actually a Gröbner basis of 〈F 〉.

Since G =
⋃

d≥0 F̃
+
d and F̃+

d ⊂ 〈F 〉, we have F ⊂ G ⊂ 〈F 〉. The remaining task

is to show S(f, g)
G

= 0 for all f �= g in G. Put d̃ := deg(Pair(f, g)). Then the

S-polynomial S(f, g) is contained in Ld̃ and hence S(f, g)
Gd̃ = 0. In particular,

we obtain S(f, g)
G

= 0. Thus, by Theorem 1, the output G is actually a Gröbner
basis of 〈F 〉. �

5 Semi-regular Sequences

In this section, we try to give a bound on the matrix size of the XL algorithm
compared to the matrix size of the F5 algorithm for most polynomial systems.

5.1 Presentation of Semi-regular Sequences

In the report [3], the notion of semi-regular sequences was presented for overde-
fined systems over the finite field F2 and for affine systems. We have to distin-
guish two important cases for finite fields, F2 and Fq. In the field F2, we have
a criterion deduced from the Frobenius application. If we are interested in a
system A on a field Fq, with q * n, i.e. q is very high compared to n, then the
trivial relation issued from the Frobenius application will not be reached during
computation and all the computation done is similar to computation on Q.

Definition 6.

Homogeneous Semi-regular Sequence: Let f1, . . . , fmbe a sequence of m
homogeneous polynomials (i.e. for all monomial t of fi, deg(t) = deg(fi) in
Rh

n := F2[x1, . . . , xn]/〈x2
1, . . . , x

2
n〉 or Q[x1, . . . , xn]), and I = 〈f1, . . . , fm〉 an

ideal of Rh
n or Q[x1, . . . , xn].

– The degree of regularity of I is the minimal degree d such that {LT (f) | f
∈ I,deg(f) = d} is exactly the set of monomials of degree d in Rh

n, denoted
by Dreg(I).

– f1, . . . , fm is a homogeneous semi regular sequence on F2 if I �= Rh
n and

for i ∈ {1, . . . ,m}, if gifi = 0 in Rh
n/〈f1, . . . , fi−1〉 and deg(gifi) < Dreg(I)

then gi = 0 in Rh
n/〈f1, . . . , fi−1, fi〉.

– f1, . . . , fm is a homogeneous semi regular sequence on Q if I �= Q[x1, . . . ,
xn] and for i ∈ {1, . . . ,m}, if gifi = 0 in Q[x1, . . . , xn]/〈f1, . . . , fi−1〉 and
deg(gifi) < Dreg(I) then gi = 0 in Q[x1, . . . , xn]/〈f1, . . . , fi−1〉.

Affine Semi-regular Sequence: Let f1, . . . , fm be a sequence of m polynomi-
als, and I = 〈f1, . . . , fm〉 an ideal of F2[x1, . . . , xn]/〈x2

1 − x1, . . . , x
2
n − xn〉 or

Q[x1, . . . , xn]. Let fh
i the homogeneous part of the largest degree of fi.

348 G. Ars et al.

– f1, . . . , fm is a semi regular sequence if fh
1 , . . . , f

h
m is a homogeneous semi-

regular sequence.
– the degree of regularity of I is the degree of regularity of 〈fh

1 , . . . , f
h
m〉, de-

noted by Dreg.

With this sequence of polynomials, the matrix generated by the F5 algorithm
has a full rank for the degree d < Dreg. Moreover, all polynomials computed by
F5 have a degree lower or equal to Dreg.

This means that, for semi-regular sequences, the number of rows Hm,n(d)
of the matrix in the homogeneous case, for d < Dreg, is known, and is given
by a recurrence formula Hm,n(d) = Hm−1,n(d) + #{m� monomial of degree d−
dm} − Hm,n(d − dm) with initial conditions Hm,n(d) = 0 if m ≤ 0 or d <
min(deg(fk) | k ≤ m}. Then the number of rows of a matrix for the affine case
is
∑d

d′=1 Hm,n(d′).
The degree Dreg corresponds to the degree d when we will have more rows

than columns for the homogeneous part of the largest degree. It is the minimal
degree such that Hm,n(d) > #{m� monomial of degree d}. If we consider the
series f(y) =

∑
d≥0(Hm,n(d)−#{m� monomial of degree d})yd, the degree Dreg

is given when the coefficient of this series is negative. the expression of f for
quadratic equations is:

(1+y)n

(1+y2)m for F2
(1−y2)m

(1−y)n for Fq, with q * n.

Moreover, in the article [3], the authors have made a conjecture verified on
many computer experiments:

Conjecture 1. almost all polynomial systems are semi-regular sequences.

As the XL algorithm computes for an homogeneous system, we work on
semi-regular sequences such that the homogenization of the sequences is still
semi-regular. With these hypotheses, the conjecture is still true.

If we want to find an univariate polynomial for the original description of
XL, we need to have a number of rows higher than the number of monomials
with degree D minus the number of univariate monomials in X1 (i.e., X1 and 1
for F2 and 1, . . . ,XD

1 , for Fq).
This means that the degree D of the XL algorithm is given when the co-

efficient of this series is negative. the expression of f for quadratic equations
is :

(1+y)n

(1−y)(1+y2)m − 1+y
1−y for F2

(1−y2)m

(1−y)n+1 − 1
(1−y)2 for Fq, with q * n.

5.2 On the Field F2

Figure 1(a) presents a comparison of the degree reached between the XL algo-
rithm and Gröbner basis computation for a variation of the number of variables
n and Figure 1(b) for a variation of the number of equations m.

Comparison Between XL and Gröbner Basis Algorithms 349

(a) (b)

Fig. 1. Behavior of the XL algorithm and the F5 algorithm on F2

With these figures, we do not have a noticeable difference between the degree
reached by the two algorithms. So we can say that for random systems, the
methods of XL and Gröbner basis are almost the same.

For the complexity point of view, if ND is the size of the matrix constructed,
then the whole complexity is the cost of linear algebra on this matrix, which is
Nw

D where w ≤ 3 is the coefficient of linear algebra. The XL algorithm creates
matrices with

∑m
i=1
∑D−deg(fi)

k=0

(
n
k

)
rows and

∑D
k=0

(
n
k

)
columns, whereas F5

creates square matrices with
∑D

k=0

(
n
k

)
columns.

So the number of columns for F5 algorithm matrices is lower or equal to the
one for XL algorithm matrices whereas the number of rows of the matrices con-
structed is very different, Figure 2 presents the number of rows of each matrices
with a logarithm scale. As we can see, the difference between the two curves
gives us a multiplicative constant.

5.3 On the Field Fq, with q Large

Figure 3(a) presents a comparison of the degree reached between the XL algo-
rithm and Gröbner basis computation for a variation of the number of variables
n with m = n + 2 and Figure 3(b) for a variation of the number of equations
m. First we can see that for random polynomials we have always computed a

Fig. 2. Matrices of the XL algorithm and F5 algorithm on F2

350 G. Ars et al.

(a) (b)

Fig. 3. Behavior of the XL algorithm and the F5 algorithm on Fq

Gröbner basis before finding the univariate polynomial for a degree D. More-
over, we can see the behavior of the degree of the XL algorithm does not seem
to follow the formula n√

m
as it was said in [6].

As the complexity is Nw
D , where ND is the size of the matrix constructed and

w the coefficient of linear algebra and the XL algorithm has a higher degree D
than the F5 algorithm, the difference of the size of constructed matrices is very
important. For example, for quadratic multivariate polynomials with n = 128
and m = 130, the XL algorithm reached a degree 66 whereas the F5 algorithm
reached a degree 61. So the matrices generated by the XL algorithm will have
about 94317×1049 rows and 6332×1049 columns compared to squared matrices
with only 8.4× 1049 rows and columns for the F5 algorithm.

For the case m = n, the number of solutions with multiplicity of a random
system with quadratic equations is

∏m
i=1 deg(fi) = 2n, which is the Bezout

bound. So the univariate polynomial has this degree and XL will terminate for
this degree. Whereas, the computation of the Gröbner basis will not exceed
1+
∑n

i=1(deg(fi)−1) = n+1 for any ordering. This computation is done with a
DRL ordering and then we use the FGLM algorithm [13, 10] to find the wanted
ordering.

All this study is still true if D < q and not only for q * n.

6 Example on HFE Systems

In cryptography, the systems studied seem to be random but have a structure
behind them. So we need to make experimental tests on cryptosystems to have
an idea of the efficiency of both algorithms.

Hidden Field Equations (HFE) is an asymmetric cryptosystem. It does not
use the number theory but it is based on multivariate polynomials over a finite
field (cf [18]). The idea of HFE is to take a secret univariate polynomial (the
private key) on an extension of the finite field, then to express this polynomial
on the finite field. We thus obtain an algebraic system (the public key). This
system is composed with polynomials of degree 2.

Comparison Between XL and Gröbner Basis Algorithms 351

(a) on F2 (b) on F16

Fig. 4. Comparison between XL and Gröbner algorithms on HFE

We have implemented the XL algorithm in Magma to test on the examples.
Moreover as the XL algorithm has a better behavior for m > n, we have fixed
some variables to be in the case m = n+ 2. We studied on both cases presented
in section 5, for the field F2, we use secret polynomials with degree 17 and with
degree 24 for the field F16.

With Figure 4(a), we see that the XL algorithm’s maximal degree increases
whereas for Gröbner basis computation, the degree of resolution does not change
and does not exceed 3. In fact, the XL algorithm seems to follow Figure 1(a). So
XL does not seem to find a difference between a random system and the HFE
cryptosystem contrary to Gröbner basis computation.

Figure 4(b) confirms that the Buchberger algorithm is still better than the
XL algorithm on a bigger field for a number of elements higher than 6.

(a) on F2 (b) on F16

Fig. 5. Time comparison between XL and Gröbner algorithms on HFE

We present then time computation on figure 5. For the XL algorithm, the
main part of computation is done in the Gaussian elimination and not in the
other part of the algorithm. As we can see, the Buchberger algorithm has a
better behavior than the XL algorithm.

352 G. Ars et al.

7 Conclusion

In this paper, we compared the XL algorithm with Gröbner basis algorithms.
First, we showed that to solve a system of algebraic equations treated in XL is
equivalent to calculate the reduced Gröbner basis of the ideal associated with
the system. Moreover we showed that the XL algorithm is also a Gröbner basis
algorithm which can be represented as a redundant variant of a Gröbner basis
algorithm F4. Then we compared these algorithms on semi-regular sequences in
two cases: in the fields F2 and Fq with q * n. We showed that the size of the
matrix constructed by XL is huge compared to the ones of F5 algorithm. We
gave an experimental study between XL and Buchberger algorithms on the cryp-
tosystem HFE and found that the Buchberger algorithm had a better behavior.
Our results imply that the XL algorithm is not so efficient as it was expected.

References

1. F. Armknecht, M. Krause, “Algebraic Attacks on Combiners with Memory”,
Crypto 2003, LNCS 2729, pp. 162-176, Springer.

2. G. Ars and J.-C. Faugère. “Comparison of XL and Gröbner Basis Algorithms over
Finite Fields.” , Technical report, INRIA Rocquencourt, 2004.

3. M. Bardet, J.-C. Faugère, and B. Salvy. “Complexity of Gröbner basis computation
for semi-regular sequences over F2 with solutions in F2.” , Technical report, INRIA
Rocquencourt, 2003.

4. T. Becker and V. Weispfenning. “Gröbner Basis : A Computational Approach to
Commutative Algebra”, Springer-Verlag, New York, 1993.

5. N. Courtois, “The security of Hidden Field Equations (HFE)”, Cryptographers’
Track RSA Conference 2001, San Francisco 8-12 April 2001, LNCS 2020, Springer,
pp. 266-281.

6. N. Courtois and J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations”, Asiacrypt 2002, LNCS 2501, Springer.

7. N. Courtois, “Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt”, ICISC 2002, LNCS 2587, Springer.

8. N. Courtois and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear
Feedback”, Eurocrypt 2003, Warsaw, Poland, LNCS 2656, pp. 345-359, Springer.

9. N. Courtois, “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback”,
Crypto 2003, LNCS 2729, Springer.

10. D. Cox, J. Little, and D. O’Shea, “Using Algebraic Geometry”, Springer-Verlag,
New York, 1998.

11. J.-C. Faugère, “A new efficient algorithm for computing Gröbner bases (F4)”,
Journal of Pure and Applied Algebra 139 (1999) pp. 61-88.

12. J.-C. Faugère, “A new efficient algorithm for computing Gröbner basis without
reduction to zero (F5)”, In T. Mora, editor, Proceeding of ISSAC, pages 75-83,
ACM Press, July 2002.

13. J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. “Efficient computation of zero-
dimensional Gröbner bases by change of ordering”. Journal of Symbolic Compu-
tation, 16(4):329–344, 1993.

14. J.-C. Faugère and A. Joux, “Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner bases”, Crypto 2003, LNCS 2729, pp. 44-60,
Springer.

Comparison Between XL and Gröbner Basis Algorithms 353

15. A. Kipnis, J. Patarin, and L. Goubin, ”Unbalanced Oil and Vinegar Signature
Schemes”, Eurocrypt 1999, Springer-Verlag, pp. 216-222.

16. A. Kipnis and A. Shamir, “Cryptanalysis of the HFE Public Key Cryptosystem”,
Proceedings of Crypto’99, Springer-Verlag.

17. D. Lazard, “Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations”, Computer algebra (London, 1983), LNCS 162, pp. 146–156,
Springer.

18. J. Patarin, “Hidden fields equations (HFE) and isomorphisms of polynomials (IP):
Two new families of asymmetric algorithms”, Lecture Notes in Computer Science,
1070:33–48, 1996.

19. J. Patarin, “Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eu-
rocrypt’88”, Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

20. A. Shamir, J. Patarin, N. Courtois, and A. Klimov, “Efficient Algorithms for solv-
ing Overdefined Systems of Multivariate Polynomial Equations”, Eurocrypt’2000,
LNCS 1807, Springer, pp. 392-407.

21. M. Sugita and H. Imai, “Relations between Algebraic Attacks and Gröbner Base
Algorithms”, In The 2004 Symposium on Cryptography and Information Security,
Japan – SCIS 2004, Jan.27–Feb.30, 2004.

22. M. Sugita, M. Kawazoe and H. Imai, “Relation between XL Algorithm and
Gröbner Bases Algorithms”, Cryptology ePrint Archive, Report 2004/112, 2004,
http://eprint.iacr.org/.

Generic Homomorphic Undeniable Signatures

Jean Monnerat� and Serge Vaudenay��

EPFL, Switzerland
http://lasecwww.epfl.ch

Abstract. We introduce a new computational problem related to the
interpolation of group homomorphisms which generalizes many famous
cryptographic problems including discrete logarithm, Diffie-Hellman, and
RSA. As an application, we propose a generic undeniable signature
scheme which generalizes the MOVA schemes. Our scheme is generic in
the sense that we transform a private group homomorphism from public
groups G to H (the order of H being public) into an undeniable signature
scheme. It is provably secure in the random oracle model provided that
the interpolation problem is hard and it offers the advantage of mak-
ing the signature size arbitrarily short (depending on a security level).
We (im)prove some security results from MOVA. We also propose a new
example with complexity similar to RSA and with 3-byte signatures.

1 Introduction

An undeniable signature scheme is similar to a classical digital signature except
that the recipient of a message cannot verify its validity alone: he needs to
interact with the signer in order to be convinced of the validity of the signature.
This opposes to the so called universal verifiability of classical digital signatures
where anybody knowing the signer’s public key is able to verify the signature at
any time. In some applications such as signing a contract, it is desirable to keep
the signer’s privacy by limiting the ability to verify this signature. However, an
undeniable signature does not abandon the non-repudiation property. Indeed,
in case of a dispute, the signer could be compelled by an authority to prove
the invalidity of a signature, otherwise this would be considered as an attempt
of denying a valid signature. An undeniable signature scheme is composed of a
signature generation algorithm, a confirmation protocol to prove the validity of
a signature, and a denial protocol to prove the invalidity of an invalid signature.

Since the invention of the first undeniable signature scheme proposed by
Chaum and van Antwerpen [9], a certain amount of work has been dedicated to
its development and different improvements [5, 7, 8, 11, 12]. Until the proposition

� Supported in part by a grant of the Swiss National Science Foundation, 200021-
101453/1.

�� Supported in part by the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 354–371, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Generic Homomorphic Undeniable Signatures 355

of an undeniable signature scheme based on RSA by Gennaro et al. [15], all
previous undeniable signatures were based on the discrete logarithm problem.
More recently, three undeniable signatures based on different problems have been
proposed. The first one is based on pairings [18], the second one is based on a
quadratic field [4], and the third one (MOVA) is based on characters [19].

In traditional digital signature schemes, the security collapses when the sig-
nature is too short because of universal verifiability: an attacker can try to guess
a signature until it is valid in order to forge it. One advantage of undeniable
signatures is that the security smoothly decreases with the signature length. As
an example, we can think of 20-bit signatures which cannot be forged but with
a probability of success of 2−20. The forger can increase it in an on-line attack,
but this can easily be detected and thwarted. So, undeniable signatures could in
principle be arbitrarily small e.g. as small as a MAC, although no such signatures
were proposed so far except MOVA signatures.

In this paper, we provide a new computational problem called Group Homo-
morphism Interpolation (GHI) problem whose solution consists in finding the
image of a given point under an homomorphism which interpolates some given
points. This generalizes and improves the MOVA scheme based on characters.
Section 2 provides some theoretical results about the GHI problem. Section 3
contains several interactive proof protocols and some related security results that
will be used for our undeniable signature from Section 4. Section 5 is devoted to
a new example and further discussions. Finally, Section 6 concludes.

2 The Group Homomorphism Interpolation Problem

2.1 Problem Definitions

Given two Abelian groups G, H, and S := {(x1, y1), . . . , (xs, ys)} ⊆ G×H, we
say that the set of points S interpolates in a group homomorphism if there exists
a group homomorphism f : G −→ H such that f(xi) = yi for i = 1, . . . , s. We
say that a set of points B ⊆ G×H interpolates in a group homomorphism with
another set of points A ⊆ G×H if A∪B interpolates in a group homomorphism.
We state here the Group Homomorphism Interpolation problem (GHI problem)
and its decisional problem (GHID problem).

S-GHI Problem (Group Homomorphism Interpolation Problem)
Parameters: two Abelian groups G and H, a set of s points S ⊆ G×H.
Input: x ∈ G.
Problem: find y ∈ H such that (x, y) interpolates with S in a group

homomorphism.

S-GHID Problem (GHI Decisional Problem)
Parameters: two Abelian groups G and H, a set of s points S ⊆ G×H.
Input: a point (x, y) ∈ G×H.
Problem: does (x, y) interpolate with S in a group homomorphism?

356 J. Monnerat and S. Vaudenay

We also consider the following problems.

d-MGGD Problem (Modular Group Generation Decisional Problem)
Parameters: an Abelian group G, an integer d.
Input: a set of values S1 = {x1, . . . , xs} ⊆ G.
Problem: does S1 modulo dG span G/dG.

(d, S1)-MSR Problem (Modular System Representation Problem)
Parameters: an Abelian group G, a set S1 = {x1, . . . , xs} ⊆ G, an

integer d.
Input: x ∈ G.
Problem: find a1, . . . , as ∈ Z such that x ∈ a1x1 + · · ·+ asxs + dG.

d-Root Problem (dth Root Problem)
Parameters: an Abelian group G, an integer d.
Input: x ∈ G.
Problem: find r ∈ G such that x = dr.

2.2 Preliminaries

Here is a first straightforward condition to solve the GHID problem.

Lemma 1. Let G, H be two finite Abelian groups. We denote by d the order
of H. The set S = {(x1, y1), . . . , (xs, ys)} ⊆ G × H interpolates in a group
homomorphism if and only if for any a1, . . . , as ∈ Z such that a1x1+ · · ·+asxs ∈
dG we have a1y1 + · · ·+ asys = 0.

Let us now consider uniqueness criteria. We first notice that when the x-
coordinates of points in S modulo dG generate G/dG (hence satisfy the MGGD
problem), then there is at most one interpolating homomorphism. The following
result says that this is a necessary condition as well.

Lemma 2. Let G, H be two finite Abelian groups. We denote d the order of H.
Let x1, . . . , xs ∈ G which span G′. The following properties are equivalent. In
this case, we say that x1, . . . , xs H-generate G.

1. For all y1, . . . , ys ∈ H, there exists at most one group homomorphism f :
G −→ H such that f(xi) = yi for all i = 1, . . . , s.

2. There exists a unique group homomorphism ϕ : G −→ H such that ϕ(xi) = 0
for i = 1, . . . , s, namely ϕ = 0.

3. The set Hom(G/G′,H) of all group homomorphisms from G/G′ to H is
restricted to {0}.

4. gcd(#(G/G′), d) = 1.
5. G′ + dG = G.

Note that the criterion 4 suggests that H is only involved by the prime factors
of its order. In what follows the smallest prime factor p will be important. Note
that if G = H, these criteria mean that x1, . . . , xs generate G.

We can often meet the GHI and GHID problems in cryptography as the
following examples suggest.

Generic Homomorphic Undeniable Signatures 357

Example 1. We take a cyclic group G of order q, H = Zq, and a generator g of
G. The set S = {(g, 1)} interpolates in a unique group homomorphism, and the
GHI problem is exactly the discrete logarithm problem.

Example 2. We take a cyclic group G = H, and a generator g of G. For any
a ∈ Z, S = {(g, ag)} interpolates in a unique group homomorphism: the ex-
ponentiation to the power a. The GHI and GHID problems are exactly the
Diffie-Hellman problem [13] and the Diffie-Hellman Decisional problem.

Example 3. Let n = pq such that p, q are different odd primes and H = {−1,+1}.
We let x1, x2 ∈ Z∗

n be such that x1 is a quadratic residue modulo p and not mod-
ulo q, and that x2 is a quadratic residue modulo q, and not modulo p. We notice
that S = {(x1, 1), (x2,−1)} interpolates in a unique group homomorphism which
is (·/p). Since it is easy to compute (·/n), the quadratic residuosity problem
[16] with the information x1 and x2 is equivalent to the GHI and GHID
problems.

Example 4. Here, we consider the well known RSA cryptosystem [21]. Let n = pq
be an RSA modulus and G = H = Z∗

n. Let f : Z∗
n → Z∗

n be defined by f(x) =
xe mod n for an exponent e such that gcd(e, ϕ(n)) = 1 [21]. Given enough many
pairs (xe

i mod n, xi) ∈ Z∗
n×Z∗

n, i = 1, . . . , s, for the first coordinates to generate
Z∗

n, the RSA decryption problem is solved by a GHI oracle.This application of
GHI problem to the decryption problem can be adapted to every homomorphic
encryption scheme, e.g. Paillier [20].

Example 5. Given d ∈ {2, 3, 4} and given an integer n such that d divides ϕ(n),
we let G = Z∗

n and H = Zd. The GHI problem is the MOVAd problem [19].

Example 6. We show here how we can apply the GHI problem to the Bilinear
Diffie-Hellman Problem (BDHP). Let ê : G1 × G1 → G2 be a bilinear, non-
degenerate and computable mapping, where G1 and G2 are cyclic groups of
order a large prime p. Let P be a generator of G1, we can state the BDHP as
follows: given three random elements aP , bP and cP ∈ G1, compute ê(P, P)abc.
(G1 resp. G2 is written additively resp. multiplicatively.) BDHP is equivalent
to GHI problem with S = {(P, ê(aP, bP))} and x1 = cP .

Note that Examples 2,3,4,5,6, include trapdoors in order to interpolate the
group homomorphism. Except Examples 2,6, they further include trapdoors in
order to solve the MSR problem. Also note that the order d of H is publicly
known in Examples 1,2,3,5,6. It can further be quite small in Examples 3,5. In
what follows we focus on publicly known d and on trapdoor homomorphisms.
We will also consider the following example inspired by [1].

Example 7. Let n = pq such that p = rd + 1 and q are prime, gcd(r, d) = 1,
gcd(q − 1, d) = 1, with d small prime. We take G = Z∗

n and H = Zd. We can
easily compute a group homomorphism by first raising to the power r(q − 1)
then computing a discrete logarithm in a small subgroup.

358 J. Monnerat and S. Vaudenay

We finally provide a useful lemma to sample group elements.

Lemma 3. Let G, H, d be defined as in Lemma 2. Let x1, . . . , xs ∈ G which
H-generate G. The following mapping from G× Zs

d to G is balanced.

g : (r, a1, . . . , as) �−→ dr + a1x1 + . . . + asxs

2.3 Problem Reductions

We assume that S interpolates in a group homomorphism. We notice that the
S-GHI problem can be solved with a single oracle call to a (d, S1)-MSR oracle
where S1 denotes the set of all x coordinates for points in S.

Similarly, the S-GHID problem can be probabilistically solved with a (d, S1)-
MSR oracle by using Lemma 1 and Lemma 3: we generate a random x′ =
ax + dr + a1x1 + · · · + asxs, we send it to the MSR oracle who will answer
a′
1, . . . , a

′
s, and we check whether ay + (a1 − a′

1)y1 + · · ·+ (as − a′
s)ys = 0.

Note that once we have witnesses to find the group invariants of G and H,
it becomes easy to solve all problems. So GHI and GHID are in NP∩co-NP.

2.4 Problem Approximations

In this section we present our most important results. They are inspired from
the theory of checkable proofs [2, 3] and linear cryptanalysis.

Lemma 4. Given two finite Abelian groups G and H, and a set of s points
S = {(xi, yi) | i = 1, . . . , s}, we assume that x1, . . . , xs H-generate G. We let
d be the order of H and p be its smallest prime factor. We assume that there
exists a function f : G −→ H such that

ρ := Pr
(r,a1,...,as)∈U G×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] >
1
p
.

The set of points (xi, yi) interpolates in a group homomorphism. Furthermore,
given a random x ∈U G, the value y = f(x) matches the unique interpolation
with probability ρ.

This improves Theorem 13 from [19] where we have 1/2 instead of 1/p.

Proof. Let K ⊆ Zs
d be the set of all (a1, . . . , as) such that a1x1+ · · ·+asxs ∈ dG.

We notice that the representation of any G element as a combination of x1, . . . , xs

is uniquely defined modulo K. Following Lemma 1, we only have to prove that
we have a1y1 + · · · + asys = 0 for any (a1, . . . , as) ∈ K. This way, the value
g(x) = a1y1 + · · ·+ asys is uniquely defined by x = dr + a1x1 + · · ·+ asxs and
g is a group homomorphism which corresponds to f with probability ρ.

Let us consider a random (r, a1, . . . , as) ∈U G × Zs
d. ρ is the probability

that f(dr + a1x1 + · · · + asxs) equals a1y1 + · · · + asys. This probability is
also the average over all possible cosets of Zs

d/K of the same probability when
(a1, . . . , as) is sampled in the coset only. Hence we deduce the existence of a
coset (a1, . . . , as) + K such that for (r, b1, . . . , bs) ∈U G×K we have

Pr[f(dr + (a1 + b1)x1 + · · ·+ (as + bs)xs) = (a1 + b1)y1 + · · ·+ (as + bs)ys] ≥ ρ.

Generic Homomorphic Undeniable Signatures 359

Note that a1x1 + · · ·+asxs is now a constant x and that dr+b1x1 + · · ·+bsxs

can be written dr′ where r′ is uniformly sampled in G and independent from
b1, . . . , bs. Hence, there exists r′ such that

Pr
(b1,...,bs)∈U K

[f(dr′ + x) = (a1 + b1)y1 + · · ·+ (as + bs)ys] ≥ ρ.

So we have

Pr
(b1,...,bs)∈U K

[b1y1 + · · ·+ bsys = constant] >
1
p
.

Since (b1, . . . , bs) �→ b1y1 + · · ·+ bsys is a group homomorphism from K to a
subgroup of H it must be a balanced function. Its kernel is either a subgroup of
size at least p or the trivial subgroup {0}. Hence, the probability must actually
be 1 and we have b1y1 + · · ·+ bsys = 0 for all (b1, . . . , bs) ∈ K. �

The next result says that f can be used in order to solve the GHI problem.

Lemma 5. Given two finite Abelian groups G and H, and a set of s points
S = {(xi, yi) | i = 1, . . . , s}, we assume that x1, . . . , xs H-generate G. We
assume that we are given the order d of H whose smallest prime factor is p and
that we can sample elements in G with a uniform distribution. We assume that
we have an oracle function f : G −→ H such that

Pr
(r,a1,...,as)∈U G×Zs

d

[f(dr + a1x1 + · · ·+ asxs) = a1y1 + · · ·+ asys] =
1
p

+ θ

with θ > 0. Let ε > 0 be arbitrarily small. There exists a group homomorphism
which interpolates S and which is computable within 4θ−2 log(p/ε) oracle calls
with an error probability less or equal to ε.

Note that this substantially improves Theorem 8 from [19] where we basically
have 11/12 instead of 1/p. It was further conjectured in [19] that we could replace
it by 1/2. We made here a more precise result.

Proof (Sketch). Due to Lemma 4, the homomorphism g exists and we have
Prx∈U G[f(x) = g(x)] = p−1 + θ. We use the same techniques which are used
in linear cryptanalysis and consider the following algorithm.

Input: x ∈ G
1: repeat
2: pick r ∈ G, a1, . . . , as ∈ Zd at random
3: y = f(x + dr + a1x1 + · · ·+ asxs)− a1y1 − · · · − asys

4: c = 0
5: for i = 1 to n do
6: pick r ∈ G, a1, . . . , as, a ∈ Zd at random
7: if f(dr + a1x1 + · · ·+ asxs + ax) = a1y1 + · · ·+ asys + ay (T)

then
8: c = c + 1

360 J. Monnerat and S. Vaudenay

9: end if
10: end for
11: until c > τn
Output: y

We choose n = 4θ−2(p−1 + θ) log(p/ε) and τ = p−1 + 1
2θ and we estimate the

error probability of the acceptance test. We consider two types of error:

ε1 = Pr
x∈U G

[c ≤ τn | y = g(x)] ε2 = Pr
x∈U G

[c > τn | y �= g(x)]

We will now estimate these two values and show that they are negligible. If
y �= g(x), then the test (T) works with probability t2 ≤ 1/p due to Lemma 4.
We also notice that if y = g(x), the probability that the test works is 1

p + θ.
Hence, using the central limit theorem we obtain

ε1 ≈ Φ

(
√
n

τ − p−1 − θ√
(p−1 + θ)(1− p−1 − θ)

)
ε2 ≈ Φ

(
−
√
n

τ − t2√
t2(1− t2)

)
,

when n is large enough and where Φ denotes the distribution function of the
standard normal distribution. By looking at the logarithmic derivative of the
function f(t) = (τ − t)/(

√
t(1− t)) and noticing that this one is negative on the

interval [0, τ] we deduce that

ε2 ≤ Φ

(
−
√
n

τ − p−1√
p−1(1− p−1)

)
.

Using τ = p−1 + 1
2θ provides

ε2 ≤ Φ

(
−
√
n

θ

2
√
p−1(1− p−1)

)
≈ 1√

2π

(
e

−nθ2

4(p−1(1−p−1))

)
,

where the last approximation holds when n is large enough (ε small). Now, we
substitute the expression of n in the above inequality and we obtain

ε2 ≤
1√
2π

(
ε

p

) p+p2θ
p−1

.

Since p+p2θ
p−1 ≥ 1 and ε

p < 1 when ε is small, we finally get ε2 ≤ ε/(p
√

2π) ≤ ρε/2
where ρ = p−1 + θ. In a similar way, we can show that ε1 ≤ ε/2. It remains
to compute the complexity and the error probability of the algorithm. At first,
we observe that the probability α that c ≤ τn in the algorithm is equal to
ρε1+(1−ρ)(1−ε2). From the estimate of ε1, ε2, we see that α ≈ 1−ρ. Moreover,
the number of iterations is equal to

∑∞
i=1 iα

i−1(1−α) = 1/(1−α) ≈ 1/ρ. Hence,
the complexity is n/ρ = 4(log(1/ε) + log(p))/(ρ− 1

p)2. The probability of error
is given by

∑∞
i=1 α

i−1(1− ρ)ε2 ≈ (1− ρ)/ρε2 ≤ ε2/ρ ≤ ε/2. �

Generic Homomorphic Undeniable Signatures 361

3 Interactive Proof Protocol

3.1 Proof for the GHID Problem

Let G, H, and S = {(g1, e1), . . . , (gs, es)} be parameters of a GHI problem, and
let d be the order of H. We assume that we have a prover who wants to convince
a verifier that he knows an interpolating group homomorphism f : G −→ H for
S. Let � be an integer. He performs the following interaction with a verifier.

GHIproof�(S)
Parameters: G,H, d
Input: �, S = {(g1, e1), . . . , (gs, es)} ⊆ G×H

1. The verifier picks ri ∈ G and ai,j ∈ Zd at random for i = 1, . . . , �
and j = 1, . . . , s. He computes ui = dri + ai,1g1 + · · · + ai,sgs and
wi = ai,1e1 + · · ·+ ai,ses for i = 1, . . . , �. He sends u1, . . . , u� to the
prover.

2. The prover computes vi = f(ui) for i = 1, . . . , �. He sends a com-
mitment to v1, . . . , v� to the verifier.

3. The verifier sends all ri’s and ai,j ’s to the prover.
4. The prover checks that the ui’s computations are correct. He then

opens his commitment.
5. The verifier checks that vi = wi for i = 1, . . . , �.

From a practical point of view, the verifier can generate the ri’s and ai,j ’s
in a pseudorandom way from a seed and simply disclose the seed in the third
step of the protocol. Further note that if ds is large enough, then the verifier can
send h(w1, . . . , ws) ⊕ seed (where h is a hash function) in his first message so
that the complete protocol can run in 2 moves instead of 4. In the second move,
the prover simply sends seed.

Note that we need a commitment scheme here, e.g. the trapdoor commitment
scheme proposed by Bresson et al. [6]. Note that using trapdoor commitment
with the verifier’s public key strengthens our protocols by providing the non-
transferability property [17].

Theorem 1. Assuming that g1, . . . , gs H-generate an Abelian group G, let d be
an integer and e1, . . . , es ∈ H, where H is an Abelian group of order d. Let p
be the smallest prime factor of d. We consider the GHIproof�(S) protocol with
S = {(g1, e1), . . . , (gs, es)} ⊆ G×H.

i. Completeness: assuming that the prover and the verifier are honest, the pro-
tocol always succeeds.

ii. Zero-knowledge: assuming that the commitment scheme is perfectly hiding,
the above protocol is perfectly black-box zero-knowledge against any verifier.

iii. Proof of membership: assuming that the protocol succeeds with probability
greater than p−� with a honest verifier, then S interpolates in a group ho-
momorphism.

362 J. Monnerat and S. Vaudenay

iv. Proof of knowledge: for any θ > 0, assuming that the protocol succeeds with
probability greater than (p−1 + θ)� with a honest verifier and that the com-
mitment scheme is extractable, for any ε > 0 there exists an extractor with
a time complexity factor O(log(1/ε)) which can compute an interpolating
group homomorphism from the prover with probability at least 1− ε.

Proof (Sketch). Property i is quite clear. Property ii is proven by constructing
a simulator for the transcript of the protocol without the secret of the prover.
Property iii directly follows from Lemma 4. For Property iv, we use Lemma 4
and Lemma 5. �

3.2 Proof for the co-GHID Problem

Let G, H, and S = {(g1, e1), . . . , (gs, es)} ⊆ G × H be parameters of a GHI
problem, and let d be the order of H. Let T = {(x1, z1), . . . , (xt, zt)} ⊆ G ×H
be a set of t inputs of the GHID problem. We assume that we have a prover
who wants to convince a verifier that for at least one k the answer to the GHID
problem with (xk, zk) is negative. Let � be an integer. He performs the following
interaction with a verifier.

coGHIproof�(S, T)
Parameters: G,H, d
Input: �, S = {(g1, e1), . . . , (gs, es)}, T = {(x1, z1), . . . , (xt, zt)}

1. The verifier picks ri,k ∈ G, ai,j,k ∈ Zd, and λi ∈ Z∗
p for i =

1, . . . , �, j = 1, . . . , s, k = 1, . . . , t, where p is the smallest prime
dividing d. He computes ui,k := dri,k +

∑s
j=1 ai,j,kgj + λixk and

wi,k :=
∑s

j=1 ai,j,kej + λizk. Set u := (u1,1, . . . , u�,t) and w :=
(w1,1, . . . , w�,t). He sends u and w to the prover.

2. The prover computes vi,k := f(ui,k) for i = 1, . . . , �, k = 1, . . . , t.
Since wi,k − vi,k = λi(zk − yk), he should be able to find every
λi if the verifier is honest since wi,k �= vi,k for all i and at least
one k. Otherwise, he sets λi to a random value. He then sends a
commitment to λ = (λ1, . . . , λ�) to the verifier.

3. The verifier sends all ri,k’s and ai,j,k’s to the prover.
4. The prover checks that u and w were correctly computed. He then

opens the commitment to λ.
5. The verifier checks that the prover could find the right λ.

This protocol is inspired from denial protocol of Gennaro et al. [15]. We can
also transform it into a 2-move protocol.

We notice that λi was chosen such that it can be uniquely retrieved for every
nonzero values of Zd that can be taken by the elements zk − yk’s. Namely, this
is done by the following result.

Lemma 6. Let H be an Abelian group of order d, and a, b ∈ H such that b �= 0.
Let λ be in {1, . . . , p− 1}, where p is the smallest prime dividing d. Then, if the
equation a = λb has a solution in λ, then this one is unique.

Generic Homomorphic Undeniable Signatures 363

3.3 Proof for the MGGD Problem

Inspired by [19], we propose here a proof that S1 = {g1, . . . , gs} H-generate G.
However, the signer needs expert knowledge about G since he has to be able to
solve the (d, S1)-MSR and d-Root problems. Let � be an integer. He performs
the following protocol.

MGGDproof�(S1)
Parameters: G,H, d
Input: �, S1 = {g1, . . . , gs} ⊆ G
1: for i = 1 to � do
2: The prover picks a δ1 ∈ G at random and sends a commitment to

δ1 to the verifier.
3: The verifier picks a δ2 ∈ G at random and sends δ2 to the prover.
4: The prover solves (d, S1)-MSR on δ1 + δ2 and d-Root and finds

r ∈ G, a1, . . . , as ∈ Zd such that δ1 + δ2 = dr +
∑s

j=1 ajgj . He
sends r, a1, . . . , as to the verifier and opens the commitment to δ1.

5: The verifier checks that δ1 + δ2 = dr +
∑s

j=1 ajgj really holds.
6: end for

We can prove as in Lemma 4 that if a honest verifier is convinced with
probability greater than p−�, then S1 solves the d-MGGD problem.

Note that this can be transformed into a non-interactive proof following
standard techniques [14]. An efficient way consists of generating pseudorandom
δ1, . . . , δ� from the same seed then solving the (d, S1)-MSR and d-Root problems
on those elements.

4 Undeniable Signature

4.1 Description

We now describe our undeniable signature scheme.

Domain Parameters. We let integers Lkey, Lsig, Icon, Iden be security pa-
rameters as well as “group types” for Xgroup and Ygroup. (The group types
should define what groups and which sizes to use in order to achieve security.)

An optional parameter Ival is used in Setup Variants 3 and 4 below.

Primitives. We use two deterministic random generators Gen1 and Gen2 which
produce elements of Xgroup and a commitment scheme.

Setup Variant 1. (signer without expert group knowledge)
The signer selects Abelian groups Xgroup and Ygroup of given types together
with a group homomorphism Hom : Xgroup −→ Ygroup. He computes the
order d of Ygroup. He then picks a random string seedK and computes the Lkey
first values (Xkey1, . . . ,XkeyLkey) from Gen1(seedK) and Ykeyj := Hom(Xkeyj),
j = 1, . . . ,Lkey.

364 J. Monnerat and S. Vaudenay

The main problem of Setup is that the choice for (Xkey1, . . . ,XkeyLkey) must
Ygroup-generate Xgroup in order to ensure non-repudiation of signatures. In
Variant 1, Lkey must be large enough so that it is impossible to maliciously
select a key which does not guaranty this condition.

Setup Variant 2. (signer with a Registration Authority (RA))
We use here a RA whose role consists of making sure that a key was randomly
selected. (Note that, the RA does not check if the key is valid.)
1. The signer selects Abelian groups Xgroup and Ygroup of given type together

with a group homomorphism Hom : Xgroup −→ Ygroup. He computes the
order d of Ygroup. He submits his identity Id together with Xgroup, Ygroup
and d to RA.

2. RA first checks the identity of the signer and that he did not submit too
many registration attempts. He then picks a random string seedK that is
sent to the signer together with a signature C for

(Id,Xgroup,Ygroup, d, seedK).

3. The signer computes the Lkey first values (Xkey1, . . . ,XkeyLkey) from
Gen1(seedK) and Ykeyj := Hom(Xkeyj), j = 1, . . . ,Lkey.

Here the RA basically selects the random key so Lkey can be reduced.

Setup Variant 3. (signer with an expert group knowledge)
In this variant we assume that the signer can solve the MSR and Root problems
in Xgroup. It works exactly like in the Setup Variant 1, but the signer can further
run a MGGDproofIval in order to validate the public key so that Lkey can be
further reduced to the smallest possible one.

Setup Variant 4. (signer with an expert group knowledge, non-interactive)
This variant is the same as Variant 3 except that MGGDproof is transformed
into a non-interactive proof.

Public Key. KP = (Xgroup,Ygroup, d, seedK, (Ykey1, . . . ,YkeyLkey)) with an
optional (Id, C) for Variant 2, an optional Ival for Variants 3,4, and an optional
non-interactive proof for Variant 4. We say that KP is valid if {Xkey1, . . . ,
XkeyLkey} Ygroup-generate Xgroup.

Secret Key. KS = Hom.

Signature Generation. The message M is used to generate Xsig1, . . . ,XsigLsig
from Gen2(M). The signer computes Ysigk = Hom(Xsigk) for k = 1, . . . ,Lsig.
The signature is (Ysig1, . . . ,YsigLsig). It consists of Lsig. log2 d bits.

Confirmation Protocol. Compute Xkey1, . . . ,XkeyLkey from the public key,
Xsig1, . . . ,XsigLsig from the message, run GHIproofIcon on the set

S = {(Xkeyj ,Ykeyj)|j = 1, . . . ,Lkey} ∪ {(Xsigk,Ysigk)|k = 1, . . . ,Lsig}.

Generic Homomorphic Undeniable Signatures 365

Denial Protocol. Compute Xkey1, . . . ,XkeyLkey from the public key as well as
Xsig1, . . . ,XsigLsig from the message, run coGHIproofIden on the sets

S = {(Xkeyj ,Ykeyj)|j = 1, . . . ,Lkey}, T = {(Xsigk,Zsigk)|k = 1, . . . ,Lsig}

where (Zsig1, . . . ,ZsigLsig) is the alleged non-signature.
The undeniable signature scheme of Gennaro et al. [15] which is based on RSA

corresponds to a special case of our scheme, namely with Xgroup = Ygroup =
Z∗

n, Lkey = Lsig = 1 and the classical RSA signing function as homomorphism
Hom. Another example with Lkey = Lsig = 1 is the undeniable signature of
Chaum [7]. He considered Xgroup = Ygroup = Z∗

p for a prime p and the ho-
momorphism consisting in raising an element to the power of the private key.
In both examples the signature is quite large. The MOVA scheme [19] is an-
other example with Xgroup = Z∗

n, Hom is a character of order d ∈ {2, 3, 4}, and
Ygroup is the subgroup of C∗ spanned by e

2iπ
d .

4.2 Security Analysis

Theorem 2 (Setup Variants 1,2). We consider the above undeniable signa-
ture. Given a prime q, we let Aq be the subgroup of Xgroup of all terms whose
orders are powers of q. Given q there is a unique kq and aq,1 ≤ . . . ≤ aq,kq

se-
quence such that Aq is isomorphic to Zqaq,1 ⊕ . . .⊕Zq

aq,kq . The probability Pgen

that {Xkey1, . . . ,XkeyLkey} Ygroup-generate Xgroup satisfies

Pgen ≥
∏

q∈Pd

(
1− kq

qLkey

)
,

where Pd is the set of all prime factors of gcd(#Xgroup, d).

As an application, if d is prime and if Xgroup is a product of k cyclic groups,
we have Pgen ≥ 1− k.d−Lkey.

Theorem 3. We consider the above undeniable signature scheme. Assuming
that the public key is valid, we have the following security results.

i. If the signer and the verifier are honest, the two protocols complete: a valid
signature will always be accepted by the confirmation protocol, and an invalid
signature will always be rejected by the denial protocol.

ii. Let S = {(Xkey1,Ykey1), . . . , (XkeyLkey,YkeyLkey)}. The scheme resists
against existential forgery attacks provided that Gen2 is a random oracle
and the S-GHI problem is intractable.

iii. The confirmation (resp. denial) protocol is sound: if the signer is able to pass
the protocol with probability q > p−Icon (resp. q > p−Iden), then the alleged
signature is valid (resp. invalid).

iv. The confirmation protocol is private when the commitment scheme is ex-
tractable: for any θ, ε > 0, from a prover which is able to convince a honest
verifier that a given signature is valid with probability q > (p−1 + θ)Icon, we
can extract within a complexity factor of Ω(θ−2 log(p/ε)) a group homomor-
phism which solves the GHI problem with success probability 1− ε.

366 J. Monnerat and S. Vaudenay

v. The signatures are invisible: for any θ, ε > 0, from a distinguisher of a valid
signature from a random one with advantage θ > 0, we can extract within
a complexity factor of Ω(θ−2 log(1/ε)) a GHID problem solver with success
probability 1− ε.

vi. The confirmation (resp. denial) protocol is perfectly black-box zero-knowledge
when the commitment scheme is perfectly hiding: we can build a simulator
for the protocol without the secret key for any verifier.

In short, if we take Xgroup = Z∗
n where n is a product of two prime numbers,

and Lsig = Icon = Iden = sonline/ log2 p, we cannot contradict the confirmation
or denial protocols but with a probability at most 2−sonline , and signatures are
invisible provided that generators are random oracles and that the interpolation
problem is hard. For Variant 2, we can take Lkey = sonline/ log2 p and this
generates invalid keys with probability less than 21−sonline . For Variant 1, we can
take Lkey = soffline/ log2 p so that the signer cannot create invalid keys within
a complexity less than 2sonline . For Variants 3,4, Lkey can be as low as possible.
We can take Ival = sonline/ log2 p for Variant 3 (so that invalid keys are accepted
with probability less than 2−sonline), and Ival = soffline/ log2 p for Variant 4 so
that the signer cannot create invalid keys within a complexity less than 2sonline .
We suggest soffline = 80 and sonline = 20.

5 Example and Further Discussions

5.1 Setting Proposal

We consider Example 7 with a small prime d e.g. d = 220 +7. We take Xgroup =
Z∗

n, Ygroup = Zd, Lkey = Lsig = Icon = Iden = 1 and we consider Variant 3
and 4 of the Setup protocol. If Xkey ∈ Xgroup is not a dth power residue
then it Ygroup-generates Xgroup. For any Ykey ∈ Zd there is a unique group
homomorphism Hom such that Hom(Xkey) = Ykey. With this example we can
sign with a single element of Zd and a public key (n, d, seedK,Ykey).

Note that the group homomorphism computation requires raising to the
power r in Z∗

p and computing the discrete logarithm in a cyclic group of about
220 elements. This can be precomputed in a table of 2.5 MB as detailed below.

We first precompute a (large) table of all (Xsigi, i) with Xsigi = Xkeyir

(mod p) for i = 0, 1, . . . , d− 1. Note that i can be encoded into 20 bits. Next we
insert all (Xsigi, i) pairs in a hash table of 220 entries keyed by Xsigi: put i at
position h(Xsigi) unless there is a collision. Resolving collisions can be done by
standard techniques, for instance see [10] Chapter 12, but note that resolving
collisions is not necessary: if Xsigi is not in the table, we can look for the smallest
j such that Xsigi+j is in the table.

Time/memory tradeoffs can also be considered. Remark also that such a
tradeoff should not require more than the complexity of the Pollard’s rho algo-
rithm for the computation of the discrete logarithm in our example, i.e. approx-
imately 3000 multiplications.

Generic Homomorphic Undeniable Signatures 367

Depending on the application, the signature size of 20 bits may be considered
as too small. Of course, we can easily enlarge it e.g. to 48 bits. Our point is that
signature size versus security is fully scalable here.

The signature generation requires 1 homomorphism i.e. about one exponen-
tiation in Z∗

p. (Note that this is twice as fast as a 1024-bit RSA signature com-
putation with Chinese remainders.) The complexity of the confirmation protocol
is about 35 multiplications in Z∗

n for the verifier (which can be compared to 17
multiplications in Z∗

n for RSA if we take e = 216 + 1) and 1 homomorphism for
the prover. The denial protocol requires almost the same complexity.

Complexities of this setting with all setup variants as well as those of the
MOVA scheme with d = 2 and a 20-bit signature length are detailed in Ta-
ble 1. The main advantage of using the above setting instead of MOVA is
that the former strongly decreases the number of multiplications in Z∗

n for the
confirmation.

Table 1. Implementation Examples

Setup d Lsig, Icon, Iden Lkey Ival Signature cost Confirmation cost
1 2 20 80 20 Leg. symb. 20 Leg. symb., 730 mult.
2 2 20 20 20 Leg. symb. 20 Leg. symb., 280 mult.
3 2 20 2 20 20 Leg. symb. 20 Leg. symb., 145 mult.
4 2 20 2 80 20 Leg. symb. 20 Leg. symb., 145 mult.
1 220 + 7 1 4 1 Hom 1 Hom, 65 mult.
2 220 + 7 1 1 1 Hom 1 Hom, 35 mult.
3 220 + 7 1 1 1 1 Hom 1 Hom, 35 mult.
4 220 + 7 1 1 4 1 Hom 1 Hom, 35 mult.

5.2 On the MOVA Scheme

We point out here that our scheme generalizes the MOVA scheme [19] and im-
proves the efficiency of the denial protocol of MOVA. An additional contribution
to MOVA is also the improvement of some bounds related to the probability of a
function approximating Hom from which we can compute Hom in a polynomial
time. Our new bound with 1/p allows to formally prove the conjectured security
level of MOVA.

5.3 Batch Verification and Selective Convertibility

We point out that our scheme allows a batch verification of signatures. Indeed,
the confirmation protocol can be easily adapted in order to confirm several sig-
natures at the same time by putting all (Xsigk,Ysigk) in a single set S.

Note that the signer with expert group knowledge can selectively convert an
undeniable signature into a classical one by solving the MSR and Root prob-
lems on all Xsigk. The conversion consists of revealing the solution to those
problems.

368 J. Monnerat and S. Vaudenay

6 Conclusion

We have exposed an undeniable signature based on a generic group homomor-
phism interpolation and we have also analyzed the security in the random oracle
model. The principal advantage is the size of the signature that can be chosen
arbitrarily short depending on the required security level. Confirmation and de-
nial can be run in a 2-move protocol. We can perform batch verification and
have selective convertibility. From this general setting we have also proposed a
practical example with 3-byte signatures and a complexity cost which is similar
to RSA. We hope that this example will be completed by some various additional
settings since group homomorphisms are common objects in cryptography.

As future work, we also aim at extending our techniques to other crypto-
graphic algorithms such as the designated confirmer signatures [8].

Acknowledgments. We wish to thank Anna Lysyanskaya and Wenbo Mao for
helpful discussions and comments.

References

1. R. Anderson, S. Vaudenay, B. Preneel, K. Nyberg, The Newton Channel, Proc.
First International Workshop on Information Hiding, Cambridge, UK, LNCS 1174,
pp. 151–156, Springer, 1996.

2. S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof Verification and
Hardness of Approximation Problems, Proc. 33rd IEEE Symp. on Foundations of
Computer Science, pp. 14–23, 1992.

3. L. Babai, L. Fortnow, L. Levin and M. Szegedy, Checking Computations in Poly-
logarithmic Time, Proc. 23rd ACM Symp. on Theory of Computing, pp. 21–31,
1991.

4. I. Biehl, S. Paulus and T. Takagi, Efficient Undeniable Signature Schemes based on
Ideal Arithmetic in Quadratic Orders, Conference on The Mathematics of Public-
Key Cryptography, Toronto, 1999.

5. J. Boyar, D. Chaum, I. Damg̊ard and T. Pedersen, Convertible Undeniable Sig-
natures, Advances in Cryptology - Crypto ’90, LNCS 537, pp. 189–205, Springer,
1990.

6. E. Bresson, D. Catalano and D. Pointcheval, A Simple Public-Key Cryptosytem
with a Double Trapdoor Decryption Mechanism and Its applications, Advances in
Cryptology - Asiacrypt ’03, LNCS 2894, pp. 37–54, Springer, 2003.

7. D. Chaum, Zero-Knowledge Undeniable Signatures, Advances in Cryptology - Eu-
rocrypt ’90, LNCS 473, pp. 458–464, Springer, 1990.

8. D. Chaum, Designated Confirmer Signatures, Advances in Cryptology - Euro-
crypt ’94, LNCS 950, pp. 86–91, Springer, 1994.

9. D. Chaum and H. van Antwerpen, Undeniable Signatures, Advances in Cryptology
- Crypto ’89, LNCS 435, pp. 212–217, Springer, 1989.

10. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, Mc-
Graw Hill, 1990.

11. I. D̊amgard and T. Pedersen, New Convertible Undeniable Signatures Schemes,
Advances in Cryptology - Eurocrypt ’96, LNCS 1070, pp. 372–386, Springer, 1996.

Generic Homomorphic Undeniable Signatures 369

12. Y. Desmedt and M. Yung, Weaknesses of Undeniable Signature Schemes, Advances
in Cryptology - Crypto ’91, LNCS 576, pp. 205–220, Springer, 1991.

13. W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Transactions on
Information Theory, vol. IT-22, pp. 644–654, 1976.

14. A. Fiat, A. Shamir, How to Prove Yourself: Practical Solutions to Identification and
Signature Problems, Advances in Cryptology - Crypto ’86, LNCS 263, pp. 186–194,
Springer, 1987.

15. R. Gennaro, T. Rabin and H. Krawczyk, RSA-Based Undeniable Signatures, Jour-
nal of Cryptology, 13, pp. 397–416, Springer, 2000.

16. S. Goldwasser and S. Micali, Probabilistic Encryption, Journal of Computer and
System Sciences, 28, pp. 270–299, 1984.

17. M. Jakobsson, K. Sako and R. Impagliazzo, Designated Verifier Proofs and Their
Applications, Advances in Cryptology - Eurocrypt ’96, LNCS 1070, pp. 143-154,
1996.

18. B. Libert and J.-J. Quisquater, Identity Based Undeniable Signatures, Proc. RSA
Crypto Track ’04, LNCS 2964, pp. 112–125, Springer, 2004.

19. J. Monnerat and S. Vaudenay, Undeniable Signatures Based on Characters: How
to Sign with One Bit, PKC ’04, LNCS 2947, pp. 69–85, Springer, 2004.

20. P. Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes, Advances in Cryptology - Eurocrypt ’99, LNCS 1592, pp. 223–238,
Springer, 1999.

21. R. L. Rivest, A. Shamir and L. M. Adleman, A Method for Obtaining Digital
Signatures and Public-key Cryptosystem, Communications of the ACM, vol. 21,
pp. 120–126, 1978.

A Technical Proofs

Proof of Lemma 2. 1 ⇔ 2 ⇔ 3. Straightforward.
3 ⇒ 4. Assume that there exists a common prime factor p of #(G/G′) and d.
Then, from the structure of Abelian groups G/G′ and H we know that each of
these two groups possesses one cyclic subgroup U and V respectively of order
p. So, we define a non trivial homomorphism that is the composition of the
isomorphism between the two cyclic subgroups and with the reduction modulo
U . This contradicts 3.
4 ⇒ 5. If x ∈ G, then d must be invertible modulo the order k of x mod G′ by
4. Let m such that m ·d ≡ 1 (mod k). We have m ·d ·x ≡ x (mod G′). Hence,
x− d(m · x) ∈ G′ and therefore x ∈ G′ + dG.
5 ⇒ 2. If ϕ ∈ Hom(G,H) is such that ϕ|G′ = 0 and x ∈ G, we can write
x = a1x1 + · · · + asxs + dr. Thus, ϕ(x) = dϕ(r) = 0. This holds for all x ∈ G,
i.e., ϕ = 0. �

Proof of Lemma 3. Let n be the order of G. Let h : G×Zs
nd → G be a function

defined by h(r, a1, . . . , as) = dr + a1x1 + . . . + asxs. Obviously, h is an homo-
morphism. It is onto G due to the property 5 of Lemma 2. Hence, it is balanced
onto G. Let ϕ : G × Zs

nd → G × Zs
d be a function defined by ϕ(r, a1, . . . , as) →

(r+ q1x1 + · · ·+ qsxs, a1 mod d, . . . , as mod d), where ai− (ai mod d) = dqi. We
have g ◦ ϕ = h. Obviously, ϕ is balanced onto G× Zs

d since ϕ−1(r, a1, . . . , as) =

370 J. Monnerat and S. Vaudenay

{(r−q1x1−. . .−qsxs, a1+dq1, . . . , as+dqs)|(q1, . . . , qs) ∈ Zs
n}. If #g−1(x) = m,

we have mns = #ϕ−1
(
g−1(x)

)
= #h−1(x) = (dn)s. Hence, m = ds does not

depend on x, so g is balanced. �

Proof of Theorem 2 (Sketch). The decomposition of Xgroup comes from classical
results on the structure of Abelian groups. We observe that we can handle each
Aq independently because we can see that two elements generating two different
Aq’s generate the direct sum of these two groups, since the two respective group
orders are coprime. We consider Bq := Aq/dAq and study the probability that
elements generate this group. If gcd(d, q) = 1, then Bq is trivial. So, we focus
only on the q’s that divide d and denote eq the largest integer such that qeq |d.
We can also deduce that the structure of Bq satisfies

Bq % Zqaq,1 ⊕ . . .⊕ Zqaq,r ⊕ Zqeq ⊕ . . .Zqeq ,

where r is the largest integer such that aq,r < eq. The probability that s elements
does not generate Bq can be approximated by the probability that these elements
stay in one of the largest non trivial subgroups of Bq, i.e. those of order #Bq/q.
The number of such subgroups is equal to kq. Thus, this probability is greater
or equal than 1− kq

qs . Since these events are independent for the different Bq’s,
the final probability is obtained by the multiplication of these probabilities. �

Proof of Theorem 3 (Sketch). i. The assertion i is straightforward.
ii. First, we show that an attacker A having access to a signing oracle can be
simulated by an attacker without this access. Indeed, when A calls the signing
oracle on a message M , the signing oracle will first produce a sequence of Lsig
values Xsig1, . . . ,XsigLsig ∈ Xgroup and then computes Ysigi := Hom(Xsigi) for
i = 1, . . . ,Lsig. From the point of view of A, this is completely equivalent to
dispose of a random source generating pairs of the form (x,Hom(x)) since Gen2
is modelized as a random oracle. Assuming that S1 Ygroup-generate Xgroup, we
see that this source can be simulated by picking some random r ∈ Xgroup, ai’s ∈
Zd, computing x := dr+a1Xkey1+· · ·+aLkeyXkeyLkey and Hom(x) = a1Ykey1+
· · ·+aLkeyYkeyLkey using Lemma 3. We denote now x, the challenged element of
the GHI problem. We use our attacker A in order to compute the Hom(Xsigi)’s
as follows. We simulate Gen2 by computing u := dr + x +

∑Lkey
j=1 ajXkeyj for

some random r ∈ Xgroup, aj ∈ Zd. This is indistinguishable from some uni-
formly picked element in Xgroup. By standard proofs we show that forged sig-
natures are necessarily one of the Gen2 queries, so we can deduce Hom(x) from
Hom(u).
iii. For the confirmation, this directly comes from Theorem 1 property iii. For
the denial, a cheating prover willing deny a valid signature has to find the value
of λi at each round of the protocol. Since Hom(ui,k) = wi,k, the prover does not
learn additional information with wi,k and has to find λi from ui,k uniquely. He
cannot find the λi since another distribution of the values ui,k with another λi

is indistinguishable from the first one. Assuming that the commitment scheme
is perfectly binding the cheating prover cannot do better than answering a ran-
dom λi.

Generic Homomorphic Undeniable Signatures 371

iv. This directly comes from Theorem 1 property iv.
v. This works like in Lemma 5. We count how many times (x′, y′) is accepted
after having picked x′ = x + dr + a1Xkey1 + · · · + aLkeyXkeyLkey and y′ =
y + a1Ykey1 + · · ·+ aLkeyYkeyLkey. We use n = θ−2 log(1/ε) iterations.
vi. For the confirmation, this comes from property ii in Theorem 1. For the de-
nial, this is done as in [15]. �

Efficient and Provably Secure Trapdoor-Free
Group Signature Schemes from Bilinear Pairings

Lan Nguyen and Rei Safavi-Naini

School of Information Technology and Computer Science,
University of Wollongong, Wollongong 2522, Australia

{ldn01, rei}@uow.edu.au

Abstract. We propose a group signature scheme with constant-size
public key and signature length that does not require trapdoor. So sys-
tem parameters can be shared by multiple groups belonging to different
organizations. The scheme is provably secure in the formal model re-
cently proposed by Bellare, Shi and Zhang (BSZ04), using random ora-
cle model, Decisional Bilinear Diffie-Hellman and Strong Diffie-Hellman
assumptions. We give a more efficient variant scheme and prove its secu-
rity in a formal model which is a modification of BSZ04 model and has a
weaker anonymity requirement. Both schemes are very efficient and the
sizes of signatures are approximately one half and one third, respectively,
of the sizes of the well-known ACJT00 scheme. We also use the schemes
to construct a traceable signature scheme.

1 Introduction

Group signature schemes, introduced by Chaum and Van Heyst [14], allow a
group member to sign a message on behalf of the group without revealing his
identity and without allowing the message to be linkable to other signed messages
that are verifiable with the same public key. Participants in a group signature
scheme are a set of group members and a group manager. The role of the group
manager is to register new users by issuing membership certificates that con-
tain registration details, and in case of dispute about a signed message, revoking
anonymity of the signed message by ‘opening’ the signature. In some schemes
the functions of the group manager can be split between two managers: an issuer
and an opener. This is a desirable property that allows distribution of trust. It is
required that no collusion of the issuer and the opener can frame a group mem-
ber. Group signatures are among the most important cryptographic primitives
for providing privacy and have been used for applications such as anonymous
credentials [2], identity escrow [21], voting and bidding [1], and electronic cash
[23]. Kiayias et al. [18] also introduced the traceable signature primitive, which
is basically the group signature system with added properties allowing a variety
of levels for protecting user privacy.

In early group signature schemes [9, 14, 15] the size of the public key and
the signature grew with the size of the group and so the schemes were imprac-
tical for large groups. Schemes with fixed size group public key and signature

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 372–386, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes 373

length have been first proposed in [13] and later extended in [12, 1, 2]. In Crypto
2000, Ateniese et al. (ACJT00) [1] proposed an efficient group signature scheme
with very short length and low computation cost. This scheme is also the only
scheme that has been proved to satisfy the informal list of security requirements
of group signature schemes. Ateniese and de Medeiros (AdM03) proposed an
efficient group signature scheme [2] that is ‘without trapdoor’ in the sense that
none of parties in the system including the group manager need to know the
trapdoor. That is the system trapdoor is only used during the initialisation and
to generate system parameters. The advantage of this property is that the same
trapdoor information can be used to initiate different groups. The importance
and usefulness of this property in real-world applications, for example when the
group signature scheme is used as a building block of an anonymous credential
system among a number of organizations that need to communicate and trans-
fer information about users while protecting their privacy, have been outlined in
[2]. A drawback of AdM03 scheme is that it has a single group manager who is
responsible for registration of users and opening of signatures, and it is not pos-
sible to separate the two functionalities. In AdM03 scheme, the group manager
stores the certificate (r, s) of each member. The signature of a group member
contains elements χ and E1 satisfying the equation E1 = χr, and so, to revoke
a signature, the group manager (or any party with the knowledge of the certifi-
cates) can try all certificates to find the one satisfying the equation. This is an
computationally expensive process. The security proof (corrected version) is for
the informal list of security requirements, and is given in the generic model [3].

Security of a group signature scheme has been traditionally proved by show-
ing that it satisfies a list of informally defined requirements. Bellare et al. [4] gave
a formal security model (BSZ04) for (partially) dynamic groups with four secu-
rity requirements (Correctness, Anonymity, Traceability and Non-frameability).
The model uses various oracles including an Open oracle that takes a signed
message and reveals the identity of the signer. The ACJT00 scheme although
satisfies the conventional list of requirements but cannot be proved secure in the
formal model mainly because of the inclusion of the Open oracle in the model.
Kiayias et al. [19] proposed an extension (KY04 scheme) of ACJT00 scheme that
is proved secure in their formal model. A new direction in constructing group
signature schemes is to use bilinear pairings to shorten the lengths of the signa-
ture and key. Boneh et al. [7] proposed a short group signature scheme (BBS04)
based on the Strong Diffie-Hellman assumption and a new assumption called
the Decisional Linear assumption. The scheme is provably secure in a formal
model where the Opening oracle is not available and the Non-frameability prop-
erty is not required, in comparison with the BSZ04 model. They also showed
how to construct an extension, which provides Non-frameability (exculpability).
Based on the LRSW assumption [22], Camenisch and Lysyanskaya [11] pro-
posed a group signature scheme (CL04) derived from a signature scheme which
allows an efficient zero-knowledge proof of the knowledge of a signature on a
committed message, and used it to construct an efficient anonymous credential
system.

374 L. Nguyen and R. Safavi-Naini

Our Contribution

In this paper, we first propose a new efficient group signature scheme with a num-
ber of attractive properties and prove its security in the BSZ04 model under the
Decisional Bilinear Diffie-Hellman and Strong Diffie-Hellman assumptions, using
random oracle model. We then give an efficient variant of this scheme and prove
its security in the reduced version of BSZ04 model. The only difference between
the original BSZ04 model and the reduced version is in modelling anonymity
property, as in the reduced version, the adversary does not have access to the
Open oracle. This is a plausible model for all cases that the opener is a highly
trusted entity and cannot be accessed by the adversary. We also extend the
variant scheme to a provably secure traceable signature scheme.

All proposed schemes have fixed lengths for group public key and signature,
and so can be used for large size groups. Using elliptic curve cryptography in
our schemes results in shorter lengths for signatures and keys. For example, for
a comparable level of security as the ACJT00 scheme with 1024 bit composite
modulus, our group signature schemes require elliptic curve groups of order 170
bit prime, resulting in the sizes of signatures in our two schemes to be one third
and one half, respectively, of the size in ACJT00 scheme. For higher security
levels this ratio will be smaller.

Our schemes can be converted into identity escrow systems or extended to
support efficient membership revocation, as shown in [26]. The schemes are
trapdoor-free. The only other trap-door free scheme is the AdM03 scheme, which
uses a trapdoor in the initialisation of the system and assumes that the initial-
ising party “safely forgets” the trapdoor. An advantage of our schemes over
AdM03 scheme is that they allow separation of issuer and the opener, hence
distribution of trust. Finally in our schemes, the interactive protocol underly-
ing the signature scheme achieves honest verifier perfect zero-knowledge without
any computational assumption whereas in the ACJT00 and KY04 schemes, the
corresponding protocols achieve honest verifier statistical zero-knowledge under
the Strong RSA assumption.

The paper is organized as follows. Section 2 gives related background and
section 3 describes our group signature scheme and its security proofs. Section
4 gives a modification of BSZ04 formal model and a variant group signature
scheme, and proves that the variant scheme and ACJT00 scheme are secure
in the modified model. Section 5 describes our traceable signature scheme and
section 6 provides efficiency comparison with ACJT00 scheme.

2 Preliminaries

2.1 Bilinear Pairings

Let G1,G2 be cyclic additive groups generated by P1 and P2, respectively, both
with order p, a prime, and GM be a cyclic multiplicative group with the same
order. Suppose there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1. Let
e : G1 ×G2 → GM be a bilinear pairing with the following properties:

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes 375

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1,Q ∈ G2, a, b ∈ Zp

2. Non-degeneracy: e(P1, P2) �= 1
3. Computability: There is an efficient algorithm to compute e(P,Q) for all

P ∈ G1,Q ∈ G2

For simplicity, hereafter, we set G1 = G2 and P1 = P2 but our group signature
schemes can be easily modified for the case when G1 �= G2. For a group G of
prime order, hereafter, we denote the set G∗ = G\{O} where O is the identity
element of the group.

We define a Bilinear Pairing Instance Generator as a Probabilistic Polynomial
Time (PPT) algorithm G that takes as input a security parameter 1l and returns
a uniformly random tuple t = (p,G1,GM , e, P) of bilinear pairing parameters,
including a prime number p of size l, a cyclic additive group G1 of order p, a
multiplicative group GM of order p, a bilinear map e : G1 × G1 → GM and a
generator P of G1.

2.2 Complexity Assumptions

For a function f : N→ R+, if for every positive number α, there exists a positive
integer l0 such that for every integer l > l0, it holds that f(l) < l−α, then f
is said to be negligible. If there exists a positive number α0 such that for every
positive integer l, it holds that f(l) < lα0 , then f is said to be polynomial-bound.

The q-SDH assumption originates from a weaker assumption introduced by
Mitsunari et. al. [24] to construct traitor tracing schemes [28] and later used by
Zhang et al. [30] and Boneh et al. [5] to construct short signatures. It intuitively
means that there is no PPT algorithm that can compute a pair (c, 1

x+cP), where
c ∈ Zp, from a tuple (P, xP, . . . , xqP), where x ∈R Z∗

p.

q-Strong Diffie-Hellman (q-SDH) Assumption. For every PPT algorithm

A, the following function Adv
q-SDH
A (l) is negligible.

Adv
q-SDH
A (l) = Pr[(A(t, P, xP, . . . , xqP) = (c,

1
x + c

P)) ∧ (c ∈ Zp)]

where t = (p,G1,GM , e, P)← G(1l) and x← Z∗
p.

Intuitively, the DBDH assumption [6] states that there is no PPT algo-
rithm that can distinguish between a tuple (aP, bP, cP, e(P, P)abc) and a tuple
(aP, bP, cP, Γ), where Γ ∈R G∗

M (i.e., chosen uniformly random from G∗
M) and

a, b, c ∈R Z∗
p. It is defined as follows.

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. For every PPT
algorithm A, the following function AdvDBDH

A (l) is negligible.

AdvDBDH
A (l) = |Pr[A(t, aP, bP, cP, e(P, P)abc) = 1]−

Pr[A(t, aP, bP, cP, Γ) = 1]|

where t = (p,G1,GM , e, P)← G(1l), Γ ← G∗
M and a, b, c← Z∗

p.

376 L. Nguyen and R. Safavi-Naini

2.3 Bilinear Pairing Versions of El Gamal Public Key System

Based on the DBDH assumption, we can construct two bilinear pairing ver-
sions of El Gamal public key system. El GamalBP1 provides Indistinguishability
against adaptive Chosen Plaintext Attack (IND-CPA) and El GamalBP2 provides
Indistinguishability against adaptive Chosen Ciphertext Attack (IND-CCA) in
the random oracle model. Due to space limitation, we only provide description
of El GamalBP2. This is the bilinear pairing version of the scheme presented and
proved by Fouque and Pointcheval [17]. Description of El GamalBP1 can be found
in the full version of this paper [25].

Key generation: Let p,G1,GM , e be bilinear pairing parameters, as defined above,
and G be a generator of G1. Suppose xa, xb ∈R Z∗

p and Θa = e(G,G)xa and Θb =
e(G,G)xb . The public key pk = (G,Θa, Θb) and the secret key is sk = (xa, xb).
Choose a hash function H1 : {0, 1}∗ → Zp (a random oracle).

Encryption: Plaintext Δ ∈ GM can be encrypted by choosing ta, tb ∈R Z∗
p

and computing (Ea, Λa) = (taG,ΔΘta
a), (Eb, Λb) = (tbG,ΔΘtb

b) and a non-
interactive zero-knowledge proof ς = (c, ρa, ρb) of equality of plaintexts between
(Ea, Λa) and (Eb, Λb). The proof ς can be computed by choosing wa, wb ∈R Zp

and computing c = H1(G||Θa||Θb||Ea||Λa||Eb||Λb||waG||wbG||Θwa
a Θwb

b), ρa =
wa − tac and ρb = wb + tbc. The ciphertext is (Ea, Λa, Eb, Λb, ς).

Decryption: Given a ciphertext (Ea, Λa, Eb, Λb, ς), first check the validity of ς by
verifying

c
?= H1(G||Θa||Θb||Ea||Λa||Eb||Λb||ρaG + cEa||ρbG− cEb||Θρa

a Θρb

b (Λa/Λb)c)

then compute the plaintext Δ = Λa/e(Ea, G)xa = Λb/e(Eb, G)xb .

Security: The security of El GamalBP2 system is stated in Theorem 1.

Theorem 1. El GamalBP2 encryption scheme is IND-CCA if DBDH assump-
tion holds, in the random oracle model.

3 The Group Signature Scheme

3.1 Overview

Our group signature scheme is built upon two ordinary signature schemes. The
first one is used in the Join, Iss protocol for the issuer to generate a signature
(ai, Si) for each xi, which is randomly generated by both a member and the
issuer, but known only to the member. The second ordinary signature scheme
is used in the GSig algorithm as the non-interactive version of a zero-knowledge
protocol, that proves the signer’s knowledge of (ai, Si) and xi. The security of
the two signature schemes underlies the security of the group signature scheme.

Our group signature scheme is constructed in cyclic groups with bilinear
mappings. For simplicity, we present the scheme when the groups G1 and G2

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes 377

are the same, however, it can be easily modified for the general case when G1 �=
G2. The users do not perform any pairing operation when signing, but pairing
operation play an important role in the verification algorithm GVf. Intuitively,
bilinear pairings allow a party, given A,B, C,D ∈ G1, to prove that logAB =
logCD without knowing logAB or logAC. This is not possible in cyclic groups
without bilinear pairings and where the DDH assumption holds.

3.2 Descriptions

We describe our group signature scheme according to the BSZ04 model, which
is omitted in this paper due to space limitation. Our group signature scheme
consists of two group managers (the issuer and the opener), and users with
unique identities i ∈ N (the set of positive integers). Each user can join the group
and become a group member. The scheme is specified as a tuple GS1 =(GKg,
UKg, Join, Iss, GSig, GVf, Open, Judge) of polynomial-time algorithms which are
defined as follows. We assume that the group size and the number of queries
asked by the adversary are polynomially-bounded by the security parameter l.

GKg: Suppose l is a security parameter and the Bilinear Pairing Instance Gen-
erator G generates a tuple of bilinear pairing parameters t = (p,G1,GM , e, P)←
G(1l), that is also the publicly shared parameters. Choose a hash function
H2 : {0, 1}∗ → Zp, which is assumed to be a random oracle in the security
proofs. Choose P0, G,H ∈R G1, x, x′

a, x
′
b ∈R Z∗

p and compute Ppub = xP , Θa =
e(G,G)x′

a and Θb = e(G,G)x′
b . The group public key is gpk = (P, P0, Ppub,H, G,

Θa, Θb), the issuing key is ik = x, and the opening key is ok = (x′
a, x

′
b).

UKg: This algorithm generates keys that provide authenticity for messages sent
by the user in the (Join, Iss) protocol. This algorithm is the key generation algo-
rithm KS of any digital signature scheme (KS , Sign, V er) that is unforgeable
against chosen message attacks (UNF-CMA). A user i runs the UKg algorithm
that takes as input a security parameter 1l and outputs a personal public and
private signature key pair (upk[i], usk[i]). Public Key Infrastructure (PKI) can
be used here. Although any UNF-CMA signature scheme can be used, but using
schemes, whose security is based on DBDH or SDH assumptions, will reduce
the underlying assumptions of our group signature scheme. One example of such
scheme is in [5].

Join, Iss: In this protocol, a user i and the issuer first jointly generate a random
value xi ∈ Z∗

p whose value is only known by the user. The issuer then generates
(ai, Si) for the user so that e(aiP + Ppub, Si) = e(P, xiP + P0). The user uses
usk[i] to sign his messages in the protocol. Note that the formal model assumes
the communication to be private and authenticated. We also assume that the
communication is protected from replay attacks. The protocol is as follows.

1. user i −→ issuer: I = yP + rH, where y, r ∈R Z∗
p.

2. user i←− issuer: u, v ∈R Z∗
p.

3. The user computes xi = uy + v, Pi = xiP .

378 L. Nguyen and R. Safavi-Naini

4. user i −→ issuer: Pi and a proof of knowledge of (xi, r
′) such that Pi = xiP

and vP + uI − Pi = r′H (see [12] for this proof).
5. The issuer verifies the proof, then chooses ai ∈R Z∗

p different from all corre-
sponding elements previously issued, and computes Si = 1

ai+x (Pi + P0).
6. user i←− issuer: ai, Si.
7. The user computes Δi = e(P, Si), verifies if e(aiP + Ppub, Si) = e(P, xiP +

P0), and stores the private signing key gsk[i] = (xi, ai, Si, Δi). Note that
only the user knows xi. The issuer also computes Δi and makes an entry in
the table reg: reg[i] = (i,Δi, 〈Join, Iss〉 transcript).

GSig: A group signature of a user i shows his knowledge of (ai, Si) and a secret
xi such that: e(aiP + Ppub, Si) = e(P, xiP + P0). The signature does not reveal
any information about his knowledge to anyone, except for the opener, who can
compute Δi by decrypting an encryption of that value. The algorithm for a user
i to sign a message m ∈ {0, 1}∗ is as follows.

1. Encrypt Δi by El GamalBP2 with public key (G,Θa, Θb) as (Ea = tG,Λa =
ΔiΘ

t
a, Eb, Λb, ς).

2. Perform the non-interactive version of a protocol, which we call the Signing
protocol, as follows. Generate r1, ..., r3, k0, ..., k5 ∈R Z∗

p and compute
(a) U = r1(aiP + Ppub); V = r2Si; W = r1r2(xiP + P0); X = r2U + r3H;

T1 = k1P + k2Ppub + k0H; T2 = k3P + k2P0; T3 = k4U + k0H; T4 =
k5G− k4Ea; Π = Θk5

a Λ−k4
a .

(b) c = H2(gpk||Ea||Λa||Eb||Λb||ς||U ||V ||W ||X ||T1||...||T4||Π||m).
(c) Compute in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2ai; s2 = k2 + cr1r2;

s3 = k3 + cr1r2xi; s4 = k4 + cr2; s5 = k5 + cr2t.
3. Output the signature (c, s0, ..., s5,U, V,W,X, Ea, Λa, Eb, Λb, ς) for m.

GVf: The verification algorithm for m, (c, s0, ..., s5,U, V,W,X, Ea, Λa, Eb, Λb, ς)
outputs accept if and only if verifying the proof ς outputs accept and the following
two equations hold: e(U, V) = e(P,W) and c = H2(P ||P0||Ppub||H||G||Θ||Ea||Λa

||Eb||Λb||ς||U ||V ||W ||X||s1P +s2Ppub+s0H−cX||s3P +s2P0−cW ||s4U +s0H−
cX||s5G− s4Ea||Θs5

a Λ−s4
a e(P, cV)||m).

Open: To open m and its valid signature (c, s0, ..., s5,U, V,W,X, Ea, Λa, Eb, Λb,
ς) to find the signer, the opener performs the following steps.

1. Use GVf algorithm to check the signature’s validity. If the algorithm rejects,
return (0, ε), where ε denotes an empty string.

2. Compute Δi = Λae(Ea, G)−x′
a and find the corresponding entry i in the

table reg. If no entry is found, return (0, ε).
3. Return reg[i] and a non-interactive zero-knowledge proof # of knowledge of

x′
a so that Θa = e(G,G)x′

a and Λa/Δi = e(Ea, G)x′
a (see [12] for this proof).

Judge: On an output by the Open algorithm for a message m and its signature
ω, the Judge algorithm is performed as follows:

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes 379

1. If Open algorithm outputs (0, ε), run GVf algorithm on m,ω. If GVf rejects,
return accept; otherwise, return reject.

2. If Open algorithm outputs (reg[i], #), return reject if one of the following
happens: (i) on m,ω, GVf algorithm rejects; (ii) verification of the proof
rejects; (iii) the 〈Join, Iss〉 transcript is invalid with regard to upk[i]; (iv)
Δi �= e(P, Si) where Si is extracted from the 〈Join, Iss〉 transcript. Otherwise,
return accept.

Remarks:

– Our scheme is trapdoor-free. This improves efficiency and manageability, and
various groups can share the same initial set-up p,G1,GM , e, P, P0, G,H.

– Our Signing protocol achieves honest verifier perfect zero-knowledge and
does not rely on any complexity assumption. This indicates a higher level of
unconditional security: from a signature, an adversary with unlimited power
(but without access to the reg table) can compute only a part of the signer’s
registration information (Si), whereas, in the ACJT00 and KY04 schemes,
the adversary can find all parts of the signer’s private signing key.

3.3 Security Proofs

Theorem 2. The group signature scheme GS1 provides Correctness.

Theorem 3. The group signature scheme GS1 provides Anonymity in the ran-
dom oracle model if the Decisional Bilinear Diffie-Hellman assumption holds.

Theorem 4. The group signature scheme GS1 provides Traceability in the ran-
dom oracle model if the q-Strong Diffie-Hellman assumption holds, where q is
the upper bound of the group size.

Theorem 5. The group signature scheme GS1 provides Non-frameability in the
random oracle model if the Discrete Logarithm assumption holds over the group
G1 and the digital signature scheme (KS, Sign, V er) is UNF-CMA.

Proofs of these theorems can be found in the full version [25]. We provide
here the proofs of two important properties that underlie these theorems, i. e.
the Zero-knowledge property of the Signing protocol in GSig algorithm and the
Coalition-Resistance of GS1 and GS2. In our definition, Coalition-Resistance
intuitively means that a colluding group of signers, with the knowledge of the
opening key and access to some oracles, should not be able to generate a new valid
user private signing key. For a group signature scheme GS, a PPT adversary A,
a PPT predicate U that can determine the validity of a user private signing key,
and any security parameter l ∈ N, the formula of the experiment for Coalition-
Resistance is as follows.

Experiment Expcoal.re
GS,A,U (l)

(gpk, ik, ok)← GKg(1l); CU← ∅; HU← ∅
gsk′ ← A(gpk, ok : CrptU(·, ·), SndToI(·, ·), AddU(·), RReg(·), USK(·))
If gsk′ ∈ {gsk[i]| i ∈ CU ∪ HU} then return 0 else return U(gpk, gsk′)

380 L. Nguyen and R. Safavi-Naini

HU is a set of honest users; CU - a set of corrupted users; GSet - a set of
message-signature pairs ; AddU(·) - add user oracle; CrptU(·, ·) - corrupt user
oracle; SndToI(·, ·) - send to issuer oracle; USK(·) - user secret keys oracle;
RReg(·) - read registration table oracle. The group signature scheme GS pro-
vides Coalition-Resistance if the following function Advcoal.re

GS,A,U (l) is negligible.

Advcoal.re
GS,A,U (l) = Pr[Expcoal.re

GS,A,U (l) = 1]

Lemma 1. The interactive Signing protocol underlying the GSig algorithm is a
(honest-verifier) perfect zero-knowledge proof of knowledge of (ai, Si), xi and t
such that e(aiP + Ppub, Si) = e(P, xiP + P0), Ea = tG and Λa = e(P, Si)Θt

a.

Proof. The proof for completeness is straightforward. The proofs of Soundness
and Zero-knowledge property are as follows.

Soundness: If the protocol accepts with non-negligible probability, we show that
the prover must have the knowledge of (ai, Si), xi and t satisfying the rela-
tions stated in the theorem. Suppose the protocol accepts for the same commit-
ment (U, V,W,X, T1, ..., T4,Π), two different pairs of challenges and responses
(c, s0, ...s5) and (c′, s′

0, ..., s
′
5). Let fi = si−s′

i

c−c′ , i = 0, ..., 5, then: X = f1P +
f2Ppub + f0H; W = f3P + f2P0; X = f4U + f0H; Ea = f5f

−1
4 G; e(P, V) =

Θ−f5
a Λf4

a ; so U = f1f
−1
4 P + f2f

−1
4 Ppub.

Let ai = f1f
−1
2 , Si = f−1

4 V , xi = f3f
−1
2 , t = f5f

−1
4 , then Ea = tG, Λa =

e(P, Si)Θt
a and e(aiP +Ppub, Si) = e(P, xiP +P0), as e(U, V) = e(P,W). So the

prover have the knowledge of (ai, Si), xi and t satisfying the relations.

Zero-knowledge: The simulator chooses c, s0, ...s5 ∈R Zp, b ∈R Z∗
p, X, V ∈R G1

and compute U = bP , W = bV , T1 = s1P + s2Ppub + s0H − cX, T2 = s3P +
s2P0− cW , T3 = s4U + s0H − cX, T4 = s5G− s4Ea and Π = Θs5

a Λ−s4
a e(P, cV).

We can see that the distribution of the simulation is the same as the distribution
of the real transcript.

Lemma 2. If the q-SDH assumption holds, then the group signature schemes
GS1 and GS2, whose group sizes are bounded by q, provide Coalition-Resistance,
where the predicate U is defined as:

U(〈P, P0, Ppub, ...〉, 〈xi, ai, Si, Δi〉) = 1⇔ e(aiP + Ppub, Si) = e(P, xiP + P0).

Proof. We prove the lemma for both GS1 and GS2. Suppose there is a PPT
adversary A that can break the Coalition-Resistance property of GS1 or GS2
with respect to the predicate U defined above. Let the set of private signing keys
generated during A’s attack be {(xi, ai, Si, Δi)}qi=1 and let his output be a new
private signing key (x∗, a∗, S∗, Δ∗) with non-negligible probability (that means
(a∗, S∗) /∈ {(ai, Si)}qi=1). We show a construction of a PPT adversary B that can
break the q-SDH assumption. Suppose a tuple challenge = (Q, zQ, . . . , zqQ) is
given, where z ∈R Z∗

p; we show that B can compute (c, 1/(z+c)Q), where c ∈ Zp

with non-negligible probability. We consider two cases.

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes 381

Case 1: This is a trivial case, where A outputs S∗ ∈ {S1, ..., Sq} with non-
negligible probability. In this case, B chooses x, x′

a, x
′
b ∈R Z∗

p and G,H ∈R G1,
gives A the group signature public key (P = Q, P0 = zQ, Ppub = xP,H, G,Θa =
e(G,G)x′

a , Θb = e(G,G)x′
b) and the opening key (x′

a, x
′
b) (no x′

b, Θ
′
b in case of

GS2), and simulates a set of possible users. Then B can simulate all oracles
that A needs to access. Suppose a set of private signing keys {(xi, ai, Si, Δi)}qi=1
is generated and A outputs a new (x∗, a∗, S∗, Δ∗) with non-negligible proba-
bility such that S∗ ∈ {S1, ..., Sq}. Suppose S∗ = Sj , where j ∈ {1, ..., q}, then

1
a∗+x (x∗P +P0) = 1

aj+x (xjP +P0), so (aj−a∗)P0 = (a∗xj−ajx
∗ +xjx−x∗x)P .

Therefore, z is computable by B from this, and so is (c, 1/(z + c)Q), for any
c ∈ Zp.

Case 2: This is when the first case does not hold. That means A outputs S∗ /∈
{S1, ..., Sq} with non-negligible probability. Then B plays the following game:

1. Generate α, ai, xi ∈R Z∗
p, i = 1, ..., q, where ais are different from one an-

other, then choose m ∈R {1, ..., q}.
2. Let x = z − am (B does not know x), then the following P, Ppub, P0 are

computable by B from the tuple challenge.

P =
q∏

i=1,i �=m

(z + ai − am)Q

Ppub = xP = (z − am)
q∏

i=1,i �=m

(z + ai − am)Q

P0 = α

q∏
i=1

(z + ai − am)Q− xm

q∏
i=1,i �=m

(z + ai − am)Q

3. Generate x′
a, x

′
b ∈R Z∗

p and G,H ∈R G1 and give A the group signature pub-
lic key (P, P0, Ppub,H, G,Θa = e(G,G)x′

a , Θb = e(G,G)x′
b) and the opening

key (x′
a, x

′
b) (no x′

b, Θ
′
b in case of GS2) and simulates a set of possible users.

4. With the capabilities above, B can simulate oracles CrptU(·, ·), RReg(·) and
USK(·)) that A needs to access. For AddU(·) or SndToI(·, ·), B simulates the
addition of an honest or corrupted user i as follows. As playing both sides of
the Join, Iss protocol or being able to extract information fromA, B simulates
the protocol as specified so that the prepared ai, xi above are computed in
the protocol to be the corresponding parts of the user i’s private signing key.
B can compute Si as follows:
– If i = m, then Sm = 1

am+x (xmP + P0) = α
∏q

i=1,i �=m(z + ai − am)Q.
This is computable from the tuple challenge.

– If i �= m, then Si = 1
ai+x (xiP + P0) = (xi − xm)

∏q
j=1,j �=m,i(z + aj −

am)Q + α
∏q

j=1,j �=i(z + aj − am)Q. This is computable from the tuple
challenge.

5. Get the output (x∗, a∗, S∗, Δ∗) from A, where S∗ = 1
a∗+x (x∗P + P0) =

1
z+a∗−am

(αz + x∗ − xm)
∏q

i=1,i �=m(z + ai − am)Q

382 L. Nguyen and R. Safavi-Naini

We can see that the case αz+x∗−xm = α(z+a∗−am) happens with negligible
probability, as it results in S∗ = Sm. So the case αz+x∗−xm �= α(z+ a∗− am)
happens with non-negligible probability ε1. Suppose in this case, the probability
that a∗ ∈ {a1, ..., aq} is ε2. Then the probability that a∗ /∈ {a1, ..., aq}\{am} is
ε1 − q−1

q ε2 (as m ∈R {1, ..., q}), which is also non-negligible if q is polynomially
bound by the security parameter l. If αz + x∗ − xm �= α(z + a∗ − am) and
a∗ /∈ {a1, ..., aq}\{am}, then 1

z+a∗−am
Q is computable from the tuple challenge

and S∗ and so B can compute (c, 1
z+cQ), where c = a∗ − am.

4 Variations

4.1 Weak Anonymity Requirement

We introduce this security requirement to account for a class of group signa-
ture schemes, including ACJT00 scheme, which can not be proved to achieve
Anonymity requirement. Weak Anonymity requirement is defined exactly the
same as Anonymity requirement, except that the adversary does not have ac-
cess to the Open(·, ·) oracle. In practice, when the opener is assumed to be
uncorrupted as in Anonymity requirement, it could be hard for the adversary to
have access to the Open oracle. As Open oracle is not used in the conventional
list of requirements, the same argument as in [4] shows that Weak anonymity,
Traceability and Non-frameability are sufficient to imply the conventional list of
requirements.

4.2 A Variant Group Signature Scheme, GS2

The scheme GS2 is the same as GS1, except that in the signature, Δi is encrypted
by El GamalBP1 encryption scheme instead of El GamalBP2. So in GKg, x′

b and
Θb are not generated and in GSig, Δi is encrypted by El GamalBP1 public key
(G,Θa) as (Ea = tG,Λa = ΔiΘ

t
a). So there is no Eb, Λb or ς in the signature

and in the executions of GSig, GVf, Open and Judge algorithms. Security of GS2
is stated in Theorem 6, whose proof is shown in the full version [25].

Theorem 6. GS2 provides Correctness. GS2 provides Weak Anonymity if the
Decisional Bilinear Diffie-Hellman assumption holds. GS2 provides Traceability
in the random oracle model if the q-Strong Diffie-Hellman assumption holds,
where q is the upper bound of the group size. GS2 provides Non-frameability in
the random oracle model if the Discrete Logarithm assumption holds over the
group G1 and the digital signature scheme (KS, Sign, V er) is UNF-CMA.

4.3 Do ACJT00 and GS2 Schemes Provide Anonymity?

We first state the security of the ACJT00 scheme in Theorem 7. The ACJT00
scheme refers to the scheme proposed in [1], plus some simple extensions to
accommodate the Judge algorithm (defining the UKg algorithm as in our scheme,
using usk[i] to sign messages in the Join, Iss protocol, and verifying signatures
in the Open and Judge algorithms). The methodology of the proof for Theorem

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes 383

7 is very similar to the proof of Theorem 6, and the exact details of each step
can be extracted from the proofs in [19].

Theorem 7. The ACJT00 scheme provides Correctness; Weak Anonymity if
the DDH-Compo-KF assumption holds; Traceability in the random oracle model
if the Strong RSA assumption holds; Non-frameability in the random oracle
model if the Discrete Logarithm assumption holds over the quadratic residues
group of a product of two known large primes, and the digital signature scheme
for UKg is UNF-CMA. (See [19] for assumptions used in this theorem).

It is an open question if the ACJT00 and GS2 schemes provide Anonymity,
in line with the open problem whether a combination of an El Gamal encryption
(IND-CPA) and a Schnorr proof of knowledge of the plaintext can provide IND-
CCA. This combination has been proved to provide IND-CCA in the random
oracle model, but the proof has required either another very strong assumption
[29] or is in generic model [27]. In ACJT00 and GS2 signatures, the identity-
bound information is encrypted by variations of El Gamal encryption and the
other part of the signatures proves knowledge of the information. The Open
oracle plays a similar role as the Decryption oracle in the model of IND-CCA.

4.4 Variants Based on the DDH Assumption

We can build variants of GS1 and GS2, whose security is based on the DDH as-
sumption over the group GM instead of the DBDH (DDHV) assumption. Specif-
ically, Δi will be encrypted by the normal El Gamal encryption scheme or the
twin-paradigm extension of El Gamal encryption scheme (proposed in [17]). The
Open algorithm in these variant schemes requires one less pairing operation than
in GS1 and GS2.

We can actually provide a group signature with 4 options, where the users,
the issuer and the opener use the same keys for all options. The first two options
are GS1 and GS2, offering smaller signature size and more efficient signing and
verification. The last two options are the variant schemes based on the normal
DDH assumption, with more efficient opening.

5 A Traceable Signature Scheme

We extend GS2 to be a traceable signature scheme T S =(Setup, Join, Sign,
Verify, Open, Reveal, Trace, Claim, Claim-Verify) with similar advantages over the
only other traceable signature scheme [18].

Setup: This is the same as GKg for GS2, but the group public key also includes
a Q ∈R Z∗

p. The group public key is gpk = (P, P0, Ppub,Q,H, G,Θa), the issuing
key is ik = x, and the opening key is ok = x′

a. Choose a hash function H3 :
{0, 1}∗ → Zp (a random oracle).

Join: This protocol is the same as the Join, Iss protocol in Section 3.2, except for
the following. The GM also chooses x̄i ∈R Z∗

p, computes Si = 1
ai+x (Pi+x̄iQ+P0)

384 L. Nguyen and R. Safavi-Naini

at step 5 and sends the user ai, Si, x̄i at step 6. In the last step, the user computes
Δi = e(P, Si), verifies if e(aiP +Ppub, Si) = e(P, xiP + x̄iQ+P0), and stores the
private signing key gsk[i] = (xi, x̄i, ai, Si, Δi). The GM also computes Δi and
stores it with the protocol’s transcript.

Sign: The algorithm for an user i to sign a message m ∈ {0, 1}∗ is as follows.

1. Compute Ea = tG, Λa = ΔiΘ
t
a, Υ1 = Θx̄ir

a , Υ2 = Θr
a, Υ3 = Θxir

′
a and

Υ4 = Θr′
a , where t, r, r′ ∈R Z∗

p.
2. Generate r1, ..., r3, k0, ..., k6 ∈R Z∗

p and compute
(a) U = r1(aiP + Ppub); V = r2Si; W = r1r2(xiP + x̄iQ + P0); X = r2U +

r3H; T1 = k1P +k2Ppub+k0H; T2 = k3P +k6Q+k2P0; T3 = k4U +k0H;
T4 = k5G− k4Ea; Π = Θk5

a Λ−k4
a ; Ψ1 = Υ−k2

1 Υ k6
2 ; Ψ2 = Υ−k2

3 Υ k3
4 .

(b) c = H3(P ||P0||Ppub||H||G||Θ||Ea||Λa||Eb||Λb||ς||U ||V ||W ||X||T1||...||T4
||Π||Ψ1||Ψ2||m).

(c) Compute in Zp: s0 = k0 + cr3; s1 = k1 + cr1r2ai; s2 = k2 + cr1r2;
s3 = k3 + cr1r2xi; s4 = k4 + cr2; s5 = k5 + cr2t; s6 = k6 + cr1r2x̄i

3. Output the signature (c, s0, ..., s6,U, V,W,X, Ea, Λa, Υ1, Υ2, Υ3, Υ4) for m.

Verify: The verification algorithm for m, (c, s0, ..., s6,U, V,W,X, Ea, Λa, Υ1, Υ2,
Υ3, Υ4) outputs accept if and only if the following two equations hold: (i) e(U, V)
= e(P,W) and (ii) c = H3(P ||P0||Ppub||H||G||Θ||Ea||Λa||Eb||Λb||ς||U ||V ||W ||X
||s1P +s2Ppub +s0H−cX||s3P +s6Q+s2P0−cW ||s4U +s0H−cX||s5G−s4Ea

||Θs5
a Λ−s4

a e(P, cV)||Υ−s2
1 Υ s6

2 ||Υ−s2
3 Υ s3

4 ||m)

Open: To open m and its valid signature (c, s0, ..., s5,U, V,W,X, Ea, Λa, Υ1, Υ2,
Υ3, Υ4) to find the signer, the GM computes Δi = Λae(Ea, G)−x′

a and finds the
corresponding entry i in the table of stored Join transcripts. The GM returns i
and a non-interactive zero-knowledge proof # of knowledge of x′

a so that Θa =
e(G,G)x′

a and Λa/Δi = e(Ea, G)x′
a (see [12] for this proof).

Reveal and Trace: Given the Join transcript of user i, the GM recovers the
tracing trapdoor tracei = x̄i. Given tracei and a message-signature pair, a des-
ignated party recovers Υ1 and Υ2 and checks if Υ1 = Υ x̄i

2 . If the equation holds,
the tracer concludes that user i has produced the signature.

Claim and Claim-Verify: Given a message-signature pair, a user i can claim
that he is the signer by recovering Υ3 and Υ4 and producing a non-interactive
proof of knowledge of the discrete-log of Υ3 base Υ4. Any party can run Claim-
Verify by verifying the signature and the proof.

Security. The security of T S is stated in Theorem 8. The proof of this theorem
uses techniques similar to those in [18] and arguments similar to the proofs for
our group signature schemes.

Theorem 8. In the random oracle model, T S provides (i) security against
misidentification attacks based on the q-SDH and the DDH assumptions, where
q is the upper bound of the group size; (ii) security against anonymity attacks

Efficient and Provably Secure Trapdoor-Free Group Signature Schemes 385

based on the DBDH and DDH assumptions; (iii) security against framing attacks
based on the DL assumption.

6 Efficiency

The sizes of signatures and keys in our schemes are much shorter than those used
in the Strong-RSA-based schemes at a similar level of security. This difference
grows when higher level of security is required. In this section, we compare sizes
in our new group signature schemes with those in ACJT00 scheme. We assume
that our scheme is implemented using an elliptic curve or hyperelliptic curve
over a finite field. p is a 170-bit prime, G1 is a subgroup of an elliptic curve
group or a Jacobian of a hyperelliptic curve over a finite field of order p. GM is a
subgroup of a finite field of size approximately 21024. A possible choice for these
parameters can be found in [8], where G1 is derived from the curve E/GF (3ι)
defined by y2 = x3 − x + 1. We assume that system parameters in ACJT00
scheme are ε = 1.1, lp = 512, k = 160, λ1 = 838, λ2 = 600, γ1 = 1102 and
γ2 = 840. We summarize the result in Table 1.

Table 1. Comparison of sizes (in Bytes)

Signature gpk gsk ik ok Security
ACJT00 1087 768 370 128 128 Weak Anonymity
GS1 597 363 192 22 44 Anonymity
GS2 384 235 192 22 22 Weak Anonymity

Acknowledgements. Authors thank anonymous referees of Asiacrypt 2004 for
constructive comments and Fangguo Zhang for helpful discussions.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. CRYPTO 2000, Springer-Verlag, LNCS
1880, pp. 255-270.

2. G. Ateniese, and B. de Medeiros. Efficient Group Signatures without Trapdoors.
ASIACRYPT 2003, Springer-Verlag, LNCS 2894, pp. 246-268.

3. G. Ateniese, and B. de Medeiros. Security of a Nyberg-Rueppel Signature Variant.
Cryptology ePrint Archive, Report 2004/093, http://eprint.iacr.org/.

4. M. Bellare, H. Shi, and C. Zhang. Foundations of Group Signatures: The Case of
Dynamic Groups. Cryptology ePrint Archive: Report 2004/077.

5. D. Boneh, and X. Boyen. Short Signatures Without Random Oracles. EURO-
CRYPT 2004, Springer-Verlag, LNCS 3027, pp. 56-73.

6. D. Boneh, and X. Boyen. Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. EUROCRYPT 2004, Springer-Verlag, LNCS 3027, pp.
223-238.

386 L. Nguyen and R. Safavi-Naini

7. D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. CRYPT0 2004,
Springer-Verlag, LNCS, to appear.

8. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
ASIACRYPT 2001, Springer-Verlag, LNCS 2248, pp.514-532.

9. J. Camenisch. Efficient and generalized group signatures. EUROCRYPT 1997,
Springer-Verlag, LNCS 1233, pp. 465-479.

10. J. Camenisch, and A. Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. CRYPTO 2002, Springer-Verlag,
LNCS 2442, pp. 61-76.

11. J. Camenisch, and A. Lysyanskaya. Signature Schemes and Anonymous Credentials
from Bilinear Maps. CRYPTO 2004, Springer-Verlag, LNCS, to appear.

12. J. Camenisch, and M. Michels. A group signature scheme with improved efficiency.
ASIACRYPT 1998, Springer-Verlag, LNCS 1514.

13. J. Camenisch, and M. Stadler. Efficient group signature schemes for large groups.
CRYPTO 1997, Springer-Verlag, LNCS 1296.

14. D. Chaum, and E. van Heyst. Group signatures. CRYPTO 1991, LNCS 547,
Springer-Verlag.

15. L. Chen, and T. P. Pedersen. New group signature schemes. EUROCRYPT 1994,
Springer-Verlag, LNCS 950, pp. 171-181.

16. A. Fiat, and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. CRYPTO 1986, Springer-Verlag, LNCS 263, pp. 186-194.

17. P. Fouque and D. Pointcheval, Threshold Cryptosystems Secure against Chosen-
Ciphertext Attacks, ASIACRYPT 2001, Springer-Verlag, LNCS 2248, pp. 351-368.

18. A. Kiayias, Y. Tsiounis and M. Yung. Traceable Signatures. EUROCRYPT 2004,
Springer-Verlag, LNCS 3027, pp. 571-589.

19. A. Kiayias, and Moti Yung. Group Signatures: Provable Security, Efficient Con-
structions and Anonymity from Trapdoor-Holders. Cryptology ePrint Archive: Re-
port 2004/076.

20. J. Killian, and E. Petrank. Identity escrow. CRYPTO 1998, Springer-Verlag, LNCS
1642, pp. 169-185.

21. S. Kim, S. Park, and D. Won. Convertible group signatures. ASIACRYPT 1996,
Springer-Verlag, LNCS 1163, pp. 311-321.

22. A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. SAC 1999,
Springer-Verlag, LNCS 1758.

23. M. Michels. Comments on some group signature schemes. TR-96-3-D, Department
of Computer Science, University of Technology, Chemnitz-Zwickau, Nov. 1996.

24. S. Mitsunari, R. Sakai, and M. Kasahara. A new traitor tracing. IEICE Trans. Vol.
E85-A, No.2, pp. 481-484, 2002.

25. L. Nguyen, and R. Safavi-Naini. Efficient and Provably Secure Trapdoor-free Group
Signature Schemes from Bilinear Pairings. Full version.

26. L. Nguyen. Accumulators from Bilinear Pairings and Applications. CT-RSA 2005,
Springer-Verlag, LNCS, to appear.

27. P. Schnorr and M. Jakobsson. Security of signed El Gamal encryption. ASI-
ACRYPT 2000, Springer-Verlag, LNCS 1976, pp. 73-89.

28. V. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear
map. DRM Workshop 2003.

29. Y. Tsiounis and M. Yung. On the security of El Gamal based encryption. PKC
1998, Springer-Verlag, LNCS 1431, pp. 117-134.

30. F. Zhang, R. Safavi-Naini and W. Susilo. An Efficient Signature Scheme from
Bilinear Pairings and Its Applications. PKC 2004, Springer-Verlag, LNCS 2947,
pp. 277-290.

On the Security of
MOR Public Key Cryptosystem

In-Sok Lee1,�,†, Woo-Hwan Kim1,�,†, Daesung Kwon2,
Sangil Nahm3,†, Nam-Seok Kwak1,�,†, and Yoo-Jin Baek4,†

1 ISaC, Department of Mathematics, Seoul National Univ., Seoul, 151-747, Korea
{islee, whkim, kwarc}@math.snu.ac.kr

2 National Security Research Institute (NSRI), Taejon, 305-350, Korea
ds kwon@etri.re.kr

3 Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
snahm@purdue.edu

4 Multimedia Lab., Samsung Electronics Co., Suwon, 442-742, Korea
yoojin.baek@samsung.com

Abstract. For a finite group G to be used in the MOR public key cryp-
tosystem, it is necessary that the discrete logarithm problem(DLP) over
the inner automorphism group Inn(G) of G must be computationally
hard to solve. In this paper, under the assumption that the special con-
jugacy problem of G is easy, we show that the complexity of the MOR
system over G is about log |G| times larger than that of DLP over G
in a generic sense. We also introduce a group-theoretic method, called
the group extension, to analyze the MOR cryptosystem. When G is con-
sidered as a group extension of H by a simple abelian group, we show
that DLP over Inn(G) can be ‘reduced’ to DLP over Inn(H). On the
other hand, we show that the reduction from DLP over Inn(G) to DLP
over G is also possible for some groups. For example, when G is a nilpo-
tent group, we obtain such a reduction by the central commutator attack.

Keywords: MOR cryptosystem, discrete logarithm problem, group ex-
tension, central commutator attack.

1 Introduction

At Crypto 2001, Paeng et al. [8] proposed the MOR public key cryptosystem
using finite non-abelian groups. For a group G to be used in the MOR public key
cryptosystem, it is necessary that the discrete logarithm problem(DLP) over the
inner automorphism group Inn(G) of G must be computationally hard to solve,
and there must be an efficient way to represent group elements as products of
the specified generators of G. Furthermore, we expect the security of the MOR
system to be something ‘mor(e)’ than that of DLP over G. Also it should be

� Supported in part by KRF grant #2004-070-C00001 and BK21 Project in 2004.
† Partially supported by NSRI.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 387–400, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

388 I.-S. Lee et al.

noted that the difficulty of DLP depends not only on the algebraic structure of
the group, but also on how elements of the group are represented.

Despite of many cryptographic advantages(see [8]) of the MOR cryptosystem,
the groups proposed so far have turned out to be unsatisfactory(see [7, 9, 14]).

In this paper, we are not trying to suggest new candidates for the groups
G to be used in the MOR cryptosystem. We would rather intend to reveal the
reasons why it is not easy to find good candidates for G. Thus, we hope that this
paper helps searching for suitable groups for the MOR system.

First, in Section 2, we compute the complexity of finding the secret keys of
MOR system in a generic sense. Under the assumption that the special conju-
gacy problem of G is easy, we show that the complexity of MOR system over G
is about log |G| times larger than that of DLP over G in a generic sense. This
result is somewhat unexpected, since our intuitive expectation for the generic
complexity of MOR system is about |Z(G)| times larger than that of DLP
over G.

Next, in Section 3, using the well-known theory of group extensions, we show
that it is possible to ‘reduce’ the problem of finding the secret keys of MOR
system over G to that of the MOR system over (smaller) subgroups H of G. Our
method is a generalization of various attacks given in [7, 9, 14].

In Section 4, we intend to find a reduction algorithm, which reduces MOR
system over G to DLP over G. (If this reduction were efficient enough, MOR
system would have less advantage in security than other public key cryptosystem
based on DLP over G.) We show that this reduction is possible for the groups
which are nilpotent or ‘nearly’ nilpotent. We call our reduction the central com-
mutator attack and we note that this attack is generic.

In this paper, we use the following standard notations : If N is a normal
subgroup of G and g ∈ G, the order of g is denoted by |g| and the image of g
in G/N is denoted by g. We let Inn(g) be the inner automorphism of G induced
by g, that is,

Inn(g)(x) = g−1xg, (x ∈ G)

and we let Inn(G) = {Inn(g) | g ∈ G} be the subgroup of inner automorphisms
in Aut(G). We note that Inn(G) ≈ G/Z(G), where

Z(G) = {z ∈ G | zg = gz for all g ∈ G}

is the center of G.

2 MOR Cryptosystem

2.1 Description of MOR Cryptosystem

The MOR cryptosystem [8] is described as follows.

– Bob’s Public key : (Inn(g), Inn(gs))
– Bob’s Secret key : An integer s(mod |g|), where g ∈ G/Z(G)

On the Security of MOR Public Key Cryptosystem 389

It should be noted that for a fixed generating set {γi | i ∈ I} of G, a public
key (Inn(g), Inn(gs)) = (ϕ,ϕs) is described by the data {ϕ(γi)} and {ϕs(γi)}.

Encryption

1. Alice chooses a random integer r and computes (Inn(gs))r = Inn(gsr).
2. Alice computes E = Inn(gsr)(M).
3. Alice computes μ = (Inn(g))r = Inn(gr).
4. Alice sends (E, μ) to Bob.

Decryption

1. Bob computes μ−s = Inn(g−sr).
2. Bob recovers M = μ−s(E).

2.2 MOR Cryptosystem and Related Problems

For simplicity, let us write DLP(G) for DLP over G. Thus DLP(Inn(G)) stands
for DLP over the inner automorphism group Inn(G) of G.

The security of MOR system is related with the following problems :

– [Special Conjugacy Problem] : For a given ϕ ∈ Inn(G), find h ∈ G such that
Inn(h) = ϕ.

– [DLP(Inn(G))] : Given ϕ,ϕs ∈ Inn(G) for some s ∈ Z, find s(mod |ϕ|).

Throughout this paper, let us assume(agree(?)) that the special conjugacy
problems over G are not hard to solve. (Otherwise, one can exploit the cryptosys-
tem using the hardness of the special conjugacy problem over G.) Therefore, for
given Inn(g), we may find g′ ∈ G satisfying Inn(g) = Inn(g′). It means that
g′ = gz for some z ∈ Z(G). In this case, DLP(Inn(G)) can be restated as fol-
lows :

Find an integer s(mod |g|) for given g, gsz ∈ G, where z ∈ Z(G),

or
Find an integer s(mod |g|) for given g, g

s ∈ G/Z(G).

It means that DLP(Inn(G)) is equivalent to DLP(G/Z(G)).
In particular, if |Z(G)| is sufficiently large, there is little possibility that gsz

is contained in the cyclic subgroup 〈g〉 for a randomly chosen z ∈ Z(G). Hence,
existing algorithms for solving DLP(G) do not seem to be directly applied to
DLP(Inn(G)). On the contrary, if |Z(G)| is too large, then Inn(G) becomes too
small to be used for MOR system. Therefore, we conclude that the appropriate
size of Z(G) is crucial in MOR system.

2.3 Central Attack

The crucial role of Z(G) gives rise to the following intrinsic attack against MOR
system.

Assume that |Z(G)| = m is known. For given g and gsz for some s ∈ Z and
z ∈ Z(G), we get h1 = gm and h2 = (gsz)m = (gm)s. Now, solving DLP(〈gm〉)

390 I.-S. Lee et al.

or DLP(G), we get s(mod |gm|), which gives a partial information of the secret
key s. Of course, gm may be the identity of G in the extreme case(for example,
see [8, p. 477]).

2.4 Complexity of Generic Algorithm on MOR System

Since middle of 90’s, a lot of works [11, 4, 5, 6] have been done on generic al-
gorithms for DLP and their lower bounds of complexity. Algorithms which do
not exploit any particular property of representations of the group are called
generic, and the baby-step giant-step algorithm is one of the generic algorithms
for DLP. In generic algorithms for DLP, only group operations and equality tests
are used.

Let {γi | i ∈ I} be a given generating set of G for MOR system, and a
public key (ϕ,ϕs) be given by {ϕ(γi)} and {ϕs(γi)}. Assuming that the special
conjugacy problem over G is not difficult as before, we get g and gsz for some
unknown z ∈ Z(G).

Let MulG(·, ·), InvG(·) and EquG(·, ·) denote the group operation (multi-
plication and inversion) oracles and the equality test oracle of G, respectively.
Now, consider the factor group G/Z(G). The generic operations of G/Z(G) can
be realized using those of G as follows.

• Group operation oracle of G/Z(G) :

MulG/Z(G)(g1, g2) = MulG(g1, g2),
InvG/Z(G)(g) = InvG(g).

• Equality test oracle of G/Z(G) :

EquG/Z(G)(g1, g2) =

{
True (if g1g

−1
2 γi = γig1g

−1
2 for all i ∈ I),

False (otherwise).

One equality test in G/Z(G) requires at most (2|I|+ 1) calls of MulG, 1 call
of InvG and |I| calls of EquG. Under the assumption that |I| = O(log |G|), we
have the following result as a direct application of the Pohlig-Hellman algorithm
in [10].

Theorem 1. Let a public key of MOR system (Inn(g), Inn(gs)) be given, and
let |g| =

∏k
i=1 p

ei
i , where pi are distinct primes. Under the assumption that

|I| = O(log |G|) and that the special conjugacy problem over G is easy, the
secret key s can be computed by O(

∑
ei(log |g| + pi) log |G|) group operations

and equality tests of group elements. If a memory space for storing #√p$ group
elements(where p is the largest prime factor of |g|) is available, the running time
can be reduced to O(

∑
ei(log |g|+√pi log pi) log |G|).

Proof. By the above discussion, one equality test between two elements of G/Z(G)
requires O(log |G|) group operations and equality tests of elements of G. The sec-
ond assertion follows directly from [10]. �

On the Security of MOR Public Key Cryptosystem 391

Thus, in a generic sense, the complexity of computing the secret key of MOR
system is about log |G| times larger than that of solving DLP(G).

This result is somewhat unexpected, since our intuitive expectation for the
generic complexity of MOR system is about |Z(G)| times larger than that of
DLP over G. (If the equality test oracle of G/Z(G) were ; “check if g1 = g2z for
each z ∈ Z(G)”, then we would obtain the result matching our intuition. So, the
point is that one equality test between two elements of G/Z(G) requires only
O(log |G|) group operations and equality tests of elements of G.)

3 Group Extensions and MOR Cryptosystem

Since it does not seem easy to find a good candidate for MOR cryptosystem
from the list of well-known finite groups, we consider an inductive argument as
follows. Suppose that the group G is good for MOR system, and suppose that G
has the smallest order among good candidates. Then we think of G as a group
extension of a maximal normal subgroup H of G, which is not suitable for MOR
system by the hypothesis.

In this section, generalizing the various ideas of [7, 9, 14], we show that it is
possible to w-reduce(see the definition below) DLP(Inn(G)) to DLP(Inn(H)),
where H is a maximal normal subgroup of G.

Definition 2. Given ϕ,ϕs ∈ Inn(G) with a secret key s(mod |ϕ|), if we can com-
pute ψ,ψs for some ψ ∈ Inn(H), we say DLP(Inn(G)) can be w-reduced (weakly-
reduced) to DLP(Inn(H)). In this case, note that we can recover s(mod |ψ|),
provided DLP(Inn(H)) is not hard to solve. (Of course, |ψ| may be 1 in the
extreme case.)

Although the theory of group extension(see, for example, [2, § 15.1] or [13,
§ 2.7]) is quite standard and well-known, we briefly sketch the proofs for some
results of group extensions to prepare for our proof of Theorem 10.

3.1 Group Extensions

Definition 3. For given two groups H and F , if H !G and G/H ∼= F , then we
call G a group extension of H by F.

Theorem 4. (See [2, 13].) If G is a group extension of H by F, there exist func-
tions T : F → Aut(H) and f : F × F → H satisfying the following conditions :

(1) T (τ) ◦ T (σ) = Inn(f(σ, τ)) ◦ T (στ), for σ, τ ∈ F ,
(2) f(σ, τρ) f(τ, ρ) = f(στ, ρ)T (ρ)(f(σ, τ)), for σ, τ, ρ ∈ F ,
(3) f(1, 1) = 1.

Proof. Let t : F → G give rise to a bijection between F and a complete set of
coset representatives of H in G such that t(1) = 1 (t is called a transversal).
Next, we define two functions T : F → Aut(H) and f : F × F → H by

392 I.-S. Lee et al.

(a) T (σ)(h) = t(σ)−1h t(σ), for σ ∈ F, h ∈ H,
(b) f(σ, τ) = t(στ)−1 t(σ) t(τ), for σ, τ ∈ F .

Then, T and f satisfy the conditions (1)–(3). �

Remark 5. If T and f satisfy the conditions (1)–(3) of Theorem 4, then we
call f a factor set belonging to T. If a factor set f is obtained from G as (a) and
(b) in the proof of Theorem 4, then we call f a factor set associated with the
extension G.

Theorem 6. (See [2, 13].) Let f : F × F → H be a factor set belonging to
T : F → Aut(H). Then there exists a group G which is a group extension of H
by F such that f is a factor set associated with G.

Proof. Put G = { t(σ)a | σ ∈ F, a ∈ H} and define a binary operation ∗ on G
by

[t(σ)a] ∗ [t(τ)b] = t(στ) f(σ, τ)T (τ)(a) b, (σ, τ ∈ F, a, b ∈ H).

Then, G becomes a group extension of H by F . Moreover, t(σ)1 is actually
a transversal and (T, f) satisfies the conditions (a) and (b) in the proof of
Theorem 4. �

Corollary 7. (See [2, 13].) The group extension G is uniquely determined by T
and f . In this case, we denote G = [H, F, T, f].

We note that semi-direct products are group extensions with the trivial factor
sets. In [7, 9], it is shown that DLP over inner automorphism groups of semi-
direct products can be reduced to DLP over inner automorphism groups of
individual groups. For group extensions, a similar result can be derived.

Theorem 8. Assume the group extension data G = [H, F, T, f] is known. If F
is non-abelian, then DLP(Inn(G)) can be w-reduced to DLP(Inn(F)).

Proof. Let ϕ = Inn(g) and g = t(σ)a, where σ ∈ F, a ∈ H. For any x = t(τ)b ∈
G, we have

ϕ(x) = [(t(σ)a)−1] ∗ [t(τ)b] ∗ [t(σ)a]

= [t(σ−1)d] ∗ [t(τ)b] ∗ [t(σ)a], (where T (σ)(d) = f(σ−1,σ)−1a−1)

= [t(σ−1τ) f(σ−1, τ)T (τ)(d) b] ∗ [t(σ)a]

= t(σ−1τσ) f(σ−1τ,σ) · T (σ)(f(σ−1, τ)T (τ)(d) b) · a.

Similarly there exists A ∈ H such that ϕs(x) = t(σ−sτσs)A. Let Ψ = Inn(σ).
Then, the problem of finding s from given ϕ,ϕs ∈ Inn(G) can be w-reduced to
that of finding s from Ψ, Ψs ∈ Inn(F). �

Theorem 8 implies that the smaller order σ ∈ F/Z(F) has, the less infor-
mation about s is exposed. Therefore, it is reasonable to take F to be abelian.
The next theorem is useful when we investigate group extensions by finite cyclic
groups.

On the Security of MOR Public Key Cryptosystem 393

Theorem 9. (See [2, § 15.3].) If G is a group extension of H by Zn, then G is
uniquely determined by χ ∈ Aut(H) and α ∈ H satisfying the following condi-
tions :

(1) χn = Inn(α) ∈ Inn(H),
(2) χ(α) = α.

Proof. Write Zn = {0, 1, . . . , n − 1}. We choose a coset representative 1 of 1,
and define a transversal t : Zn → G by t(i) = 1

i
for 0 ≤ i ≤ n − 1. Then,

1
n

= α for some α ∈ H. Therefore χ := Inn(1)|H ∈ Aut(H). Then χ and
α satisfy conditions (1) and (2). Conversely, if χ and α are given, we define
T : Zn → Aut(H) and f : Zn × Zn → H by

T (i) = χi, (0 ≤ i ≤ n− 1)

f(i, j) =

{
1 if i + j < n,

α if i + j ≥ n.

Then T and f satisfy the conditions (1)–(3) of Theorem 4. �

3.2 MOR System and Group Extensions

Let G be given by a group extension of H by F . The case, for which F is non-
abelian, is not desirable since DLP(Inn(G)) can be w-reduced to DLP(Inn(F))
by Theorem 8.

Furthermore, since every finite group has a composition series, we may regard
G as a group extended by finite simple groups for finitely many times. Therefore,
in this section, we analyze the case when F = Zp for some prime p. Now we have
the main result of the present section.

Theorem 10. If the group extension data G = [H,Zp, T, f] is known, then
DLP(Inn(G)) can be w-reduced to DLP(Inn(H)).

Proof. Let G = [H,Zp, T, f]. Then, by Theorem 9, there exist χ ∈ Aut(H) and
α ∈ H satisfying the following conditions :

T (i) = χi, (0 ≤ i < p),

f(i, j) =

{
1 if i + j < p,

α if i + j ≥ p,

χp = Inn(α) ∈ Inn(H).

Now, we compute Z(G). If t(i)a ∈ Z(G), then for all j ∈ Zp and b ∈ H, we
have

[t(i)a] ∗ [t(j)b] = [t(j)b] ∗ [t(i)a].

Therefore,

t(i + j) f(i, j)χj(a) b = t(j + i) f(j, i)χi(b) a

394 I.-S. Lee et al.

and hence this implies χj(a) = a and b = a−1 χi(b) a. Note that this is equivalent
to χ(a) = a and χi = Inn(a−1). Hence we conclude that

Z(G) = { t(i)a | χ(a) = a, χi = Inn(a−1)}.

Since χp = Inn(α) ∈ Inn(H) and p is prime, we note that the order of χ in
Out(H) = Aut(H)/ Inn(H) is 1 or p.

Case 1. |χ| = 1.

We prove this case by showing that there is a computable isomorphism be-
tween G/Z(G) and H/Z(H). If |χ| = 1, then χ = Inn(h) for some h ∈ H.
Since χi = Inn(hi) = Inn(a−1), there exists zi ∈ Z(H) such that hi = a−1zi

(i.e., hia ∈ Z(H)). Then h commutes with a and thus χ(a) = Inn(h)(a) = a.
Therefore,

Z(G) = { t(i)a | hia ∈ Z(H)}
and we have

|Z(G)| ≥ |Z(H)|.
Next, we find an isomorphism between G/Z(G) and H/Z(H). Since χp =

Inn(hp) = Inn(α), we have α = hpz for some z ∈ Z(H). We define Ψ : G →
H/Z(H) by

Ψ(t(i)a) = hia, (a ∈ H, i ∈ Zp).

Then we can show the followings.

1. Ψ is a group homomorphism :

Ψ([t(i)a] ∗ [t(j)b]) = Ψ
(
t(i + j) f(i, j)χj(a) b

)
=

{
hi+j χj(a) b = hi+j h−j a hj b = hia hjb, if i + j < p

hi+j−p hp z χj(a) b = z hi a hj b = hia hjb, if i + j ≥ p

= Ψ(t(i)a)Ψ(t(j)b).

2. Ψ is surjective : For g ∈ H/Z(H), where g ∈ H, we have

Ψ(t(i)h−ig) = hih−ig = g.

3. Ker Ψ = Z(G) : t(i)a ∈ Ker Ψ ⇔ hia ∈ Z(H)⇔ t(i)a ∈ Z(G).
Hence, by the first isomorphism theorem, we have

Ψ : G/Z(G) ≈−→ H/Z(H).

Note that Ψ is computable since h can be derived from χ = Inn(h).

Case 2. |χ| = p.

If |χ| = p, i should be 0 in order that the equation χi = Inn(a−1) holds.
Moreover, since χ0(b) = b = aba−1 for all b ∈ H, a must be contained in Z(H).
Therefore, we have

Z(G) = { t(0)a | χ(a) = a, a ∈ Z(H)} ≤ Z(H).

On the Security of MOR Public Key Cryptosystem 395

For given Inn(t(i)a) and Inn ((t(i)a)s), under the assumption that the special
conjugacy problem of G is easy, we can find t(j)c and t(l)d such that Inn(t(i)a) =
Inn(t(j)c) and Inn ((t(i)a)s) = Inn(t(l)d). Then we must have i ≡ j (mod p) and
c = az for some z ∈ Z(H) with χ(z) = z. Similarly, we get is ≡ l (mod p).
Consequently, we obtain s ≡ r′ (mod p) and thus we may put s = pr + r′ for
some integer r. Since

(t(i)a)p =

p-times︷ ︸︸ ︷
[t(i)a] ∗ [t(i)a] ∗ · · · ∗ [t(i)a]

=

(p−1)-times︷ ︸︸ ︷
[t(i)a] ∗ [t(i)a] ∗ · · · ∗ [t(i)a] ∗ [t(2i) f(i, i)T (i)(a) a]

=

(p−2)-times︷ ︸︸ ︷
[t(i)a] ∗ · · · ∗ [t(i)a] ∗ [t(3i) f(i, 2i)T (2i)(a) f(i, i)T (i)(a) a]

= t(0)
p−1∏
j=0

f(i, ij)T (ij)(a)

= t(0)Φ,

where Φ =
p−1∏
j=0

f(i, ij)T (ij)(a), we have

Inn ((t(i)a)p) = Inn(t(0)Φ)

and

Inn ((t(i)a)s) ◦ Inn
(
(t(i)a)−r′)

= Inn ((t(i)a)pr) = Inn (t(0)Φr) .

We may consider Inn(t(0)Φ)|H and Inn (t(0)Φr) |H as elements of Inn(H),
and we conclude that DLP(Inn(G)) is w-reduced to DLP(Inn(H)). �

Example 11. Let Λ be the graph automorphism of order 2 of SLn(q)(see [12,
§ 10]). The group extension G = [SLn(q),Z2, Λ, 1] belongs to Case 2. In this case,
the order of Z(G) is the same as that of SLn(q).

Example 12. A metacyclic group(for example, see [3, p. 99]) is a semi-direct
product and belongs to Case 2. In this case, the order of the center of the group
decreases.

In Case 1, since we can find a computable isomorphism

Ψ : G/Z(G) ≈−→ H/Z(H),

we see that DLP(Inn(G)) can be completely reduced to DLP(Inn(H)) in this
case.

396 I.-S. Lee et al.

Example 13. (See [8].) Let G = SL2(p)×θ Zp, where

θ = Inn ◦ θ1 : Zp → Aut(SL2(p)),

and θ1 is an isomorphism from Zp to 〈α〉, α ∈ SL2(p). Then

Z(G) = { t(i)a | hia = ±I, a ∈ SL2(p)}.

Note that |Z(G)| > |Z(H)| and hence this example belongs to Case 1. There-
fore, we have

G/Z(G) ∼= SL2(p)/Z(SL2(p)) ∼= PSL2(p).

Remark 14. Moreover, all semi-direct products using inner automorphisms are
of Case 1. This is the reason why the authors of [7, 9] search for outer automor-
phisms.

Remark 15. As in [8, 9], even when the message space is restricted to { t(0)h |
h ∈ H}, a similar reduction is possible and we omit the proof.

Remark 16. Since we can only w-reduce DLP(Inn(G)) to DLP(Inn(H)), we
may not succeed in recovering full information about the secret keys. However,
we note that there are many choices of maximal normal subgroups H in G. Thus,
we may conclude that the group extension data G = [H,Zp, T, f] should not be
easily obtained in order to have a secure MOR system. This should be kept in
mind when we search for suitable groups for MOR system.

4 Central Commutator Attack

As we have mentioned in Section 2, DLP(Inn(G)), which is the underlying prob-
lem of MOR system, depends a lot on the center Z(G) of G. We are thus naturally
led to consider the lower central series of G. Especially, we are interested in the
nilpotent groups of which the length of lower central series are finite.

In this section, we show that there is a reduction algorithm for MOR system
on a nilpotent group.

4.1 Central Commutator Attack

As before, for g ∈ G, we assume a public key (Inn(g), Inn(gs)) = (ϕ,ϕs) is
given.

Lemma 17. Suppose we can find h, z ∈ G such that z = ϕ(h−1)h = g−1h−1gh �=
1 and ϕ(z−1)z = g−1z−1gz = 1, then zs can be computed from ϕs.

Proof. Observe the following computation :

ϕs(h−1)h = g−sh−1gsh = g−s(h−1gh)s = g−s(gz)s = zs. �

On the Security of MOR Public Key Cryptosystem 397

Thus, if we can find such h and z and can solve DLP(〈z〉) from z and zs,
we get s(mod |z|). To find such h and z, assume G is nilpotent and consider the
lower central series of G ;

G = G0 > G1 > · · · > Gk−1 > Gk = 〈1〉,

where Gi = [G,Gi−1]. We have k ≥ 2 because we are assuming G is non-abelian.
Since Gk−2 �≤ Z(G) and Gk−1 ≤ Z(G), there exists h ∈ Gk−2\Z(G). Letting
z = g−1h−1gh ∈ Gk−1, z is contained in Gk−1 ≤ Z(G) and thus z commutes with
g. This technique is called the central commutator attack, since z and zs ∈ Z(G)
are central commutators.

However, when z is the identity of G, we do not get any information about
s, and the condition z �= 1 is not guaranteed here. The next algorithm settles
this problem and it can be applied to any nilpotent group.

Lemma 18. Let G be a nilpotent group of nilpotency (k − 1) with k ≥ 2. Then
the Algorithm-1 below outputs z and zs with z �= 1(and n in the Algorithm-1
satisfies n ≤ k).

Algorithm-1

Input: ϕ = Inn(g) and ϕs = Inn(gs) such that ϕ = 1.

Step 1: Define σ(x) := ϕ(x−1)x = g−1x−1gx and
choose x0 such that σ(x0) = 1.

Step 2: For m ∈ N, define xm := σ(xm−1) and
let n be the smallest integer such that xn = 1.

Step 3: Put h = xn−2, z = xn−1 and compute zs = ϕs(h−1)h.

Output: z and zs with z = 1.

Proof. For Inn(g) to be used for an encryption, there should exist x0 which is not
trivially encrypted, i.e., ϕ(x0) �= x0 and g−1x0 g x0

−1 �= 1. Since G is a nilpotent
group of nilpotency (k − 1), we have the following lower central series of G ;

G = G0 > G1 > · · · > Gk−1 > Gk = 〈1〉,

where Gi = [G,Gi−1]. Define σ and xm as in the Algorithm-1. We note that
xm ∈ Gm for m = 1, . . . , k and thus xk = 1. Therefore we see that n ≤ k. Since
n is the smallest integer such that xn = 1, we have z = xn−1 �= 1. Now, if we
put h = xn−2, then h and z satisfy the conditions of Lemma 17 and thus we get
ϕs(h−1)h = zs. �

Thus by solving DLP(〈z〉), one can compute some partial information of the
secret, i.e., s(mod |z|). Moreover, we will show that one can recover s completely,
if DLP over prime order subgroups of G are easy.

Let m = |g| =
∏k

i=1 p
ei
i be the order of g in G/Z(G), where pi are distinct

primes. Then the following algorithm is nothing but an application of the Pohlig-
Hellman algorithm [10] to MOR system.

398 I.-S. Lee et al.

• Step A : For a fixed i, compute s(mod pj
i) for j = 1, . . . , ei, inductively.

• Step B : Compute s(mod pi
ei) for each i = 1, . . . , k.

• Step C : Using the Chinese remainder theorem, compute s(modm).

We note that only the Step A is essential here : Fix a prime factor p of m,
and let e be the exponent of p in m. Let

s(mod pe) =
e−1∑
j=0

sjp
j , (0 ≤ sj ≤ p− 1).

First, compute
ψ := (Inn(g))m/p = Inn(gm/p)

and
ψ0 := (Inn(gs))m/p = Inn(gm/p)s = Inn(gm/p)s0 = ψs0 .

Since gm/p is not contained in Z(G), we have ψ(γ−1
i)γi �= 1 for some i, where

{γi | i ∈ I} is a given generating set of G. Applying the Algorithm-1 to ψ and
ψ0, we get h, z and zs0 such that

z = (g−m/p)h−1(gm/p)h and (g−m/p)z−1(gm/p)z = 1.

Observe that |z| = p. Solving DLP(〈z〉), we obtain s0. Now, assume that we
have obtained s0, . . . , s�−1 for some � < e. Next, we compute

ψ� :=(Inn(gs) ◦ Inn(g)−
∑�−1

j=0 sjpj

)m/p�+1

=(Inn(gs−
∑�−1

j=0 sjpj

))m/p�+1

= Inn(gm/p)s� .

Again applying the Algorithm-1 to ψ and ψ�, and solving DLP(〈z〉), we obtain
s�. By induction we can compute s(mod pe). In summary, we have the following
result.

Theorem 19. Let G be a finite nilpotent group. For given Inn(g) and Inn(gs),
by solving DLP over prime order subgroups of G, one can recover s(mod |g|)
completely. In other words, DLP(Inn(G)) can be completely reduced to DLP over
prime order subgroups of G.

We mention here that the central commutator attack is generic in the sense
that the algorithm does not use particular property of representations of the
group but uses only group operations and equality tests of group elements.

Even when G is not nilpotent, the Algorithm-1 can be applied. First, observe
the following.

Lemma 20. For x ∈ G define τx : G→ G by

τx(y) = x−1y−1xy, (y ∈ G).

Then G/Z(G) has nontrivial center if and only if there exists x ∈ G\Z(G) such
that τx(G) ⊆ Z(G).

On the Security of MOR Public Key Cryptosystem 399

Proof. Elementary(see, for example, [1, p. 70]).

When the center of G/Z(G) is non-trivial, there exists x ∈ G such that
[x,G] ⊆ Z(G). Thus, given ϕ = Inn(g), we have τx(g) = x−1ϕ(x) ∈ Z(G) and
ϕ(x−1)x ∈ Z(G). Now we see that Algorithm-1 works. Therefore, we might say
that Algorithm-1 is valid if G is ‘nearly’ nilpotent.

When the center of G/Z(G) is trivial, G has the trivial upper central series
and perhaps is secure against the central commutator attack. But we expect this
kind of groups would be ‘similar’ to simple groups or semi-simple linear groups
which are usually not suitable for MOR system.

5 Conclusion

The security of the MOR cryptosystem using a group G is based on the hardness
of DLP(Inn(G)) and is related with the size of Z(G). In a generic sense, the
complexity of DLP(Inn(G)) is about log |G| times larger than that of DLP(G),
since Pohlig-Hellman or the baby-step giant-step algorithm can be applied to
MOR system, provided the special conjugacy problem of G is easy.

Since every finite group G has a composition series, we may regard G as a
group extended by finite simple groups for finitely many times. This leads us to
analyze a group extension G of H by Zp for some prime p, and it is shown that
DLP(Inn(G)) can be w-reduced to DLP(Inn(H)).

We note that there are many choices of maximal normal subgroups H in G.
Thus, we may conclude that the group extension data G = [H,Zp, T, f] should
not be easily obtained in order to have a secure MOR system. This should be
kept in mind when we search for suitable groups for MOR system.

We also analyzed MOR systems on finite nilpotent groups. If G is nilpo-
tent, or Z(G/Z(G)) �= 1, using central commutator attacks, it is shown that
DLP(Inn(G)) can be completely reduced to DLP(G).

Finally, it should be noted again that MOR system and DLP highly depend
on the representations (or presentations) of groups.

References

1. M. L. Curtis, Matrix groups, Springer-Verlag, New York, 1979.
2. M. Hall, The theory of groups, The Macmillan company, 1959.
3. T. Hungerford, Algebra, Springer-Verlag, 1974.
4. U. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and

computing discrete logarithms, in Advances in Cryptology - Crypto 1994, Lecture
Notes in Comput. Sci., 839, Springer-Verlag, New York, 1994, pp. 271–281.

5. U. Maurer and S. Wolf, The Diffie-Hellman protocol, in Des. Codes Cryptography,
19(2), 2000, pp. 147–171.

6. U. Maurer and S. Wolf, Lower bounds on generic algorithms in groups, in Advances
in Cryptology - Eurocrypt 1998, Lecture Notes in Comput. Sci., 1403, Springer-
Verlag, New York, 1998, pp. 72–84.

400 I.-S. Lee et al.

7. S. Paeng, On the security of cryptosystem using automorphism groups, in Inf.
Process. Lett., 88(6), 2003, pp. 293–298.

8. S. Paeng, K. Ha, J. Kim, S. Chee and C. Park, New public key cryptosystem using
finite nonabelian groups, in Advances in Cryptology - Crypto 2001, Lecture Notes
in Comput. Sci., 2139, pp. 470–485.

9. S. Paeng, D. Kwon, K. Ha and J. Kim, Improved public key cryptosystem
using finite nonabelian groups, Cryptology ePrint Archive, Report 2001/066,
http://eprint.iacr.org/2001/066/.

10. S. Pohlig and M. Hellman, An improved algorithm for computing logarithms over
GF(p) and its cryptographic significance, IEEE Trans. Inform. Theory, 24, 1978,
pp. 106–110.

11. V. Shoup, Lower bounds for discrete logarithms and related problems, in Advances
in Cryptology - Eurocrypt 1995, Lecture Notes in Comput. Sci., 1233, Springer-
Verlag, New York, 1997, pp. 256–266.

12. R. Steinberg, Lectures on Chevalley groups, Yale University, 1967.
13. M. Suzuki, Group theory I, Springer-Verlag, 1977.
14. C. Tobias, Security analysis of the MOR cryptosystem, in Proceedings of PKC

2003, Lecture Notes in Comput. Sci., 2567, Springer-Verlag, 2003, pp. 175–186.

Cryptanalyzing the Polynomial-Reconstruction
Based Public-Key System Under Optimal

Parameter Choice

Aggelos Kiayias1 and Moti Yung2

1 Department of Computer Science and Engineering,
University of Connecticut, Storrs, CT, USA

aggelos@cse.uconn.edu
2 Department of Computer Science,

Columbia University, New York, NY, USA
moti@cs.columbia.edu

Abstract. Recently, Augot and Finiasz presented a coding theoretic
public key cryptosystem that suggests a new approach for designing such
systems based on the Polynomial Reconstruction Problem. Their cryp-
tosystem is an instantiation of this approach under a specific choice of
parameters which, given the state of the art of coding theory, we show
in this work to be sub-optimal. Coron showed how to attack the Augot
and Finiasz cryptosystem. A question left open is whether the general
approach suggested by the cryptosystem works or not. In this work, we
show that the general approach (rather than only the instantiation) is
broken as well. Our attack employs the recent powerful list-decoding
mechanisms.

1 Introduction

Recently, in Eurocrypt 2003 [AF03], Augot and Finiasz presented a public-key
cryptosystem that was based on the Polynomial Reconstruction problem (PR).
This scheme suggests a general approach for designing such cryptosystems; their
cryptosystem is an instantiation of this approach based on a specific choice of
parameters.

Let us first review PR, which is a curve-fitting problem that has been studied
extensively especially in the coding theoretic setting, where it corresponds to the
Decoding Problem of Reed-Solomon Codes.

Definition 1 (Polynomial Reconstruction (PR)). Given a set of points
over a finite field {〈zi, yi〉}ni=1, and parameters [n, k, w], recover all polynomials
p of degree less than k such that p(zi) �= yi for at most w distinct indexes
i ∈ {1, . . . , n}.

Regarding the solvability of PR, we remark that unique solution can only
be guaranteed when w ≤ n−k

2 (the error-correction bound of Reed-Solomon

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 401–416, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

402 A. Kiayias and M. Yung

Codes). For such parameter choices, the Berlekamp-Welch Algorithm [BW86]
can be used to recover the solution in polynomial-time. When the number of
errors w exceeds this bound, unique solution is not necessarily guaranteed. In
this range, a decoding algorithm may output a list of polynomials that satisfy the
constraints. This is called list-decoding and recently some breakthrough results
have been achieved in this field. The most powerful list-decoding algorithm is the
one by Guruswami and Sudan, [GS98]. The algorithm will work for any number
of errors such that w < n −

√
(k − 1)n. For choice of parameters beyond the

Guruswami-Sudan solvability bound, no known efficient algorithm exists that
solves PR (and [GS98] gives some indication why such an algorithm is not likely
to be found).

Hard PR
Instance

public-key:

secret-key:
the error locations

ENCRYPTION

scaling

random coefficient

+

.

plaintext

ciphertext
error vector

+

DECRYPTION

Remove secret key
error locations.

Apply Reed-Solomon
Decoding

plaintext

public-key

Fig. 1. The Augot and Finiasz general approach for designing a pk-cryptosystem using
the hardness of RS decoding

Augot and Finiasz’s general approach (see figure 1) is to use a PR instance
which is hard to solve (i.e., a highly noisy instance) as a public key, and to en-
crypt a message by scaling the given public key (i.e., multiplying the polynomial
values by a scalar) and adding to the scaled instance the message which is repre-
sented as a slightly lower degree second PR instance which is solvable, yielding
a PR instance representing the ciphertext. The receiver who knows the noise
locations in the public key can recover the message. The approach allows key
sizes that are much smaller than the traditional coding theoretic based public-
key systems (i.e., the McEliece cryptosystem [McE78]). Further, direct use of the
above mentioned decoding and list-decoding methods do not apply to breaking
the cryptosystem (directly). To implement the approach of figure 1 one needs to
specify: (i) the structure of the public-key, (ii) the structure of the error-vector,
and in accordance (iii) the decoding method employed in decryption.

What we noticed is that while the public-key structure was chosen to be
an unsolvable PR instance, the choice of the error-vector and the associated
decoding method was sub-optimal considering the state-of-the-art of Coding
Theory. The scheme was in fact, based on unique decoding (and not list decoding

Cryptanalyzing the PR-Based PK System Under Optimal Parameter Choice 403

techniques) and did not consider probabilistic analysis to maximize the allowed
entropy of the error-vector.

The scheme of [AF03] was recently broken by Coron [Cor03a, Cor03c] (with-
out affecting the solvability of PR). The elegant attack presented in [Cor03c] is in
fact a ciphertext-only attack that is built on the Berlekamp-Welch method and
recovers the message, given knowledge only of the public-key and a ciphertext.
A further modification of the scheme, using extension fields but essentially the
same system, was suggested recently [AFL03] and was shown by Coron [Cor03b]
to be vulnerable to essentially the same attack.

Coding Theoretic Motivation. The Augot-Finiasz cryptosystem employed
unique decoding techniques rather than list-decoding techniques (assuming that
unique decoding is what is needed for a correct cryptosystem — an assumption
we refute herein). Moreover, they consider only worst-case analysis in the se-
lection of the code parameters. Thus, their cryptosystem is sub-optimal in the
above respects given the general approach outlined above.

This leaves open the question of whether this general approach works in
principle, i.e., when one uses the optimal coding theoretic techniques and prob-
abilistic analysis for the parameter selection.

Our Results: In this work we investigate the above question. In particular,
we maximize the rate of the error vector used during encryption and choose
state-of-the-art list-decoding techniques to implement the Reed-Solomon de-
coding step for decryption. Regarding the optimization (maximization) of the
error-rate we make two key observations (1) the system of [AF03] employs a
worst-case approach in selecting this parameter; a probabilistic approach (that
we perform in this work) allows higher values. (2) the system of [AF03] employs
Berlekamp-Welch RS-decoding for the decryption operation. We emphasize that
more powerful decoding techniques can be employed that allow larger values for
the error-rate parameter. Our methodology is to use an extended set of tools
both for design and analysis in order to get the best possible instantiations of
the general approach. The tools include “list decoding” rather than unique de-
coding techniques (which we show to be still good for decryption, since decoding
to a unique value is assured with extremely high probability over a large enough
field, even when ambiguous decoding is allowed, cf. Lemma 1).

We develop our presentation as a ping-pong game between a cryptosystems
designer and a cryptanalyst. To avoid any misunderstanding our goal is not to
design a new cryptosystem, but rather using the design and cryptanalysis steps
as a methodology for exploring the general approach.

First Step. Regarding our key-observation (1) we employ the tails of the hyper-
geometric distribution to show that the original scheme allowed too few errors in
the error-vector to be used by the message encryption process. Thus the error-
rate can be increased high enough to aid the designer to achieve instances of
the cryptosystem where Coron’s analysis does not work. But, nevertheless we
provide an alternative probabilistic analysis showing that the original attack of

404 A. Kiayias and M. Yung

Coron would work almost always even in this modified (more noisy) version,
thus aiding the cryptanalyst.

Second Step. Combining our key-observations (1) and (2) above, we discover
the optimal setting for the sender error-parameter (“optimal” under the assump-
tion that the Guruswami-Sudan list-decoding algorithm [GS98] represents the
best possible decoding algorithm against Polynomial Reconstruction). We show
that the optimal parameter setting, helps the designer and in this case Coron’s
attack fails. To answer our question about the limit of the approach, we then
present a new attack that is based on the Sudan and Guruswami-Sudan algo-
rithms [Sud97, GS98]. Our attack, with overwhelming probability, breaks even
the optimal parameter setting. This means that the general approach, outlined
in figure 1, taken by Augot and Finiasz (rather than merely their non-optimal
instantiation) breaks.

We believe that our results demonstrate how design and analysis of Cod-
ing theory based cryptography, must employ probabilistic methods and state of
the art decoding techniques. Furthermore, our results and the attack of Coron
demonstrate that PR-based cryptosystems that lack formal proofs of security
by concrete reduction arguments, even when they seem to be related to PR,
are potentially susceptible to coding theoretic attacks that do not imply any
weakness in the PR problem itself. Note that, the private-key cryptosystem
based on PR suggested by the authors in [KY02] was shown to be semanti-
cally secure under an intractability decisional assumption that bears upon the
average-case PR (for choices of the parameters beyond the Guruswami-Sudan
solvability bound). This cryptosystem (as well as the other cryptographic prim-
itives in [KY02]) are not affected by the techniques of the present paper and of
Coron’s [Cor03a, Cor03b, Cor03c] and breaking these designs seems to require
significant advances in RS decodability.

Due to space constraints proofs are omitted from the present abstract; the
full-version with all details is available in [KY04].

2 Background: The Recent Polynomial-Based
Public-Key Cryptosystem

We review the recent developments, while setting up the necessary notations
and interesting points regarding our investigation.

2.1 The Cryptosystem of [AF03]

The cryptosystem of [AF03] can be described in high level as follows:

1. The public-key is a PR-instance of parameters [n, k +1,W] for which (i) the
hidden polynomial p is monic; (ii) solving the instance is considered hard.
The public-key is a sequence of values in (IF × IF)n (while the locations of
the error points is the secret key).

Cryptanalyzing the PR-Based PK System Under Optimal Parameter Choice 405

2. Encryption operates by first transposing (i.e., scaling the polynomial of)
the public-key using a random value α ∈ IF (the encryption coefficient), and
then adding to the transposed public-key the message (evaluated as a second
polynomial represented as pairs of points using the same first coordinates as
the points of the public key PR instance, with no errors), and finally adding
some additional w errors. (In other words, the message is embedded in a
second PR instance with w errors and added to the transposed public key).
It follows that a ciphertext is a sequence of values in (IF× IF)n.

3. Decryption removes the points that correspond to public-key errors, i.e., W
points of the ciphertext. Decryption relies on the following two facts: (i) the
remaining n −W points can be decoded into a polynomial p∗; (ii) due to
the fact that the message polynomial is selected to be of degree less than the
degree of the monic polynomial p hidden in the public-key, it follows that
the recovery of p∗ implies the recovery of the encryption coefficient α. The
message polynomial can be recovered as pmsg(x) = p∗(x)− αp(x).

We note that the points over which the polynomials are evaluated in a PR
instance can be publicly known (thus the public-key and the ciphertext can be
considered to be of size only |IF|n).

In more detail, let z1, . . . , zn ∈ IF be arbitrary distinct elements of the under-
lying field, where n ∈ IN is a security parameter. The public-key of the system
is a PR-instance that is generated as follows: first a random tuple 〈E1, . . . , En〉
is selected that has exactly W non-zero randomly selected elements from IF.
Second, a random polynomial p of degree less than k is selected. The public-key
is set to pk := {〈zi, yi〉}ni=1 where yi = p(zi) + Ei + zk

i for i = 1, . . . , n.

Remark. Observe that {〈zi, yi − zk
i 〉}ni=1 is a random PR-instance with param-

eters n, k,W .

The encryption operation is defined with domain IFk and general range the
set (IF× IF)n. The message msg is encoded as a polynomial of degree less than
k, denoted by pmsg(x); a random tuple 〈e1, . . . , en〉 is selected so that it has
exactly w non-zero randomly selected field elements; a random element α ∈ IF
is selected as well. The ciphertext that corresponds to msg is the sequence of
pairs {〈zi, y

′
i〉}ni=1 defined as follows y′

i = αyi + pmsg(zi) + ei, for i = 1, . . . , n.
So far, the above represents a general approach. The exact choice of param-

eters (as a function of n, say) gives the specific system of [AF03].

The decryption operates as follows: let I ⊆ {1, . . . , n} be such that |I| =
n −W and for all i ∈ I it holds that Ei = 0 (from the selection of the public-
key). Observe now that the sequence of pairs C = {〈zi, y

′
i〉}i∈I can be seen as a

PR-instance with parameters [n−W, k + 1, w]. Now suppose that,

Condition #1 : w ≤ n−W − k − 1
2

⇒ n ≥ 2w + W + k + 1

This condition implies that the PR-instance has a unique solution that can
be recovered by the unique decoding technique of Berlekamp-Welch algorithm.

406 A. Kiayias and M. Yung

Given such solution p∗(x) it follows that the leading coefficient of p∗ will be equal
to α (by construction, we have that the polynomial hidden into the public-key
is monic and of degree k while the degree of the message polynomial is at most
k − 1). Then, the transmitted message can be recovered as follows pmsg(x) =
p∗(x)− α(xk + p(x)).

A second condition is that W should be large, beyond the known bounds of
list-decoding, to assure that a third party cannot simply get the error locations
of the public key (and thus decrypt all ciphertexts). This condition is the base
of the presumed security of the scheme.

2.2 A Cryptanalytic Framework

The Cryptanalytic problem that is the basic building block for mounting a
ciphertext-only attack on the Public-Key Cryptosystem of [AF03] as described
above is defined as follows:

Definition 2 Ciphertext-Only Attack Problem (CAP). Given two
sequences of tuples X1 := {〈zi, yi〉}ni=1 and X2 := {〈zi, y

′
i〉}ni=1 and parameters

n, k, w,W that satisfy the following conditions

i. w ≤ n−W−k−1
2 and W ≥ n−

√
n(k − 1).

ii. {〈zi, yi − zk
i 〉}ni=1 is a random PR-instance with parameters [n, k,W].

iii. ∃α ∈ IF such that {〈zi, y
′
i−αyi〉}ni=1 is a random PR-instance with parameters

[n, k, w].

Goal. Find a list of values of polynomial-length that contains the value α.

Any algorithm that solves CAP in polynomial-time can be turned into a
ciphertext-only attack against the cryptosystem of [AF03], as the following
proposition reveals.

Proposition 1. Let A be an algorithm that solves CAP in polynomial-time.
Then any message encrypted in the cryptosystem of [AF03] can be decrypted
without knowledge of the secret-key in polynomial-time in the security parameter.

2.3 Coron’s Attack

In [Cor03c], Coron presented an elegant ciphertext-only attack against the cryp-
tosystem of [AF03]. We explain the attack briefly below and we show that in
fact it can be seen as an algorithm to solve CAP (in fact our formulation of CAP
above is motivated by the original attack and by further extensions of this idea
in the sequel).

Let X1,X2 be an instance of CAP, with X1 = {〈zi, yi〉}ni=1 X2 = {〈zi, y
′
i〉}ni=1

and parameters k, w,W, n. Due to condition iii of definition 2 it follows that there
exist p ∈ IF[x] of degree less than k and α ∈ IF, so that p(zi) �= y′

i − αyi for at
most w indexes i.

The attack modifies the Berlekamp-Welch algorithm: Let E(x) be a monic
polynomial of degree w such that E(zi) = 0 for exactly those indexes i for which

Cryptanalyzing the PR-Based PK System Under Optimal Parameter Choice 407

p(zi) �= y′
i − αyi. The existence of this polynomial is guaranteed due to the

condition iii of definition 2. Let N(x) = p(x)E(x) be a polynomial of degree less
than k + w.

Now consider the following system of equations[
E(zi)(y′

i − λyi) = N(zi)
]n

i=1
(system 1)

that has as unknowns the 2w + k coefficients of the polynomials E,N . Observe
that the above system (with λ as a parameter) is not homogeneous (due to the
fact that E is monic). Recall that all steps up to this point follow exactly the
Berlekamp-Welch algorithm (modulo the unknown λ value).

Now consider the slightly extended system below:[
E′(zi)(y′

i − λyi) = N(zi)
]n

i=1
(system 2)

where E′(x) is a non-monic polynomial that has the same properties as E (i.e.
E′ and E have the same roots). It follows that system 2 defined above is homo-
geneous with 2w + k + 1 unknowns. Let A2[λ] be the n× (2w + k + 1)-matrix of
system 2.

Due to condition i of definition 2 the number of equations n satisfies

n ≥ 2w + k + 1

and thus system 2 has at least as many equations as unknowns.

Case 1 of the Attack. rank(A2[0]) = 2w + k + 1 (i.e., A2[0] is of full rank). It
follows that there are 2w + k + 1 linearly independent equations in system 2
for λ = 0 (and their locations can be recovered e.g. by Gaussian elimination).
Without loss of generality let us assume that these are the equations on locations
1, . . . , 2w + k + 1. We eliminate the remaining n− (2w + k + 1) equations from
system 2, to make it a square homogeneous system, and we call the remaining
equations system 3.

It follows that if we substitute the value α for λ in the matrix of the system
3, the matrix is singular since it accepts a solution (the polynomials E′,N) that
is non-trivial. As a result the matrix of system 3, denoted by A3[λ], has the
following property:

∃α ∈ IF : det(A3[α]) = 0

Now observe that the determinant of system 3 is a polynomial f(λ) :=
det(A3[λ]) that is of degree at most w + 1 (because λ is only involved in the
part of the matrix of system 3 that corresponds to the polynomial E′).

Further observe that f(0) = det(A3[0]) �= 0 because of our selection of A3[λ]
to have the property that A3[0] is the full rank minor of the matrix A2[0]. Thus,
the value α is among the w +1 roots of f and the output will be the list of roots
of f . It follows that the above algorithm gives an efficient solution for the CAP
problem.

408 A. Kiayias and M. Yung

Case 2 of the Attack. rank(A2[0]) < 2w + k + 1. In this case one can find a
non-trivial solution of the system A2[0] which defines two non-zero polynomials
E′,N such that

[E′(zi)y′
i = N(zi)]ni=1

Since y′
i = α(p(zi) + zk

i + Ei) + pmsg(zi) + ei it follows that

[E′(zi)(α(p(zi) + zk
i + Ei) + pmsg(zi) + ei) = N(zi)]ni=1

Let I be the subset of {1, . . . , n} for which it holds that i ∈ I ⇐⇒ (ei =
0) ∧ (Ei = 0). It follows that

[E′(zi)p∗(zi) = N(zi)]i∈I

where p∗(x) = α(p(x) + xk) + pmsg(x). Recall that the degree of the polynomial
N is less than k+w and E′ is a polynomial of degree w; it follows that E′(x)p∗(x)
is a polynomial of degree w + k.

Observe that |I| is a random variable (denoted by η) ranging from n−w−W
to n−max{w,W}. Next consider this relation:

η > w + k (Sufficient Condition for Case 2)

Under the above relation, it follows that |I| ≥ w + k + 1 and as a result
the polynomials E′(x)p∗(x) and N(x) are equal. It follows immediately that
p∗ = N

E′ ; naturally given p∗ we recover α immediately and non-ambiguously (in
fact, in this case we will even be able to recover the value of the secret-key).

Performing a worst-case analysis of the above, we know that η ≥ n−w−W
and as a result the attack would go through as long as n−w−W > w+k ⇐⇒ n >
2w+W+k something that matches condition #1 of the [AF03]-cryptosystem (cf.
section 2.1) and thus the case 2 of the attack can be carried for the parameters of
the cryptosystem (without even taking into account that η would be somewhat
larger than its lower bound n− w −W).

On the other hand, it would be of interest to us to find a necessary condition
for case 2 of the attack (the reason for this will become clear in section 3). This
can be found by setting η to its highest possible value and requiring this to be
greater than w + k: η := n−max{w,W} > w + k; this is equivalent to:

n > w + max{w,W}+ k (Necessary condition for Case 2)

3 The Increased Error Case

The cryptosystem of [AF03] mandates that the number of errors introduced
by the sender in the formation of the ciphertext is less or equal to n−W−k−1

2
(condition #1 of section 2.1), to ensure unique decoding in the reduced PR-
instance that is obtained after removing the W locations that contain the errors
of the Public-Key.

Cryptanalyzing the PR-Based PK System Under Optimal Parameter Choice 409

We observe that the bound on w is unreasonably low, for the following rea-
son: many of the errors introduced by the sender will fall into the error-area of
the public-key, and thus they will not affect the decryption operation (i.e., intro-
ducing a new error in an already erroneous location is a case where 1 + 1 = 1).

To see this better, we can think of the sender in the cryptosystem to be
playing the following game: he selects w points out of n and randomizes them.
Since W of these points will be discarded by the receiver it follows that the
number of the good points (out of the total n − W of good points) that will
be randomized by the sender follow a hypergeometric distribution with mean
value n−W

n . It follows that the expected number of good points that will be
randomized by the sender are w n−W

n .
In order to ensure decoding for the decryption operation it suffices to force

ẽ ≤ n−W−k−1
2 where ẽ is a random variable that follows the hypergeometric

distribution with mean n−W
n . Let w = 1

n−W
n +ε

n−W−k−1
2 , for some ε > 0. Using

the Chvátal bound for the hypergeometric distribution, [Chv79], we have that

Prob[ẽ > (
n−W

n
+ ε)w] ≤ e−2ε2w =⇒ Prob[ẽ >

n−W − k − 1
2

] ≤ e−2ε2w

From the above, as long as ε < W/n, if we set w = 1
n−W

n +ε
n−W−k−1

2 it follows

that the probability Prob[ẽ > n−W−k−1
2] ≤ e−2ε2w, and thus condition # 1 of

section 2.1 will be satisfied in the probabilistic sense and decryption will succeed
with probability 1− e−2ε2w.

We will concentrate on parameters s.t. W > w and w is selected as above.
Consider for example the assignment n = 2000, k = 100, W ≥ 1556 (to avoid
an attack with [GS98] on the public-key), e.g. we set W = 1600, and ε = 1/6;
now observe that W/n = 0.8 > 1/6. The equation for w mentioned above yields
w = 407. It follows that the probability of correct decryption is 1 − e−2 407

36 =
1− e−22 ≈ 1− 2−31. Observe now that case 2 of Coron’s attack would be foiled
since the necessary condition fails:

n > w + max{w,W}+ k ⇐⇒ 2000 > 1600 + 407 + 100 ⇐⇒ false

Thus, by merely increasing the number of errors that the sender of the cryp-
tosystem introduces during encryption (relying on randomization to allow de-
cryption with very high probability), we are capable of thwarting the analysis of
Coron’s attack (in particular the analysis of case 2 of the attack). Observe that
this is possible without any other modification of the cryptosystem whatsoever.

Nevertheless, this is only a temporary comfort as we will prove in the next
section.

4 With High Probability Modified Coron’s Attack
Succeeds Against Increased Errors

Next, we use another probabilistic analytical tool to show that, in fact, in spite
of the increased errors, the attack actually works with high probability.

410 A. Kiayias and M. Yung

First, observe the error-increase we introduced in section 3 does not apply to
case 1 of Coron’s attack. Indeed, one can show for any ε > 0 that

w =
1

n−W
n + ε

n−W − k − 1
2

≤ n− k − 1
2

and the condition w ≤ (n− k − 1)/2 is sufficient for case 1 to go through (that
is, if we can apply it). Recall that case 1 of the attack only applies to the case
det(A3[0]) �= 0.

We will show that this in fact happens most of the times (a fact observed in
practice in [Cor03c] but not proved). This means that the attack works even in
the increased error setting of the previous section. Let us recall the matrix of
system 2, as defined in section 2.3.

A2[λ] =
(
B2 C2[λ]

)
=

=

⎛⎜⎜⎜⎝
1 z1 . . . zw+k−1

1 y′
1 − λy1 (y′

1 − λy1)z1 . . . (y′
1 − λy1)zw

1
1 z2 . . . zw+k−1

2 y′
2 − λy2 (y′

2 − λy2)z2 . . . (y′
2 − λy2)zw

2
...

... . . .
...

...
... . . .

...
1 zn . . . zw+k−1

n y′
n − λyn (y′

n − λyn)zn . . . (y′
n − λyn)zw

n

⎞⎟⎟⎟⎠
where B2 is a Vandermonde matrix of dimension w + k over the elements
z1, . . . , zn; B2 corresponds to the coefficients of N(x); C2[λ] is a Vandermonde
matrix of dimension w + 1 over the elements z1, . . . , zn where its i-th row is
multiplied by y′

i − λyi, for i = 1, . . . , n; C2 corresponds to the coefficients of
E′(x). Recall that A2[λ] is a n × (2w + k + 1) matrix. We would like to prove
that rank(A2[0]) = 2w + k + 1 with overwhelming probability.

If rank(A2[0]) < 2w + k + 1 then it follows that any (2w + k + 1)-minor of
A2[0] is singular. Below we show that this event can only happen with very small
probability (assuming that the underlying finite field IF is large — something
that is assumed in [AF03]) thus we deduce that the first case of the attack would
work almost always.

Theorem 1. Let P = Prob[rank(A2[0]) < 2w + k + 1] be the probability that
the rank of A2[0] is less than 2w + k + 1 where the probability is taken over all
possible choices for the given CAP instance out of which we construct A2[λ].
It holds that P ≤ 2w/|IF| and the proof works even if the first inequality of
condition i of definition 2 is relaxed to only w ≤ (n− k − 1)/2.

5 The Most General AF System Avoids Coron’s Attack

5.1 An “Optimal Variant” of the Cryptosystem

In this section we show that the number of errors w introduced by the sender
can, in fact, be increased further beyond the improved bound that we describe
in section 3, by employing the proper decoding method for decryption (cf. figure

Cryptanalyzing the PR-Based PK System Under Optimal Parameter Choice 411

1). In particular, we make the following crucial observation: [AF03] requires
that w is below the error-correction bound of Reed-Solomon Codes, so that the
decryption (decoding) is unique. Nevertheless the introduction of random errors
in a large enough finite field (such fields are utilized in [AF03]) suggests that
uniqueness of decoding can be ensured far beyond the error-correction bound.

In the lemma below we show that randomly selected PR instances that can
accept two different decodings are unlikely. This probabilistic analysis allow us
to resort to modern list-decoding techniques in the sequel.

Lemma 1. Let {〈zi, yi〉}ni=1 be a RS-Code codeword of a random message p ∈
IF[x] with degree(p) < k that has e errors uniformly random distributed over IF,
s.t. e < n − k. Then, the probability that it accepts another decoding p′ ∈ IF[x]
with p �= p′ is at most

(
n
t

)2
/(|IF|n−e−k) (the probability is taken over all possible

messages and noise corruptions).

Now observe that if the “message rate” is κ := k/n and the “error-rate” is
ε := e/n, with κ, ε ∈ Q+ then it follows that the probability in lemma 1 is less
than 4n

|IF|(1−ε−κ)n . As a result, provided that IF satisfies |IF|1−ε−κ > 4 it follows
that the probability of proposition 1 is “negligible.”

Optimal Parameter Setting and Modifications for the Cryptosystem
of [AF03]. Taking advantage of the above Lemma in conjunction with the
observation of section 3, we can increase the error-parameter w further. We refer
to our choice as optimal with respect to figure 1 under the basic assumption
that the list-decoding algorithm of [GS98] represents the state of the art in RS-
decodability.

Below we assume that the sender employs the algorithm of [GS98] for decryp-
tion. For this algorithm to work it should hold that ẽ < (n−W)−

√
(n−W)k

where ẽ is the number of errors introduced in the area of good points of the
public-key due to the encryption operation. As argued in section 3, ẽ is a ran-
dom variable following a hypergeometric distribution with mean w n−W

n . In our
analysis below we will simply substitute ẽ for the expected number of errors.
Note that this does not guarantee that the receiver will be capable of recovering
the transmitted message “most of the times.” To guarantee this we would have
to show that the probability Prob[ẽ < (n−W)−

√
(n−W)k] is overwhelming

(as we did in section 3), something that cannot simply be inferred from the fact
that the mean of ẽ is less than (n−W)−

√
(n−W)k; in order for the receiver

to be able to decrypt most of the times we would instead require that the mean
of ẽ is sufficiently lower than the bound (n−W)−

√
(n−W)k and then employ

the Chvátal bound on the tails of the hypergeometric distribution to bound the
error probability by a negligible fraction, [Chv79] (as in section 3).

Nevertheless, since we intend to cryptanalyze the resulting cryptosystem, we
will opt for simply substituting ẽ for its mean, as this would only make our
attack stronger. On the other hand observe that a public-key cryptosystem that
works, say, half the times is still quite useful. Thus, substituting ẽ for w n−W

n we
obtain

412 A. Kiayias and M. Yung

w
n−W

n
< (n−W)−

√
(n−W)k =⇒ w < n− n

√
k

n−W

We conclude that the optimal selection would allow the parameter w to be
selected as high as:

w < n(1−
√

k

n−W
)

The new bound above increases the number of errors that we can allow the
sender to introduce, as long as W is selected appropriately:

Proposition 2. There are choices for W such that W ≥ n −
√

n(k − 1) and

n(1−
√

k
n−W) > n−k−1

2 , as long as k ≥ 5 and k/n ≤ 1/16.

Now recall that the necessary condition for Coron’s attack (both cases) is
w ≤ n−k−1

2 . It follows from the proposition above that our analysis puts the
parameter w beyond the range of Coron’s attack, provided that W is properly
selected. To illustrate this concretely, suppose that n = 2500 and k = 101.
Then, W should be selected in the range [2000, . . . , 2126]; if we make the choice
W = 2063 then we can set w to be as high as 1298, whereas Coron’s attack
would correct any value of w only up to 1199. Note that the gap of 99 elements
between the bound of Coron’s attack and the assignment w = 1298 ensures
that the application of the attack by removing 99 points at random would only
succeed with probability less than (0.52)99 ≈ 2−96 (since the ratio of the sender-
introduced error points is ≈ 0.52).

Corollary 1. Coron’s attack cannot be applied against the [AF03]-cryptosystem
in the optimal parameter setting.

To draw a parallel to our exposition in section 2.2, we introduce the problem
CAP+ to stand for the ciphertext-only attack problem of the optimal variant of
Augot and Finiasz Cryptosystem, (the only difference from CAP being in the
choice of w):

Definition 3 Ciphertext-Only Attack Problem in the Optimal
Parameter Setting (CAP+). Given two sequences of tuples X1 := {〈zi, yi〉}ni=1
and X2 := {〈zi, y

′
i〉}ni=1 and parameters k, w,W that satisfy the following condi-

tions

i. w < n(1−
√

k
n−W), and W ≥ n−

√
n(k − 1).

ii. {〈zi, yi − zk
i 〉}ni=1 is a random PR-instance with parameters [n, k,W].

iii. ∃α ∈ IF such that {〈zi, y
′
i−αyi〉}ni=1 is a random PR-instance with parameters

[n, k, w].

Goal. Find a list of values of polynomial-length that contains the value α.

Cryptanalyzing the PR-Based PK System Under Optimal Parameter Choice 413

As before we show that any algorithm that solves CAP+ can be used to
mount a ciphertext-only attack on the cryptosystem of [AF03] (but now in the
optimal parameter setting):

Proposition 3. Let A be an algorithm that solves CAP+ in polynomial-time.
Then any message encrypted in the cryptosystem of [AF03] in the optimal param-
eter setting can be decrypted without knowledge of the secret-key in polynomial-
time in the security parameter.

In the Lemma below we give an upper bound on the value of w (that is
independent of W).

Lemma 2. For any CAP+ instance, it holds that n− w > 4
√

n3(k − 1).

6 The Attack Against the General System Employing
List-Decoding

The results we present in this section (essentially an algorithm for solving CAP+)
is based on Sudan’s list-decoding algorithm, [Sud97] and Guruswami Sudan
[GS98] algorithms (for both there are efficient polynomial-time algorithms, see
[McE03]).

6.1 The Attack

Let n, k, w,W ∈ Z and X1 = {〈zi, yi〉}ni=1,X2 = {〈zi, y
′
i〉}ni=1 be an instance of

CAP+. We denote ŷi := y′
i − λyi for i = 1, . . . , n, where λ is an unspecified

parameter (free variable); to set the parameter λ to a specific value α we will
write ŷi[α].

According to the definition of a CAP+ instance we know that there exists
a value α ∈ IF (the “encryption coefficient”) and a polynomial p ∈ IF[x] of
degree less than k (the “message polynomial”) that agrees with n − w of the
points 〈zi, ŷi[α]〉. Define l := n−w−1. Next we consider the following system of
equations on a set of unknowns {qj1,j2}j1≥0,j2≥0,j1+(k−1)j2<l (called system 4):

∀i ∈ {1, . . . , n}
∑

j1≥0,j2≥0,j1+(k−1)j2<l

qj1,j2z
j1
i ŷj2

i = 0 (system 4)

Observe that any solution to system 4 above defines a bivariate polynomial
Q(x, y) that satisfies the property degreeQ,x + (k − 1)degreeQ,y < l.

Lemma 3. The number of unknowns of system 4, is at least l(l−1)
2(k−1) .

Recall that from proposition 2 we know that we only consider parameter
choices that satisfy k/n ≤ 1/16. For such range of parameters (and sufficiently
large n) we, in fact, show:

Lemma 4. System 4 is not overdefined provided that n ≥ 19 and k/n ≤ 1/9.

414 A. Kiayias and M. Yung

Subsequently we omit the appropriate number of unknowns from system 4,
to equalize the number of unknowns and equations. This results in a square
homogeneous system of n equations and unknowns that we call system 5. We
denote the matrix of system 5 by A[λ].

Theorem 2. Let α ∈ IF be the “encryption coefficient” for a CAP+ instance
as defined in item iii of definition 3. The matrix A[α] as constructed above is
singular.

Since A[α] is singular, it follows that if we define the polynomial f(λ) :=
Det(A[λ]), α will be among the solutions of f(λ). Thus we can solve CAP+ by
computing all the (polynomialy many, by degree constraint) roots of f(λ).

Theorem 3. The probability P that the polynomial f(λ) = Det(A[λ]) is the
zero-polynomial satisfies P ≤ 2s(n − l)/|IF|, where s = 	 l−1

k−1
 (the maximum
degree of the y-variable in any of the columns of A[λ]).

7 Summary

In this section, we summarize our cryptanalytic results.

Given an instance of CAP+ {〈zi, yi〉}n
i=1, {〈zi, y

′
i〉}n

i=1 with parameters n, k, w, W .
0. Set l := n − w − 1.
1. Select D ⊆ IN × IN so that |D| = n and for all 〈j1, j2〉 ∈ D, j1 + (k − 1)j2 < l

2. Let D =
〈

〈j1[1], j2[1]〉, . . . , 〈j1[n], j2[n]〉
〉
, a lexicographic ordering of D.

3. Construct a (n × n)-matrix A so that its (i, i′)-entry equals z
j1[i′]
i (y′

i − λyi)j2[i′]

.

4. Compute f(λ) := det(A[λ]) symbolically to obtain the polynomial f on λ.
5. Output all roots of f .

Fig. 2. The algorithm that solves CAP+

First in figure 2 we overview the CAP+ algorithm that was presented in
the previous section. Using this, the general cryptosystem based on Augot and
Finiasz [AF03], even under the optimal choice of parameters is broken under
ciphertext-only attacks. The breaking algorithm is summarized in figure 3.

Given the public-key and a ciphertext of the [AF03]-cryptosystem with parameters
n, k, w, W .
1. if w ≤ n−k−1

2 invoke case 1 of Coron’s attack.
2. else invoke the CAP+ algorithm of figure 1, and recover the plaintext using
Guruswami-Sudan algorithm (as described in proposition 3).

Fig. 3. The attack against the Generalized Version of [AF03]-Cryptosystem

Cryptanalyzing the PR-Based PK System Under Optimal Parameter Choice 415

Note that the attack outlined above is probabilistic and is guaranteed to work
with very high probability as we have shown in theorem 1 (for case 1 of Coron’s
attack), and theorem 3 (for CAP+ algorithm).

References

[AF03] Daniel Augot and Matthieu Finiasz, A Public Key Encryption Scheme Based
on the Polynomial Reconstruction Problem, Eli Biham (Ed.): Advances in
Cryptology - EUROCRYPT 2003, International Conference on the Theory
and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8,
2003, Proceedings. Lecture Notes in Computer Science 2656 Springer 2003,
pp. 229-240.

[AFL03] Daniel Augot, Matthieu Finiasz and Pierre Loidreau, Using the Trace Op-
erator to repair the Polynomial Reconstruction based Cryptosystem pre-
sented at Eurocrypt 2003, Cryptology ePrint Archive, Report 2003/209, 2003,
http://eprint.iacr.org/.

[BW86] Elwyn R. Berlekamp and L. Welch, Error Correction of Algebraic Block
Codes. U.S. Patent, Number 4,633,470, 1986.

[Chv79] Vasek Chvátal, The tail of the hypergeometric distribution, Discrete Math,
Vol. 25, pp. 285-287, 1979.

[Cor03a] Jean-Sebastien Coron, Cryptanalysis of a public-key encryption scheme based
on the polynomial reconstruction problem, Cryptology ePrint Archive, Report
2003/036. http://eprint.iacr.org/.

[Cor03b] Jean-Sebastien Coron, Cryptanalysis of the Repaired Public-key Encryption
Scheme Based on the Polynomial Reconstruction Problem, Cryptology ePrint
Archive, Report 2003/219. http://eprint.iacr.org/.

[Cor03c] Jean-Sebastien Coron, Cryptanalysis of a public-key encryption scheme based
on the polynomial reconstruction problem, in Feng Bao, Robert H. Deng,
Jianying Zhou (Eds.): Public Key Cryptography - PKC 2004, 7th Interna-
tional Workshop on Theory and Practice in Public Key Cryptography, Sin-
gapore, March 1-4, 2004. Lecture Notes in Computer Science 2947 Springer
2004, pp. 14-27.

[GS98] Venkatesan Guruswami and Madhu Sudan, Improved Decoding of Reed-
Solomon and Algebraic-Geometric Codes. In the Proceedings of the 39th An-
nual Symposium on Foundations of Computer Science, Palo Alto, California,
November 8-11, IEEE Computer Society, pp. 28–39, 1998.

[KY02] Aggelos Kiayias and Moti Yung, Cryptographic Hardness based on the
Decoding of Reed-Solomon Codes, in the Proceedings of ICALP 2002,
Lecture Notes in Computer Science, vol. 2380, Malaga, Spain, July 8-13,
pp. 232-243.

[KY04] Aggelos Kiayias and Moti Yung, Cryptanalyzing the Polynomial-
Reconstruction based Public-Key System Under Optimal Parameter Choice,
Cryptology ePrint Archive, Report 2004/217. http://eprint.iacr.org/.

[McE78] Robert J. McEliece. A public key cryptosystem based on algebraic coding the-
ory. Jet Propulsion Lab, DSN Progress Report, 42(44), pp. 114–116, Jan-Feb
1978.

416 A. Kiayias and M. Yung

[McE03] Robert J. McEliece, The Guruswami-Sudan Decoding Algorithm for
Reed-Solomon Codes, IPN Progress Report 42-153, May 15, 2003.
http : //ipnpr.jpl.nasa.gov/tmo/progress report/42 − 153/153F.pdf.

[Sch80] Jacob T. Schwartz, Fast Probabilistic Algorithms for Verifications of Polyno-
mial Identities, Journal of the ACM, Vol. 27(4), pp. 701–717, 1980.

[Sud97] Madhu Sudan, Decoding of Reed Solomon Codes beyond the Error-Correction
Bound. Journal of Complexity 13(1), pp. 180–193, 1997.

Colluding Attacks to a Payment Protocol and
Two Signature Exchange Schemes

Feng Bao

Institute for Infocomm Research,
21 Heng Mui Keng Terrace, Singapore 119613

baofeng@i2r.a-star.edu.sg

Abstract. An untraceable fair network payment protocol is proposed by
Wang in Asiacrypt’03, which employs the existent techniques of the off-
line untraceable cash and a new technique called restrictive confirmation
signature scheme (RCSS). It is claimed that the fair payment protocol
has both the fairness such that the buyer obtains the digital goods if and
only if the merchant gains the digital cash and the untraceability and
unlinkability such that no one can tell who is the original owner of the
money. In this paper we show that the fairness is breached under a simple
colluding attack, by which a dishonest merchant can obtain the digital
money without the buyer obtaining the goods. We also apply the attack
to some of the schemes of fair exchange of digital signatures proposed
by Ateniese in ACM CCS’99. Our study shows that two of them are
subjected to the attack. A countermeasure against the attack is proposed
for the fair exchange of digital signatures. However, we are unable to fix
the fair payment protocol if the untraceability and unlinkability are the
required features.

1 Introduction

In Asiacrypt 2003, Wang proposed an untraceable fair network payment proto-
col, which is claimed to have untraceability, unlinkability and fairness [25]. The
protocol is for online purchasing of digital goods with digital money. A buyer
withdraws untraceable and unlinkable digital cash from a bank and buys some
digital goods from an online merchant with the digital cash. The fairness is a
feature that prevents either the buyer or the merchant from taking the advan-
tage of the other. It guarantees that the buyer can obtain the goods if and
only if the merchant gains the money. The protocol combines the techniques
of the untraceable offline e-coin ([8], [9]) and a new primitive called restrictive
confirmation signature scheme (RCSS). By RCSS, a signature confirmed by a
designated confirmer can only convince some specified verifiers. In this paper
we present a colluding attack where a dishonest merchant can breach the fair-
ness such that he can obtain the money without the buyer obtaining the goods.
The problem with the protocol is that the money is the untraceable and unlink-
able e-coin, which has no link with the buyer’s ID and hence can be separated
from the RCSS-signed order agreement. That is the vulnerable point our attack

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 417–429, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

418 F. Bao

exploits. The attack does not work if the digital money is internally linked to
the buyer’s ID. But the untraceability and unlinkability would be lost in that
case.

We can also apply a similar colluding attack to the schemes of fair exchange
of digital signature proposed by Ateniese in [4]. There are six schemes in [4]
for fair exchange of 1) RSA signatures; 2) Gennaro-Halevi-Rabin signatures;
3) Cramer-Shoup signatures; 4) Guillou-Quisquater signatures; 5) Schnorr (or
Poupard-Stern) signatures; and 6) ElGamal (or DSA) signatures, respectively.
We show that 5) and 6) are subject to the attack, while 1), 2), 3) and 4) are
not. The schemes 1), 2) and 3) have the same principle as Boyd-Foo scheme in
[7], where TTP performs different converting functions for different users. The
colluding attack does not apply to such schemes. The scheme 4) is an improved
version of Bao-Deng-Mao scheme in [5]. A flaw of [5], which was first pointed
out in [7], is removed in 4). The reason why 5) and 6) are subject to the at-
tack is that Schnorr signatures and ElGamal signatures have a special feature,
which Guillou-Quisquater signatures do not have. The feature does not affect
the security requirements of digital signature. However, it is the key point in
determining whether the attack works. The feature will be discussed later in
this paper. The attack works only if the system allows new users to register at
any time.

The rest of the paper is organized as follows. In Section 2, we describe the
untraceable fair payment protocol proposed in Asiacrypt’03. In Section 3, we
present a colluding attack breaching the fairness of the protocol and explain why
the attack works. In Section 4, we describe the two schemes of fair exchange of
digital signatures proposed in ACM CCS’99. In Section 5, we discuss the special
feature of digital signatures that we exploit and present the colluding attack to
the two schemes. We also give the countermeasure against the attack. Section 6
concludes the paper.

2 Untraceable Fair Network Payment Protocol

In this section we describe the untraceable fair network payment protocol pro-
posed in [25]. For simplicity, we skip the details of the building-block RCSS
(restrictive confirmation signature scheme) and put it in the Appendix A for
interested readers. We also simplify the description of the protocol by assuming
that the payment is in one e-coin instead of n e-coins as in [25].

Entities

U — the buyer, who buys soft goods from the merchant.
M — the merchant, who sells the soft goods to the buyer.
B — the bank, who issues e-coins to the buyers.
TTP — the trusted third party, who resolves dispute in payment protocol.

System Parameters and Cryptographic Keys
p, q, g — p, q large primes, q|p− 1, g a generator of the subgroup Gq of order q
of Z∗

p.

Colluding Attacks to a Payment Protocol 419

yB, xB — B’s public and private keys, yB = gxB mod p.
yTTP , xTTP — TTP’s public and private keys, yTTP = gxT T P mod p.
g1, g2 — two elements of Gq published by B, for e-coin scheme.

Two Building-Block Techniques
RCSS — restrictive confirmation signature scheme. In RCSS, a signature signed
by a signer S can be confirmed by a confirmer C, and C can convince only some
specified verifiers G that the signature is valid and truly signed by S. RCSS is
the main technique designed for the fair payment protocol in [25]. It is denoted
by SignRCSS(S,C,G,m).

BP — interactive bi-proof of equality. In BP either logα Y = logβ Z or
logα Y �= logβ Z is proved. The proof system is denoted by BP (α,Y, β,Z) in
[25], where no detailed description of BP is presented but the reader is referred
to [16] and [19].

The untraceable fair network payment protocol consists of five processes,
namely account opening, withdrawal, payment, dispute and deposit. The details
are as follows.

Account Opening
The buyer U randomly selects u1 ∈ Zq and transmits I = g1

u1 mod p to B if
Ig2 �= 1. The identifier I used to uniquely identify U can be regarded as the
account number of U . Then B publishes g1

xB (we omit mod p here) and g2
xB

so that U can compute z = (Ig2)xB = (g1
xB)u1g2

xB for himself.

Withdrawal
The buyer U performs the following protocol to withdraw an e-coin from the
bank:

1. B randomly selects w ∈ Z∗
q and sends e1 = gw and e2 = (Ig2)w to U .

2. U randomly selects s, x1, x2 ∈ Z∗
q and computes A = (Ig2)s, B = g1

x1g2
x2

and z′ = zs. U also randomly selects u, v, tc ∈ Z∗
q and computes e′

1 =
e1

ugv, e′
2 = e2

suAv and (ac, bc) = (gtc , yTTP
tc). Then U sends c = c′/u

mod q to B, where c′ = H(A,B, z′, e′
1, e

′
2, bc) + ac mod q, where H is a

collision-free hash function to Z∗
q . Note that (ac, bc) is a pair of confirmation

parameters.
3. B sends r = cxB + w mod q to U .
4. U verifies whether gr = yTTP

ce1 and (Ig2)r = zce2. If the verification holds,
U accepts and computes r′ = ru+ v mod q. Note that < A,B, (z′, e′

1, e
′
2, r

′,
ac, bc) > represents a pseudo e-coin.

Payment
The Buyer U and the merchant M exchange the e-coin and the soft goods in
this protocol. In the original protocol multiple e-coins are traded for the soft
goods. We present a simplified version of one e-coin without loss of generality.

1. U selects goods and signs an order agreement θ=SignRCSS(U ,M, TTP,OA),
where OA = {IDU , IDM, purchase data/information, goods description,
(A,B)}.

420 F. Bao

2. U sends the pseudo e-coin < A,B, (z′, e′
1, e

′
2, r

′, ac, bc) > and θ to M
3. M verifies the pseudo e-coin and θ. If all of them are valid and A �= 1, then

he sends d = H(A,B, IDM, date/time) to U .
4. U sends k1 = du1s + x1 mod q and k2 = ds + x2 mod q to U . In addition,
U must run the interactive protocol of bi-proof BP (g, ac, yTTP , bc) with M
to show logg ac = logyT T P

bc.
5. M accepts the pseudo e-coin and the payment transcripts < A,B, (z′, e′

1, e
′
2,

r′, ac, bc), (d, k1, k2) > if the following verifications hold:

gr′
= yB

H(A,B,z′,e′
1,e′

2,bc)+ace′
1

Ar′
= z′H(A,B,z′,e′

1,e′
2,bc)+ace′

2
g1

k1g2
k2 = AdB

If the above verifications pass,M sends the soft goods to the buyer U .
6. U checks the soft goods delivered byM. If it matches the description in OA,
U releases tc toM. Since each one can check ac = gtc and bc = yTTP

tc by
himself, the coin < A,B, (z′, e′

1, e
′
2, r

′, ac, bc, tc), (d, k1, k2) > (i.e., the pseudo
e-coin plus tc) denotes a true e-coin that can be directly cashed from the bank.

Disputes
If U refuses to send tc to the merchant M, M begins the dispute process in
which TTP can convert the pseudo e-coin into the true e-coin.

1. M sends the order agreement OA, the RCSS signature θ, the soft goods and
the pseudo e-coin < A,B, (z′, e′

1, e
′
2, r

′, ac, bc), (d, k1, k2) > to TTP.
2. The TTP checks the validity of the soft goods, pseudo e-coin and signa-

ture θ. If the pseudo e-coin is constructed properly, the soft goods from M
is consistent with the description in OA, and θ is valid, TTP sends M a
transformation certificate TCer = (Ec, Tc), where Ec = ac

σ (σ is a random
number selected by TTP) and Tc = σ+xTTPF (ac, Ec) mod q (F is a public
collision-free hash function). The transformation certificate can be used to
verify the relation of ac and bc by the following equation:

ac
Tc = Ecbc

F (ac,Ec)

3. TTP sends the soft goods to the buyer U .

Deposit
In a normal case, M forwards the payment transcript and the true e-coin
< A,B, (z′, e′

1, e
′
2, r

′, ac, bc, tc), (d, k1, k2) > to the bank for deposit. Neverthe-
less, if U maliciously aborts the payment process, M can start the dispute
process to acquire the TCer from TTP. In this situation, the pseudo e-coin
< A,B, (z′, e′

1, e
′
2, r

′, ac, bc), (d, k1, k2) > plus TCer = (Ec, Tc) can be the valid
token for deposit. We can also regard < A,B, (z′, e′

1, e
′
2, r

′, ac, bc), (d, k1, k2), (Ec,
Tc) > as a true e-coin with different form.

3 Analysis of the Fair Payment Protocol

Before presenting our analysis, we copy the claimed security features of the fair
payment protocol, which are expressed in the form of propositions and lemmas
in [25].

Colluding Attacks to a Payment Protocol 421

Unforgeability. No one except U can create his own pseudo e-coin < A,B, (z′,
e′
1, e

′
2, r

′, ac, bc), (d, k1, k2) >.

Indistinguishability. No one can distinguish between a valid pseudo e-coin and
a simulated one without the help of the buyer or TTP.

Convertibility. If M accepts the pseudo e-coin, it is guaranteed that TTP can
later convert the pseudo e-coins into the true e-coins which can be directly de-
posited in the bank.

Fairness. If the above unforgeability, indistinguishability and convertibility hold
for the proposed payment protocol, it can be guaranteed that at the end of the
transaction, the buyer U can obtain the soft goods if and only if the merchant
M can gain the equivalent true e-coin.

Untraceability. No one except M and TTP can confirm the signature θ. That
means onlyM and TTP can be convinced that the order agreement OA is valid.

Unlinkability. The bank or other parties cannot link a coin < A,B, (z′, e′
1, e

′
2, r

′,
ac, bc) > to the original owner.

Idea of the Colluding Attack
In the fair payment protocol, the merchant M colludes with his conspirator C.
After M receives the pseudo e-coin from the buyer U , M brings the pseudo e-
coin to TTP but claims that the trade is between C andM. Then the TTP will
convert the e-coin to an equivalent true e-coin forM and send the soft goods to
C, while U will gain nothing. Next we present the attack in details and explain
why there is no solution against the attack.

Attack Details and Explanation

1. The malicious merchant M honestly implements the Payment protocol till
step 5. After the verifications pass, he halts the protocol. That is, he obtains
the valid pseudo e-coin without giving the soft goods.

2. ThenM asks his conspirator C to sign a forged order agreement betweenM
and C, θ′ = SignRCSS(C,M, TTP,OA′) where OA′ = {IDC , IDM, purchase
data/information, goods description, (A,B)}.

3. M starts the Dispute process by sending the order agreement OA′, the RCSS
signature θ′ on OA′, the soft goods and the pseudo e-coin < A,B, (z′, e′

1, e
′
2,

r′, ac, bc), (d, k1, k2) > to TTP. Note that TTP has no way to tell whether
OA′ and θ′ are consistent with the pseudo e-coin or not because of the
unlinkability and untraceability. Note that the d in the pseudo e-coin is d =
H(A,B, IDM, date/time) instead of d = H(A,B, IDM,IDU , date/time). If
d is replaced with d = H(A,B, IDM, IDU , date/time), the attack does not
work anymore but the unlinkability and untraceability would disappear.

4. TTP converts the pseudo e-coin into a true e-coin for M and forwards the
soft goods to C. The buyer U is left without obtaining anything.

5. The problem of the fair payment protocol is that the e-money is in the form
of digital cash, which is generated with the bank’s private key and has no

422 F. Bao

link with the buyer U . If the e-money is in the digital cheque form that is
generated with U ’s private key, the attack would not work.

6. The protocol cannot be fixed by asking U to sign a pre-contract to indicate
that the trade is between U andM or by any other means. The conspirator
C can just simulate U by doing everything U does. No one can distinguish C
from U since the money is unlinkable and untraceable.

4 Fair Exchange of Digital Signatures

Fair exchange protocols have been studied by many researchers in recent years
in [1], [2], [3], [4], [5], [6], [7], [11] [12], [15], [20], [26] and many other papers.
Among them, [2], [4] and [5] have the same principle in employing verifiable
encryption schemes (VES) of digital signatures. In [4], six schemes are proposed
in its sections 4.1, 4.2, 4.3, 4.4, 4.6 and 4.7, respectively. The first three schemes
are actually not by VES but by the same method of [7]. The latter three schemes
exploit the VES of Guillou-Quisquater signatures, VES of Schnorr signatures and
VES of ElGamal signatures, respectively. We describe the latter two here in the
same denotations as in [4]. Before our description, we introduce a technique that
is the main building-block for the schemes.

Building-Block EQ DLOG(m; g1
x, g2

x; g1, g2)
EQ DLOG(m; y1, y2; g1, g2) is a non-interactive proof system for proving
Dlogg1y1 = Dlogg2y2 without disclosing the value x = Dlogg1y1 = Dlogg2y2.
The proof is associated with a message m. Here g1, y1 ∈ group G1, g2, y2 ∈
group G2, and at least one of G1 and G2 has an unknown order with bit-length
l. Let H be a hash function {0, 1}∗ → {0, 1}k and ε > 1 be a security parameter.
The proof EQ DLOG(m, y1, y2; g1, g2) is implemented as follows.

Prover: randomly choose t ∈ [−2ε(l+k), 2ε(l+k)], compute c = H(m||y1||y2||g1||g2||
g1

t||g2
t) and s = t−cx (in integer Z). (s, c) is the proof/signature of EQ DLOG

(m; y1, y2; g1, g2).

Verifier: given (s, c) and (m, y1, y2, g1, g2), check if c = H(m||y1||y2||g1||g2||g1
sy1

c||
g2

sy2
c) and s ∈ [−2ε(l+k), 2ε(l+k)]. If both hold, the verification is passed.

4.1 Fair Exchange of Schnorr Signatures

Settings
• System parameters: The system parameters are p, q and α, where p, q are

primes and q|p− 1, α is an element of order q of Z∗
p.

• TTP: TTP has a pair of public/private keys (n, g)/(factors of n) for ei-
ther Naccache-Stern encryption scheme [18] (or Okamoto-Uchiyama encryption
scheme [21]). The encryption of M under the public key (n, g) is gM mod n (or
hrgM mod n). M can be computed if the factors of n are known. It is claimed
in [4] that both schemes can be adopted but for the sake of simplicity Naccache-
Stern encryption scheme is employed.

Colluding Attacks to a Payment Protocol 423

• Alice: Alice has a pair of public/private keys y/a for Schnorr signature
scheme where y = αa mod p.
• Bob: Bob also has a pair of public/private keys for signature. Bob’s signa-

ture on message M is denoted by SBob(M).
• Message: m is a message, on which Alice and Bob are exchanging their

signatures.

Fair Exchange by Verifiable Encryption

1. Alice generates her signature SAlice(m) = (s, e), where r = αk mod p, e =
H(m||r) and s = k + ea mod q, for a randomly chosen k from Zq. The
verification of SAlice(m) is to check if e = H(m||αsy−e). Alice encrypts s
with TTP’s public key (n, g) by setting the ciphertext to be C = gs mod n.
The e is left in plaintext, from which no one else can compute s. Since Alice
knows s, she can implement EQ DLOG(m;V,C;α, g) for V = αs mod p.
Then Alice sends the verifiable encryption of SAlice(m) to Bob. That is
(C, e, V) plus the proof of EQ DLOG(m;V,C;α, g).

2. Bob checks the proof of EQ DLOG(m;V,C;α, g) and e = H(m||V y−e), if
valid, sends SBob(m) to Alice, otherwise does nothing.

3. Alice verifies Bob’s signature and, if valid, sends SAlice(m) to Bob.
4. If Bob does not receive anything or if Alice’s signature is invalid, then he

sends the verifiable encryption of SAlice(m) and SBob(m) to TTP. This pro-
vides a vehicle for TTP to understand whether the protocol was correctly
carried out. If this is the case, TTP sends SAlice(m) to Bob and SBob(m) to
Alice.

4.2 Fair Exchange of ElGamal Signatures

The settings are exactly the same as in the fair exchange of Schnorr signatures
in Section 4.1. The scheme of fair exchange of ElGamal signatures is as follows.

1. Alice generates her signature SAlice(m) = (s, r), where r = αk mod p and
s = kH(m)+ar mod q, for a randomly chosen k from Zq. The verification of
SAlice(m) is to check if αs = rH(m)yr mod p. Alice encrypts s with TTP’s
public key (n, g) by setting the ciphertext to be C = gs mod n. The r is
left in plaintext, from which no one else can compute s. Since Alice knows
s, she can implement EQ DLOG(m;V,C;α, g) for V = αs mod p. Then
Alice sends the verifiable encryption of SAlice(m) to Bob. That is (C, r, V)
plus the proof of EQ DLOG(m;V,C;α, g).

2. Bob checks the proof of EQ DLOG(m;V,C;α, g) and V = rH(m)yr mod p,
if valid, sends SBob(m) to Alice, otherwise does nothing.

3. Alice verifies Bob’s signature and, if valid, sends SAlice(m) to Bob.
4. If Bob does not receive anything or if Alice’s signature is invalid, then he

sends the verifiable encryption of SAlice(m) and SBob(m) to TTP. This pro-
vides a vehicle for TTP to understand whether the protocol was correctly
carried out. If this is the case, TTP sends SAlice(m) to Bob and SBob(m) to
Alice.

424 F. Bao

5 Colluding Attacks and Countermeasures

5.1 A Feature of Digital Signatures

The digital signatures we consider here are those that consist of two parts, such
as the (s, e) of Schnorr scheme, the (s, r) of ElGamal scheme, the (d,D) of
Guillou-Quisquater scheme and similar signatures of many other schemes. Let
us denote a signature on message m with public/private keys PK/SK by (X,Y),
and the verification formula of the signature by

Vef(m,X,Y, PK) = 1 (1)

The security requirement of digital signature demands that, for given PK,
it is infeasible to compute m and (X,Y) such that (1) holds without knowing
SK. (That is the unforgeability in passive attack model. In active attack model,
the security requirment is that it is infeasible to forge a valid signature without
knowing SK even given a signing oracle.) However, the following feature is not
prohibited for the security of signatures, while it plays an important role in our
colluding attack.

Feature. Given m, (X,Y), PK that satisfy (1), it is easy to find Y ′ �= Y
and PK ′ �= PK such that Vef(m,X,Y ′, PK ′) = 1 without knowing
SK.

Schnorr Signature. Given a signature (s, e) on message m such that e =
H(m||αsy−e), we can always find e′ �= e and y′ �= y such that e′ = H(m||αsy′−e′

).
We just take e′ = H(m||αsαt) for a randomly chosen t ∈ Zq, and then set
x′ = −t/e′ mod q and y′ = αx′

mod p. Hence Schnorr signatures have the
feature.

ElGamal Signature. Given a signature (s, r) on message m such that αs =
rH(m)yr mod p, we can find r′ �= r and y′ �= y such that αs = r′H(m)

y′r′

mod p. We take r′ = (αs/αt)(1/H(m) mod q) for a randomly chosen t ∈ Zq, and
then set x′ = t/r′ mod q and y′ = αx′

mod p. Hence ElGamal signatures have
the feature.

Guillou-Quisquater Signature. In Guillou-Quisquater scheme, n = pq is gen-
erated by a trusted center, where p and q are safe primes. A large prime v is
selected, and n and v are published as system parameters. The p, q are recom-
mended to be destroyed after that. (It is also allowed that n is generated by
each signer. In that case different signer has different n, v.) The public/private
keys J/B have relation BvJ = 1 mod n. A signature (d,D) can be generated
with the private key B by setting T = rv, d = H(m||T) and D = rBd, where
r is randomly chosen from Zn. The verification of (d,D) is d = H(m||DvJd).
To generate d′ �= d, J ′ �= J such that d′ = H(m||DvJ ′d′

) is not as simple as the
problems for Schnorr and ElGamal signatures. We cannot solve the problem of
computing the d′th-root mod n since the factorization of n is not known.

Colluding Attacks to a Payment Protocol 425

5.2 Attack to Fair Exchange of Schnorr and ElGamal Signatures

Attack to Fair Exchange of Schnorr Signature by Dishonest Bob

1. Alice generates her signature SAlice(m) = (s, e), where e = H(m||r) and
s = k + ea mod q for randomly chosen k ∈ Zq and r = αk mod p. The
verification formula of SAlice(m) is e = H(m||αsy−e). Alice encrypts s with
TTP’s public key (n, g) by setting the ciphertext to be C = gs mod n. Then
she implements EQ DLOG(m;V,C;α, g) for V = αs mod p and C = gs

mod n. After that Alice sends the verifiable encryption of SAlice(m) to Bob,
i.e., (C, e, V) plus the proof of EQ DLOG(m;V,C;α, g).

2. Bob checks the proof of EQ DLOG(m;V,C;α, g) and e = H(m||V y−e), if
valid, halts the protocol. Then he computes e′, y′ such that e′ = H(m||V y′−e′

),
i.e., e′ = H(m||V αt) for t ∈R Zq and y′ = α(−t/e′ mod q) mod p, and asks
his conspirator Cathy to register y′ as her public key. Bob can ask Cathy to
sign (C, e′, V) and any other things that could be signed by Alice for any
possible authentication.

3. Bob sends (C, e′, V), the proof of EQ DLOG(m;V,C;α, g) and SBob(m) to
TTP and claims that the exchange is between Cathy and Bob.

4. TTP first verifies the proof of EQ DLOG(m;V,C;α, g), then decrypts s and
verifies whether (s, e′) is a valid signature of Cathy and whether SBob(m) is a
valid signature of Bob. If all the verifications pass, TTP sends SCathy(m) =
(s, e′) to Bob and SBob(m) to Cathy. Hence Bob obtains Alice’s signature
(s, e) without Alice obtaining anything.

Attack to Fair Exchange of ElGamal Signature by Dishonest Bob

1. Alice generates her signature SAlice(m) = (s, r), where r = αk mod p and
s = kH(m) + ar mod q for a randomly chosen k from Zq. The verifica-
tion formula of SAlice(m) is αs = rH(m)yr mod p. Alice encrypts s with
TTP’s public key (n, g) by setting the ciphertext to be C = gs mod n.
Then she implements EQ DLOG(m;V,C;α, g) for V = αs mod p. Finally
Alice sends the verifiable encryption of SAlice(m) to Bob, which is (C, r, V)
plus the proof of EQ DLOG(m;V,C; α, g).

2. Bob checks the proof of EQ DLOG(m;V,C;α, g) and αs = rH(m)yr mod p,
if valid, halts the protocol. Then he computes r′, y′ such that αs = r′H(m)

y′r′

mod p, i.e., r′ = (V/αt)(1/H(m) mod q) for t ∈R Zq and y′ = α(t/r′ mod q)

mod p, and asks his conspirator Cathy to register y′ as her public key. Bob
can ask Cathy to sign (C, r′, V) and any other things that could be signed
by Alice for authentication.

3. Bob sends (C, r′, V), the proof of EQ DLOG(m;V,C;α, g) and SBob(m) to
TTP and claims that the exchange is between Cathy and Bob.

4. TTP first verifies the proof of EQ DLOG(m;V,C;α, g), then decrypts s
and verifies if (s, r′) is a valid signature of Cathy and if SBob(m) is a valid
signature of Bob. If the verifications all pass, TTP sends SCathy(m) = (s, r′)
to Bob and SBob(m) to Cathy. Hence Bob obtains Alice’s signature (s, r)
without Alice obtaining anything.

426 F. Bao

For some applications it is possible that message m implies the two parties
to be Alice and Bob instead of Cathy and Bob. However TTP is not supposed
to semantically understand the content of m. TTP only confirms that the m in
the EQ DLOG proof is identical to the m in the signatures.

5.3 Countermeasures

Before presenting our countermeasure, we show an interesting fact that the at-
tack does not apply to DSA signatures. In DSA scheme, a signature (s, r) under
public key y satisfies rs = αH(m)yr mod p. Although it is also simple to com-
pute r′, y′ such that r′s = αH(m)y′r′

mod p, the attack does not work anymore
because the commitment V is different from that of ElGamal signatures. In El-
Gamal scheme V = αs while in DSA V = rs. Therefore, in DSA the proof
is EQ DLOG(m;V,C; r, g). Recall that the proof of EQ DLOG(m;V,C; r, g)
is (c,σ) satisfying c = H(m||V ||C||r||g||rσV c||gσCc). That is, r is included in
the verification of (c,σ). An r′ �= r would make (c,σ) fail to pass the verifica-
tion. Forging a new proof of EQ DLOG(m;V,C; r′, g) is impossible since it is
equivalent to knowing s.

Now it is easy to see that the countermeasure is quite simple: Alice includes
her ID (or her public key) into the proof, i.e., EQ DLOG(m||IDAlice;V,C;α, g).
Even better, she includes more detailed information I about the exchange in the
proof, i.e., EQ DLOG(m||I;V,C;α, g). In such case, I is like a label that cannot
be removed and replaced. While attaching SAlice(I) is like a label stick from
outside and can be replaced, and therefore is useless. The ASW fair exchange
scheme in [2] is not subject to the attack since a similar label is adopted.

Such label technique would destroy the untraceability and unlinkability, there-
fore cannot be adopted to fix the fair payment protocol.

6 Conclusions

In this paper we present a colluding attack to breach the fairness of an untrace-
able fair payment protocol and two schemes of fair exchange of digital signatures.
Their fairness actually has no problem in the situation where only the entities
described in the protocols exist. The cryptographic techniques employed are also
secure and efficient. However, the security flaws appear if we consider the real
situation where more entities exist.

As many security experts have pointed out, security does not equal to cryp-
tography and good cryptographic algorithms do not automatically guarantee the
security of application systems. Every component is secure does not necessarily
mean that the whole system is secure. For complex systems, security should be
studied under various attacks from various angles very carefully. It takes long
time and big effort before being able to make an assertion.

Another viewpoint reflected from the result of this paper is that the concrete
implementation is very critical to security. We show that a tiny difference, such

Colluding Attacks to a Payment Protocol 427

as whether to include r in EQ DLOG(m;V,C; r, g), could make a big difference
in security. Hence engineers who implement the security schemes should be very
carefully in following every step of the schemes.

References

1. N. Asokan, M. Schunter, and M. Waidner, ”Optimistic protocol for fair exchange”,
Proceedings of the 4th ACM Conference on Computer and Communication Secu-
rity, pp. 8-17, ACM Press, 1997.

2. N. Asokan, V. Shoup, and M. Waidner, ”Optimistic fair exchange of digital sig-
natures”, Advances in Cryptology - Proceedings of Eurocrypt’98, LNCS 1403, pp.
591-606, Springer-Verlag, 1998.

3. N. Asokan, V. Shoup and M. Waidner, ”Asynchronous protocols for optimistic fair
exchange”, Proceedings of the 1998 IEEE Symposium on Security and Privacy,
IEEE Computer Press, Oakland, CA, 1998.

4. G. Ateniese, ”Efficient verifiable encryption and fair exchange of digital signa-
tures”, Proceedings of the 6th ACM Conference on Computer and Communications
Security (CCS), pp. 138-146, 1999.

5. F. Bao, R. H. Deng and W. Mao, ”Efficient and practical fair exchange protocols
with off-line TTP”, Proceedings of 1998 IEEE Symposium on Security and Privacy,
pp. 77-85, IEEE Computer Press, 1998.

6. M. Ben-Or, O. Goldreich, S. Micali and R. Rivest, ”A fair protocol for signing
contracts”, IEEE Transactions on Information Theory, IT-36(1):40–46, January
1990.

7. C. Boyd and E. Foo, ”Off-line fair payment protocols using convertible signature”,
Proceedings of Asiacrypt’98, LNCS 1514, pp. 271-285, Springer-Verlag, 1998.

8. S. Brands, ”Untraceable off-line cash in wallets with observers”, Proceedings of
Crypto’93, LNCS 773, pp. 302-318, Springer-Verlag, 1993.

9. D. Chaum, ”Blind signature for untraceable payments”, Advances in Cryptology
– Proc. of Crypto’82, Plenum Press, pp. 199-03, 1983.

10. D. Chaum, ”Designated confirmer signatures”, Proceedings of Eurocrypt’94, LNCS
950, pp. 86-91, Springer-Verlag, 1994.

11. L. Chen, ”Efficient fair exchange with verifiable confirmation of signatures”, Pro-
ceedings of Asiacrypt’98, LNCS 1514, pp. 286-299, Springer-Verlag, 1998.

12. R. H. Deng, L. Gong, A. A. Lazar and W. Wang, ”Practical protocol for certified
electronic mail”, Journal of Network and Systems Management, 4(3), pp. 279-297,
1996.

13. S. Even, O. Goldreich and A. Lempel, ”A randomized protocol for signing con-
tracts”, CACM, Vol. 28, No. 6, pp.637-647, 1985.

14. T. ElGamal, ”A public key cryptosystem and a signature scheme based on discrete
logarithms”, IEEE Transactions on Information Theory, IT-31(4):469-472, 1985.

15. M. K. Franklin and M. K. Reiter, ”Fair exchange with a semi-trusted third party”,
Proceedings of the 4th ACM Conferences on Computer and Communications Se-
curity, pp. 1-5, April 1-4, 1997, Zurich, Switzerland.

16. A. Fujioka, T. Okamoto and K. Ohta, ”Interactive bi-proof systems and unde-
niable signature schemes”, Proceedings of Eurocrypt’91, LNCS 547, pp. 243-256,
Springer-Verlag, 1992.

17. L. C. Guillou and J. J. Quisquater, ”A paradoxical identity-based signature scheme
resulting from zero-knowledge”, Advances in Cryptology - Crypto’88, LNCS 403,
Springer-Verlag, pp. 216-231.

428 F. Bao

18. D. Naccache and J. Stern, ”A new public key cryptosystem based on higher
residues”, Proceedings of the 5th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 59-66, 1998.

19. M. Michels and M. Stadler, ”Generic constructions for secure and efficient con-
firmer signature schemes”, Proceedings of Eurocrypt’98, LNCS 1403, pp. 406-421,
Springer-Verlag, 1998.

20. T. Okamoto and K.Ohta, ”How to simultaneously exchange secrets by general
assumption”, Proceedings of 2nd ACM Conference on Computer and Communi-
cations Security, pp. 184-192, 1994.

21. T. Okamoto and S. Uchiyama, ”A new public key cryptosystem as secure as fac-
toring”, Proceedings of Eurocrypt’98, LNCS 1403, Springer-Verlag, pp. 308-318,
1998.

22. C. Pomerance, ”On the Role of Smooth Numbers in Number Theoretic Algo-
rithms.” In Proc. Internat. Congr. Math., Zrich, Switzerland, 1994, Vol. 1 (Ed. S.
D. Chatterji). Basel: Birkh?user, pp. 411-422, 1995.

23. C. P. Schnorr, ”Efficient signature generation for smart cards”, Proceedings
Crypto’89, LNCS, Springer-Verlag, pp.225-232, 1990.

24. M. Stadler, ”Publicly verifiable secret sharing”, Proceedings of Eurocrypt’96,
LNCS 1070, Springer-Verlag, pp.190-199, 1996

25. C.-H. Wang, ”Untraceable fair network payment protocols with off-line TTP”,
Proceedings of Asiacrypt 2003, LNCS 2894, pp. 173-187, Springer-Verlag, 2003.

26. J. Zhou and D. Gollmann, ”A fair non-repudiation protocol”, Proceedings of the
1996 IEEE Symposium on Security and Privacy, IEEE Computer Press, pp. 55-61,
Oakland, CA, 1996.

A Restrictive Confirmation Signature Scheme

In [25], RCSS is designed as follows.

– System Setup. The parameters p, q and g, where p, q are primes such that
q|p−1 and g is an element of Z∗

p of order q. F1, F2 are two collision resistant
functions. The private/public key pairs of the signer S, the confirmer C,
the recipient R and the verifier V are (xS , y

xS

S mod p), (xC , y
xC

C mod p),
(xR, y

xR

R mod p) and (xV , yxV

V mod p), respectively.
– Signing Protocol. Assume the signer has signed an undeniable signature

(a, b, δ) on message m related to the confirmer’s public key, i.e., a = gt

mod p, b = yC
t mod p and δ = (F1(m||a)+b)xS mod p, where t is randomly

chosen by S. For delegating C the ability of confirming this signature, the
signer randomly selects k, u, v1, v2 and constructs a proof of

(w, z, u, v1, v2) = ProofDV LogEQ(c, g, yS , F1(m||a) + b, δ, yV),

where c = (c1||c2), c1 = guyV
v1 mod p, c2 = guyC

v2 mod p, w = F2(c||g||yS ||
F1(m||a) + b||δ||gk||(F1(m||a) + b)k) and z = k − xS(w + u) mod q. Thus,
the RCSS on m denotes SignRCSS(S,C, V,m) = (a, b, u, v1, v2, w, z, δ).

Colluding Attacks to a Payment Protocol 429

– Proof by the Signer. The confirmer C also plays the role of the recipient
R. That means C will be convinced that he is able to prove the validity
of the signature to V in this procedure. C checks the proof by computing
c = ((guyV

v1 mod p)||(guyC
v2 mod p)) and verifying if

w = F2(c||g||yS ||F1(m||a) + b||δ||gzyS
(w+u)||(F1(m||a) + b)zδ(w+u))

To prove the relation of a and b, the signer needs to run the interactive
protocol of bi-proof BP (g, a, yC , b) to show logg a = logyC

b.
– Confirmation Protocol. The confirmer C can prove the validity of the

signature to V by running the interactive protocol bi-proof BP (g, yC , a, b)
with V to show logg yC = loga b. The verifier V needs to check whether the
signature (a, b, u, v1, v2, w, z, δ) is created properly, and he can be convinced
that the signature is valid if he accepts the proof of BP (g, yC , a, b).

– Conversion Protocol. The confirmer can convert the designated confirmer
signature to a general non-interactive undeniable signature. Since the signer
has constructed the designated verifier proof in a non-interactive way, V can
check the validity of the signature by himself. The verifier V no longer needs
to ask C to help him verify the signautre. Here, C randomly selects σ ∈ Z∗

q

and computes E = aσ mod p and T = σ + xCF (a,E) mod q, where F is
also a hash function. The confirmer sends (E, T) to the verifier V , thus, V
can verify if aT = EbF (a,E) [10].

Information Security in Korea IT839 Strategy

Ho-Ick Suk

Ministry of Information and Communication, Korea
hisuk@mic.go.kr

Korea now has world-class IT infrastructure such as broadband Internet and
mobile communications, and produces high-quality products based on broad-
band networks and IT technologies including semiconductors, mobile handsets,
digital TV, etc. The achievement was made possible thanks to new services that
create demand, establishment of infrastructure that enables the provision of new
services, and enhanced manufacturing capability. To formulate a new virtuous
cycle, the Ministry of Information and Communication (MIC) developed the
IT839 Strategy.

The IT839 strategy is composed of 8 services, 3 infrastructures and 9 new
growth engines. 8 services are WiBro (Wireless Broadband) Service, DMB
(Digital Multimedia Broadcasting) Service, Home Network Service, Telematics
Service, RFID-based Service, W-CDMA Service, Terrestrial Digital TV, and In-
ternet Telephony (VoIP). 3 infrastructures are Broadband Convergence Network
(BcN), Ubiquitous Sensor Network (USN), and Next-Generation Internet Proto-
col (IPv6). And 9 new growth engines are Next-Generation Mobile Communica-
tions, Digital TV, Home Network, IT System on Chip (SoC), Next-Generation
PC, Embedded SW, Digital Contents, Telematics, and Intelligent Service Robot.
The success of the Strategy will enhance the quality of our lives and bring us
into ubiquitous society.

But, with the advance of new services, intelligent devices such as telematics,
home networking, and digital TV, the adverse effect of information society would
become one of the major concerns in forthcoming information society. Users
living in ubiquitous society propelled by IT839 Strategy will be very sensitive
to security and privacy issues. We anticipate possible new information security
threats. These are the diffusion of threats caused by network convergence, a sheer
of collection and disclosure of personal information through pervasive devices,
unestablished authentication framework for emerging transaction devices, and
transition from the threats of the cyberspace into ones of the real world.

If we fail to prepare for adequate and timely policies and related technical so-
lutions to cope with such security and privacy challenges, IT839 Strategy would
not be successfully implemented in our society. For IT839 Strategy to be suc-
cessful, we need the proper security policies to overcome the anticipated threats
of the future. First, to develop trustworthy convergent network, we will develop
cryptography and authentication technologies for secure network connection,
agent technology for rapid hand-off, and will standardize interface technologies
for secure interoperability among different networks. Secondly, to ensure ubiqui-

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 430–431, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Information Security in Korea IT839 Strategy 431

tous service’s safety, we will establish safety criteria for new intelligent devices,
develop lightweight cryptography technologies for privacy protection, and de-
velop DRM (Digital Right Management) technologies for protection of illegal
digital contents distribution. Lastly, we will improve legal system in preparation
for the future IT environments, and will try to formulate security culture.

It is obvious that a higher level of information security will be required to
effectively sustain the ubiquitous society. For information security to be more
effective, we should take not only technological countermeasures but also social
and legal ones. MIC will try to build secure Korea by means of considering
information security from the initial stage of IT839 Strategy implementation.

How Far Can We Go Beyond
Linear Cryptanalysis?

Thomas Baignères, Pascal Junod, and Serge Vaudenay

EPFL
http://lasecwww.epfl.ch

Abstract. Several generalizations of linear cryptanalysis have been pro-
posed in the past, as well as very similar attacks in a statistical point
of view. In this paper, we define a rigorous general statistical framework
which allows to interpret most of these attacks in a simple and unified
way. Then, we explicitely construct optimal distinguishers, we evaluate
their performance, and we prove that a block cipher immune to classical
linear cryptanalysis possesses some resistance to a wide class of general-
ized versions, but not all. Finally, we derive tools which are necessary to
set up more elaborate extensions of linear cryptanalysis, and to general-
ize the notions of bias, characteristic, and piling-up lemma.

Keywords: Block ciphers, linear cryptanalysis, statistical cryptanalysis.

1 A Decade of Linear Cryptanalysis

Linear cryptanalysis is a known-plaintext attack proposed in 1993 by Matsui
[21, 22] to break DES [26], exploiting specific correlations between the input and
the output of a block cipher. Namely, the attack traces the statistical correlation
between one bit of information about the plaintext and one bit of information
about the ciphertext, both obtained linearly with respect to GF(2)L (where L
is the block size of the cipher), by means of probabilistic linear expressions, a
concept previously introduced by Tardy-Corfdir and Gilbert [30].

Soon after, several attempts to generalize linear cryptanalysis are published:
Kaliski and Robshaw [13] demonstrate how it is possible to combine several in-
dependent linear correlations depending on the same key bits. In [31], Vaudenay
defines another kind of attack on DES, called χ2-attack, and shows that one can
obtain an attack slightly less powerful than a linear cryptanalysis, but without
the need to know precisely what happens in the block cipher. Harpes, Kramer,
and Massey [7] replace the linear expressions with so-called I/O sums, i.e., bal-
anced binary-valued functions; they prove the potential effectiveness of such a
generalization by exhibiting a block cipher secure against conventional linear
cryptanalysis but vulnerable to their generalization. Practical examples are the
attack of Knudsen and Robshaw [15] against LOKI91 and the one of Shimoyama
and Kaneko [28] against DES which both use non-linear approximations.

In [8], Harpes and Massey generalize the results of [7] by considering par-
titions pairs of the input and output spaces. Let X = {X1,X2, . . . ,Xn} and

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 432–450, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

How Far Can We Go Beyond Linear Cryptanalysis? 433

Y = {Y1,Y2, . . . ,Yn} be partitions of the input and output sets respectively,
where Xi and Yi are called blocks. The pair (X ,Y) is called a partition-pair
if all blocks of X (respectively Y) contain the same number of plaintexts (re-
spectively ciphertexts). A partitioning cryptanalysis exploits the fact that the
probabilities Pr [(X, fk(X)) ∈ (X ,Y)] may not be uniformly distributed for a
block cipher fk when the plaintext X is uniformly distributed. In order to char-
acterize the non-uniformity of a sample distribution, Harpes and Massey con-
sider two “measures” called peak imbalance and squared Euclidean imbalance.
Furthermore, they observe on toy-examples that the latter seems to lead to
more successful attacks. These results are completed by Jakobsen and Harpes
in [10, 9], where they develop useful bounds to estimate the resistance of block
ciphers to partitioning cryptanalysis, with the help of spectral techniques; these
bounds are relative to the squared Euclidean imbalance only, but this choice is
not motivated in a formal way. To the best of our knowledge, the first practi-
cal example of partitioning cryptanalysis breaking a block cipher is the attack
known as “stochastic cryptanalysis” [24] proposed by Minier and Gilbert against
Crypton [17, 18].

In recent papers, Junod and Vaudenay [12, 11] consider linear cryptanalysis in
a purely statistical framework, as it was done for the first time by Murphy et al.
[25], for deriving optimal key ranking procedures and asymptotic bounds on the
success probability of optimal linear distinguishers. A somewhat similar approach
is chosen by Coppersmith et al. [1], except that it is adapted to stream ciphers.
One can note that tight results about optimal distinguishers allow furthermore
to derive useful security criteria.

Finally, the NESSIE effort resulted in a few papers investigating the power
of linear (or non-linear) approximations based on different algebraic structures,
like Z4. For instance, Parker [27] shows how to approximate constituent func-
tions of an S-box by any linear function over any weighted alphabet. However,
Parker observes that it is not straightforward to piece these generalized linear
approximations together. In [29], Standaert et al. take advantage of approxima-
tions in Z4 by recombining the values in order to reduce the problem to the
well-known binary case; they obtain more interesting biases comparatively to a
classical linear cryptanalysis.

Notation. Throughout this paper, random variables X,Y, . . . are denoted by
capital letters, whilst their realizations x ∈ X , y ∈ Y, . . . are denoted by small
letters. The cardinal of a set X is denoted |X |. The probability function of
a random variable X following a distribution D is denoted Pr D [x] or abu-
sively Pr X [x], when the distribution is clear from the context. For convenience,
sequence X1,X2, . . . ,Xn of n random variables is denoted Xn. Similarly, a se-
quence x1, x2, . . . , xn of realizations is denoted xn. We call support of a distri-
bution D the set of all x ∈ X such that Pr D [x] �= 0. As usual, “iid” means
“independent and identically distributed”. The transpose of a linear function h
is denoted th. 1lA is 1 if the predicate A is true, 0 otherwise. Finally, “·” denotes

434 T. Baignères, P. Junod, and S. Vaudenay

the inner product. The distribution function of the standard normal distribution
is denoted

Φ(t) =
1√
2π

∫ t

−∞
e− 1

2 u2
du .

2 Optimal Distinguisher Between Two Sources

In this section, we shall consider a source generating a sequence of n iid random
variables Zn following a distribution D and taking values in a set Z. We wonder
whether D = D0 or D = D1 (where D1 is referred to as an “ideal distribution”),
knowing that one of these two hypotheses is true. An algorithm which takes a
sequence of n realizations zn as input and outputs either 0 or 1 is known as
a distinguisher limited to n samples. It can be defined by an acceptance region
A ⊂ Zn such that the distinguisher outputs 0 (respectively 1) when zn ∈ A
(respectively zn /∈ A). The ability to distinguish a distribution from another is
known as the advantage of the distinguisher and is defined by

Advn
A =

∣∣∣Pr Dn
0

[A]− Pr Dn
1

[A]
∣∣∣ ,

which is a quantity an adversary would like to maximize. The distinguisher can
make two types of mistakes: it can either output 0 when D = D1 or output 1 when
D = D0. We denote α and β the respective error probabilities and Pe = 1

2 (α+β)
the overall probability of error. We can assume without loss of generality that
Pe ≤ 1

2 ; we easily obtain that Advn
A = 1− 2Pe.

2.1 Deriving an Optimal Distinguisher

We describe here how to derive an optimal distinguisher for the scenario de-
scribed below [1, 11]. Clearly, Pe = 1

2 −
1
2

∑
zn∈A

(
Pr Dn

0
[zn]− Pr Dn

1
[zn]
)
, and

therefore that the set minimizing1 Pe is

A = {zn ∈ Zn : LR(zn) ≥ 1} where LR(zn) =
Pr Dn

0
[zn]

Pr Dn
1

[zn]
(1)

stands for likelihood ratio2. It defines an optimal distinguisher, i.e., with max-
imum advantage given a bounded number of samples and with no assumption
on the computational power of the adversary.

In order to take a decision, a distinguisher defined by (1) has to keep in
memory the results of the n queries, which is not feasible in practice if n grows.
Fortunately, it is possible to derive an equivalent distinguisher with |Z| counter
values N(a|zn), each one counting the number of occurrence of a certain symbol
a of Z in the sequence zn. We summarize this in the following result.

1 Note that we could have equivalently chosen a strict inequality in (1).
2 The likelihood ratio builds the core of the Neyman-Pearson lemma [2–Ch. 12].

How Far Can We Go Beyond Linear Cryptanalysis? 435

Proposition 1 (Optimal Distinguisher). The optimal acceptance region to
test D = D0 against D = D1 is Aopt = {zn ∈ Zn : LLR(zn) ≥ 0} where

LLR(zn) =
∑
a∈Z

s.t. N(a|zn)>0

N(a|zn) log
Pr D0 [a]
Pr D1 [a]

is the logarithmic likelihood ratio, with the convention that log 0
p = −∞ and

log p
0 = +∞ (the log 0

0 case can be ignored), and where N(a|zn) is the number
of times the symbol a occurs in the sequence zn ∈ Zn.

Given the number of realizations n, we can compute the exact advantage of
the optimal distinguisher. Let [D0]n and [D1]n be the vectors defined by

[Dj]n(z1,z2,...,zn) = Pr Dn
j

[z1, z2, . . . , zn] with j ∈ {0, 1} ,

which are a specific case of n-wise distribution matrices of the Decorrelation
Theory [33] in a simplified case as we have no input here, only outputs zi. The
probability that the distinguisher outputs 0 when D = Dj is

∑
zn∈A[Dj]nzn ,

for j ∈ {0, 1}. The advantage is thus
∣∣∑

zn∈A ([D0]nzn − [D1]nzn)
∣∣. Since Aopt

maximizes the sum, we obtain

Advn
Aopt

=
1
2
‖ [D0]n − [D1]n ‖1 ,

where the norm ‖ · ‖1 of a vector A is defined by ‖ A ‖1=
∑

i |Ai|. Note that
the statistical framework of Coppersmith et al. [1] is based on this norm.

2.2 Complexity Analysis

In this section, we compute the number of queries the optimal distinguisher
needs in order to distinguish D0 from D1, given a fixed error probability Pe.

Definition 2. The relative entropy or Kullback-Leibler distance between two
distributions D0 and D1 is defined as

D(D0 ‖ D1) =
∑
z∈Z

Pr D0 [z] log
Pr D0 [z]
Pr D1 [z]

,

with the convention that 0 log 0
p = 0 and p log p

0 = +∞ for p > 0.

We will refer to this notion using the term relative entropy as, being non-
symmetric, it is not exactly a distance. Nevertheless, it is always positive since
− log is convex. Using this notation, the following proposition can be proved.

Proposition 3. Considering that Z1,Z2, . . . is a sequence of iid random vari-
ables of distribution D and that D0 and D1 share the same support,

Pr
[
LLR(Zn)− nμ

σ
√
n

< t

]
n→∞

−−−−−−−→ Φ(t) , (2)

436 T. Baignères, P. Junod, and S. Vaudenay

assuming that μ = μj with μ0 = D(D0 ‖ D1) ≥ 0 and μ1 = −D(D1 ‖ D0) ≤ 0,
and that σ2 is

σj
2 =

∑
z∈Z

Pr Dj
[z]
(

log
Pr D0 [z]
Pr D1 [z]

)2

− μ2
j , (3)

when D = Dj for j ∈ {0, 1}.

Proof. We first note that the logarithmic likelihood ratio can be expressed as a
sum LLR(Zn) = R1 + · · ·+ Rn where

Ri =
∑
z∈Z

1lZi=z log
Pr D0 [z]
Pr D1 [z]

,

where every Zi follows distribution Dj (so that the Ri’s are iid). The Central
Limit Theorem then states that Pr [(LLR(Zn)− nμj)/(σj

√
n) < t] converges

in distribution towards Φ(t), where μj = EDj
[Ri] and σj

2 = VarDj
[Ri]. Some

straightforward computations lead to the announced result. Note that the as-
sumption that both distributions share the same support is necessary for μj and
σj to be well defined. �

We now assume that the distributions D0 and D1 are close to each other,
since it is the usual encountered case in practice.

Assumption 4. Considering that D0 is close to D1, we can write

∀z ∈ Z : Pr D0 [z] = pz + εz and Pr D1 [z] = pz with |εz| & pz .

Note that in such a case we can approximate LLR(zn) by
∑

a N(a|zn)εa/pa.
Proposition 3 can now be simplified using Taylor series.

Proposition 5. Under the hypothesis of Proposition 3 and of Assumption 4 we
have, at order two:

μ0 ≈ −μ1 ≈
1
2

∑
z∈Z

ε2z
pz

and σ0
2 ≈ σ1

2 ≈
∑
z∈Z

ε2z
pz

.

We can finally derive a heuristic theorem giving the number of samples the
distinguisher needs, together with the implied probability of error, in order to
distinguish close distributions with same support.

Theorem 6. Let Z1, . . . ,Zn be iid random variables over the set Z of distribu-
tion D, D0 and D1 be two distributions of same support which are close to each
other, and n be the number of samples of the best distinguisher between D = D0
or D = D1. Let d be a real number such that

n =
d∑

z∈Z

ε2z
pz

≈ d

2D(D0 ‖ D1)
(4)

(where pz = Pr D1 [z] and pz + εz = Pr D0 [z]). Then, the overall probability of
error is Pe ≈ Φ(−

√
d/2).

How Far Can We Go Beyond Linear Cryptanalysis? 437

Proof. If d is such that μ̃ = 1
2

√
d/n σ̃, where μ̃ and σ̃ respectively denote

the approximation of μ0 and σ0 at order 2, we obtain (4). By definition Pe =
1
2 (1− Pr D1 [LLR < 0] + Pr D0 [LLR < 0]). However

Pr Dj
[LLR < 0] = Pr Dj

[
LLR− nμj

σj
√
n

< −
√
nμj

σj

]
≈ Φ

(
−
√
nμj

σj

)
,

where we make the usual approximation that the left hand side of (2) can be
approximated by Φ(t). Therefore, as Proposition 5 states that μ0 ≈ −μ1 ≈ μ̃ and
that σ0 ≈ σ1 ≈ σ̃, we have Pe ≈ 1

2

(
1− Φ(

√
d/2) + Φ(−

√
d/2)

)
= Φ(−

√
d/2).

�

Note that it may be possible to obtain strict tight bounds instead of an
approximation for Pe using, for instance, Chernoff bounds.

2.3 Case Where the Ideal Source Is Uniform

From now on, we assume that D1 is the uniform distribution. When D0 is a
distribution whose support is X itself and which is close to D1, Theorem 6 can
be rewritten with

n =
d

|Z|
∑
z∈Z

ε2z
.

This shows that the distinguishability can be measured by means of the
Euclidean distance between D0 and D1. In the very specific case where Z =
{0, 1}, we have ε0 = −ε1 = ε and one can see that n is proportional to ε−2. It is
a well accepted fact that the complexity of linear cryptanalysis is linked to the
inverse of the square of the bias [21] which is, as we can see, a consequence of
Theorem 6. We now recall what appears to be the natural measure of the bias
of a distribution, considering the needed number of samples and Assumption 4.

Definition 7. Let εz = Pr D0 [z]− 1
|Z| . The Squared Euclidean Imbalance3 (SEI)

Δ(D0) of a distribution D0 of support Z from the uniform distribution is defined
by

Δ(D0) = |Z|
∑
z∈Z

ε2z .

It is well-known (see [6, 14]) that a χ2 cryptanalysis needs O(1/Δ(D0)) queries
to succeed, which is by no means worse, up to a constant term, than an optimal
distinguisher. Junod observed [11] that a χ2 statistical test is asymptotically
equivalent to a generalized likelihood-ratio test developed for a multinomial dis-
tribution; although such tests are not optimal in general, they usually perform
reasonably well. Our results confirm this fact: a cryptanalyst will not loose any

3 Although this appellation coincide with the one of [7], note that the definitions
slightly differ.

438 T. Baignères, P. Junod, and S. Vaudenay

essential information in the case she can describe only one of the two distribu-
tions, but the precise knowledge of both distributions allows to derive an optimal
attack. In other words, when it is impossible to derive both probability distri-
butions, or when an attack involves many different distributions and only one
is known, the best practical alternative to an optimal distinguisher seems to be
a χ2 attack, as proposed in [31]. This fact corroborates the intuition stipulating
that χ2 attacks are useful when one does not know precisely what happens in
the attacked block cipher.

2.4 Case Where the Source Generates Boolean Vectors

We assume here that random variables are bitstrings4, so that Z = {0, 1}�.
Definition 8. Following the notations of Assumption 4, let D0 be the distribu-
tion defined by the set {εz}z∈Z , D1 being the uniform distribution on Z. We
define the Fourier transform of D0 at point u ∈ Z as

ε̂u =
∑
z∈Z

(−1)u·z εz . (5)

The involution property of the Fourier transform leads to

εz =
1
2�

∑
u∈Z

(−1)u·z ε̂u . (6)

The next property can be compared to Parseval’s Theorem.

Proposition 9. In the case where D1 is the uniform distribution over Z =
{0, 1}�, the SEI and the Fourier coefficients are related by:

Δ(D0) =
∑
u∈Z

ε̂ 2
u .

We now recall the definition of the linear probability [23], which plays a
central role in the context of linear cryptanalysis.

Definition 10. The linear probability of a boolean random variable B is

LP(B) = (Pr [B = 0]− Pr [B = 1])2 = (2 Pr [B = 0]− 1)2 =
(
E
[
(−1)B

])2
.

Proposition 11. Let Z = {0, 1}�. If Z ∈ Z is a random variable of distribution
D0, the SEI and the linear probability are related by:

Δ(D0) =
∑

w∈Z\{0}
LP(w · Z) .

4 Note that all the study below extends in a straightforward way to Z = GF(p)� for
a prime p by replacing (−1) by e

2iπ
p and by using the conjugates of εz and ε̂z in (5)

and (6) respectively. For simplicity we restrict ourselves to GF(2).

How Far Can We Go Beyond Linear Cryptanalysis? 439

Proof. By using (5) we have ε̂u = ED0

[
(−1)u·Z]− 1lu=0. Proposition 9 gives

Δ(D0) =
∑

u∈Z\{0}
(
ED0

[
(−1)u·Z])2 =

∑
w∈Z\{0} LP(w · Z). �

Corollary 12. Let Z be a random variable over Z = {0, 1}� of distribution D0
and let5 LPZ

max be the maximum of LP(w · Z) over w ∈ Z \ {0}. We have

Δ(D0) ≤
(
2� − 1

)
LPZ

max .

Theorem 6 and Corollary 12 together mean that the complexity of the best
distinguisher between two distributions of random bit strings can decrease with
a factor up to 2� when compared to the best linear distinguisher. It is interesting
to note that there are cases where this bound is tight. For example if D0 is such
that Pr D0 [z] is 1

2� +
(
1− 1

2�

)
γ if z = 0, and 1

2� − 1
2� γ otherwise (where γ is a

positive constant), it can be shown that LP(w · Z) = γ2 for all w �= 0. Hence
Δ(D0) = (2� − 1)γ2 and LPmax = γ2.

2.5 Statistical Distinguishers

In the last section, we have been trying to distinguish two random variables
following two distinct distributions in a set Z = {0, 1}� where � should not be too
large from an implementation point of view. If we try to distinguish two random
variables distributed in some set {0, 1}L of large cardinality (e.g. where L = 128),
we won’t be able to implement the best distinguisher of Proposition 1 as the
memory requirement would be too high. Instead, we can reduce the source space
to a smaller space Z = {0, 1}� by means of a projection6 h : {0, 1}L → Z defining,
for a random variable S ∈ {0, 1}L of distribution D̃, a random variable Z = h(S)
of distribution D. Here we consider that h is a balanced function and that D̃1 is a
uniform distribution, so that D1 is a uniform distribution as well. This is a typical
construction in a real-life block cipher cryptanalysis, where the block length is
quite large. Now, even though we know which distinguisher is the best to use in
order to distinguish D0 from D1, it is still not clear how the projection h has to be
chosen. Probably the most classical example arises when � = 1 and h(S) = a · S
for some non-zero a ∈ {0, 1}�. We then talk about a linear distinguisher. In
this case, we note that Δ(D0) = LP(a · S) ≤ LPS

max. Modern ciphers protect
themselves against that type of distinguisher by bounding the value of LPS

max.
A natural extension of the previous scheme would be to consider any linear
projection onto wider spaces, e.g. to consider h(S) ∈ Z = {0, 1}� (where � > 1
is still small) such that h is GF(2)-linear. We then talk about an extended linear
distinguisher. It seems natural to wonder about the complexity gap between
linear cryptanalysis and this extension. The following theorem proves that if
a cipher provably resists classical linear cryptanalysis, it is (to some extent)
protected against extended linear cryptanalysis.

5 We make a slight abuse of notation since LPZ
max is not a random variable depending

on Z, but a real value depending on the distribution of Z.
6 We borrow this appellation from Vaudenay [31]; the same expression is used within

Wagner’s unified view of block cipher cryptanalysis [34] as well.

440 T. Baignères, P. Junod, and S. Vaudenay

Theorem 13. Let S be a random variable over {0, 1}L. Whenever the source
space is reduced by a projection h : {0, 1}L → {0, 1}� in a GF(2)-linear way, we
have Δ(h(S)) ≤ (2� − 1)LPS

max.

Proof. We use Proposition 11 and the fact that w · h(S) = th(w) · S. �

A classical example of a linear space reduction arises when considering con-
catenation of several projections. For example, denoting D

(i)
0 = h(i)(D̃0) for

i ∈ {1, . . . , �} where h(i) : {0, 1}L → {0, 1} is linear, we consider h(S) =(
h(1)(S), . . . , h(n)(S)

)
. This corresponds to the works of Kaliski and Robshaw

[13] (where different linear characteristics involving identical key bits are merged)
and of Junod and Vaudenay [12] (where different linear characteristics involving
different key bits are merged). In the latter situation, if no assumption is made
about the dependency among the Δ(D(i)

0)’s, Theorem 13 tells us Δ(D(1)
0 × · · · ×

D
(�)
0) ≤ (2� − 1)LPS

max. The following proposition tells us what happens in gen-
eral when the D

(i)
0 ’s are independent but do not necessarily come from a linear

projection nor a Boolean projection.

Proposition 14. Consider the case where D0 = D
(1)
0 ×· · ·×D

(�)
0 . If D

(1)
0 , . . . ,D

(�)
0

are independent distributions, then Δ(D0)+1 =
∏�

i=1

(
Δ(D(i)

0) + 1
)
. Therefore,

Δ(D0) can be approximated by the sum of the Δ(D(i)
0)’s.

Proof. For the sake of simplicity, we restrict this proof to the case where D0 =
D

(a)
0 ×D

(b)
0 . Let Z = (A,B) where A and B are two independent random variable

following distributions D
(a)
0 and D

(b)
0 respectively. As in Proposition 11, we have

Δ(D(a)
0 × D

(b)
0) =

∑
(v,w)∈Z2\{0}

(
E
[
(−1)v·A⊕w·B])2

=
∑

(v,w)∈Z2\{0}

(
E
[
(−1)v·A])2 (E [(−1)w·B])2

=
(
Δ(D(a)

0) + 1
)(

Δ(D(b)
0) + 1

)
− 1 .

�

This result tells us that merging � independent biases should only be consid-
ered when their respective amplitudes are within the same order of magnitude.

In the light of the preceeding discussion, the cryptanalyst may wonder if it
is possible to find a distinguisher with a high advantage even though the value
of LPS

max is very small. We provide an example for which it is indeed the case.

Example. Consider a source generating a random variable S = (X1, . . . ,Xn+1) ∈
Z

n+1
4 , where n is some odd large integer, and we represent Z4 by {0, 1}2 in binary.

Here we have L = 2n+2. If the source follows distribution D0, then X1, . . . ,Xn ∈
Z4 are uniform iid random variables and Xn+1 = (Y +

∑n
i=1 Xi) mod 4, where

Y ∈ {0, 1} is a uniformly distributed random variable independent of X1, . . . ,Xn.

How Far Can We Go Beyond Linear Cryptanalysis? 441

If the source follows distribution D1, S ∈ Z
n+1
4 is uniformly distributed. It can

be shown (see Appendix A) that LPS
max = 2−(n+1). On the other hand, if we

let h : Z
n+1
4 → Z2 be such that h(S) = msb ((Xn+1 −

∑n
i=0 Xi) mod 4) (where

msb stands for most significant bit), we have � = 1 and a SEI equal to 1, so that
Δ(D0)* LPS

max: D0 can be distinguished from D1 despite LPS
max is small.

This example shows that Theorem 13 tells us nothing about the SEI whenever
the plaintext space is reduced by a non-linear projection. Therefore, even though
LPS

max is very low, there may exist some tricky non-linear projections which lead
to significant breakdown of the complexity of distinguishers, i.e., there may be
something beyond linear cryptanalysis.

3 Optimal Distinguisher Between Two Oracles

So far we discussed how to distinguish random sources. Now we investigate
applications for distinguishing random oracles, such as block ciphers, and how
to transform this into the previous problem.

We consider the random variable Z taking values in Z to be a couple of ran-
dom variables (X,Y) taking values in X×Y. As discussed in Sect. 2.5, the couple
(X,Y) can be seen like the image of a plaintext/ciphertext couple (P,C) by some
balanced projections φ and ψ (which actually define the statistical cryptanalysis
in use); in other words, the adversary queries the oracle for known-plaintext pairs
and compute the projections φ and ψ to sample (X,Y). For simplicity reasons,
we focus our study on known-plaintext attacks (such as linear cryptanalysis)
and thus, we consider that X is uniformly distributed. The distribution of Y is
defined by a transition matrix T such that

[T]x,y = Pr [Y = y|X = x] = Pr [ψ(C) = y|φ(P) = x] .

The transition matrix T can either be T 0 or T 1, where T 1 is the uniform
transition matrix (i.e., [T 1]x,y = 1

|Y|). The distribution D of Z depends on the
transition matrix T . We will denote it D0 (respectively D1) when T = T 0 (re-
spectively T = T 1). We can see that if T = T 1, as X is uniformly distributed,
the distribution D1 of Z is also uniform. Therefore, all the results presented so
far can be applied to the particular case we study here. Indeed, if we note that

Pr D [z] = Pr [X = x,Y = y] = [T]x,y Pr [X = x] .

We can express Proposition 1 in terms of the transition matrices.

Proposition 15 (Optimal Binary Hypothesis Test with Transition Ma-
trices). The optimal acceptance region to test D = D0 against D = D1 (where
D1 is the uniform distribution), that is to test T = T 0 against T = T 1, is

Aopt = {(xn,yn) ∈ Xn × Yn : LLR(xn,yn) ≥ 0}

442 T. Baignères, P. Junod, and S. Vaudenay

where

LLR(xn,yn) =
∑

(x,y)∈X×Y
s.t. N((x,y)|zn)>0

N((x, y)|zn) log
[T 0]x,y

[T 1]x,y

with the conventions used in Proposition 1.

In the next sections, we derive the complexity of this distinguisher, discuss
the relationship between our model and previous work, and study how Matsui’s
Piling-up Lemma [21] extends to our model.

3.1 Cryptanalysis Complexity

We introduce the notion of bias matrix B = T 0−T 1. Note that
∑

x∈X [B]x,y = 0
when X is uniformly distributed and that

∑
y∈Y [B]x,y = 0 in any case. Similarly

to Definition 8, the Fourier transform B̂ of the bias matrix B is such that[
B̂
]

u,v
=

∑
(x,y)∈X×Y

(−1)u·x⊕v·y [B]x,y .

Furthermore, we define LPM, the linear probability matrix, by [LPM]u,v = 0
if u = v = 0 and by [LPM]u,v = LP(u ·X ⊕ v ·Y) otherwise. It can be noted that[
B̂
]2

u,v
= |X |2 [LPM]u,v. With the notations we just introduced, it is possible to

derive the complexity of the best distinguisher between two oracles as a simple
consequence of Theorem 6 and of Proposition 11.

Proposition 16. Let n be the number of queries of the best distinguisher be-
tween T 0 and T 1, which are supposed to be close to each other and of same
support. Then the overall probability of error is Pe ≈ 1− Φ(

√
d/2), where d is a

real number such that n = d/Δ(D0). Furthermore, as

Δ(D0) =
|Y|
|X | ‖ B ‖22 =

1
|X |2

‖ B̂ ‖22 =
∑

(u,v)∈X×Y
[LPM]u,v ,

n can be equivalently expressed in terms of the bias matrix, of its Fourier trans-
form, or of the linear probability matrix (and thus, of the linear probabilities).

Matsui’s linear expressions are a very particular case of the transition matri-
ces we have defined at the beginning of Sect. 3. Indeed, choosing balanced linear
projections φ, ψ : {0, 1}L → {0, 1} is equivalent to choose input/output masks
on the plaintext/ciphertext bits. The respective shapes of the corresponding bias
matrix, of its Fourier transform, and of the LPM matrix are

B =
(

ε −ε
−ε ε

)
, B̂ =

(
0 0
0 4ε

)
, and LPM =

(
0 0
0 4ε2

)
,

where ε is nothing but the bias of Matsui’s linear expressions. According to
Proposition 16, we see that the complexity of the distinguishing attack is pro-
portional to ‖ B ‖−2

2 , which is a well known result in linear cryptanalysis, for
which ‖ B ‖22= 4ε2.

How Far Can We Go Beyond Linear Cryptanalysis? 443

P (2)

P (1)

P (3)

C(1)

C(2)

φ

ξ

ψ

X

W

Y

T (1)

T (2)

Fig. 1. Two rounds of an iterated block cipher

There is an intuitive link between linear probability matrices and corre-
lation matrices [3]. Recall that the correlation matrix of a Boolean function
f : {0, 1}n → {0, 1}m is the 2m × 2n matrix C(f) such that

[
C(f)

]
u,v

=
2 Pr [u · f(P)⊕ v · P] − 1, where the probability holds over the uniform dis-
tribution of P , so that

[
C(f)

]2
u,v

= LP(u · f(P)⊕ v · P). We see that correlation
matrices are strongly related to the linear probability matrices in the specific
case where φ and ψ are identity functions (i.e., no reduction is performed on the
plaintext space).

3.2 Piling-Up Transition Matrices

A distinguishing attack on an iterated cipher is practical on condition that the
cryptanalyst knows a transition matrix spanning several rounds. In practice, the
cryptanalyst will derive a transition matrix on each round and, provided that
the projections were chosen carefully, pile them in order to obtain a transition
matrix on several rounds of the cipher.

We consider the scenario where a block cipher is represented by a random
permutation C over {0, 1}L (L denotes the block size of the cipher), where the
randomness comes from the key. Moreover we suppose that the block cipher is
made of two rounds corresponding to the succession of two random permutations
C(1) and C(2). In other words C = C(2) ◦ C(1). We denote P (1), P (2) ∈ {0, 1}L
the respective inputs of C(1) and C(2), whereas P (3) denote the output of C(2).
The random variables X, W , and Y respectively denote φ(P (1)), ξ(P (2)), and
ψ(P (3)), where φ, ξ, and ψ are projections onto X ,W, and Y, respectively. With
these notations, the respective transition matrices of C(1), C(2), and C are[

T (1)
]

x,w
= Pr W |X [w | x] ,

[
T (2)

]
w,y

= Pr Y |W [y | w] ,

and [T]x,y = Pr Y |X [y | x] .

This situation is represented on Fig. 1. Note that we use a representation
which is very similar to Wagner’s commutative diagrams [34]. Under the as-
sumption that X ↔ W ↔ Y is a Markov chain (as in [34]), it can easily be
shown that successive transition matrices are multiplicative, i.e., T = T (1)×T (2).
Note that this situation is idealistic as, even under the classical assumption that

444 T. Baignères, P. Junod, and S. Vaudenay

P (1) ↔ P (2) ↔ P (3) is a Markov chain [16, 32], X ↔ W ↔ Y may not be a
Markov chain unless the projection are chosen with care. Nevertheless, under
the suitable suppositions, the following lemma shows how the Piling-Up Lemma
extends to our model.

Lemma 17. Let B(1), B(2), and B be the bias matrices associated with T (1),
T (2), and T respectively, such that T = T (1) × T (2). In the case of a known-
plaintext attack, B = B(1) × B(2) and B̂ = 1

|W| B̂(1) × B̂(2). Therefore,
‖ B ‖22 ≤ ‖ B(1) ‖22 ‖ B(2) ‖22 , with equality if, and only if we can write[
B(1)

]
x,w

= αxγw and
[
B(2)

]
w,y

= γwβy, for some α ∈ R|X |, β ∈ R|Y| and

γ ∈ R|W|.

Proof. As T = T (1) × T (2), we have

[B]x,y = [T]x,y −
1
|Y| =

∑
w∈W

([
B(1)

]
x,w

+
1
|W|

)([
B(2)

]
w,y

+
1
|Y|

)
− 1
|Y| .

As
∑

w

[
B(1)

]
x,w

= 0, we obtain [B]x,y =
[
B(1) ×B(2)

]
x,y

+ 1
|W|
∑

w

[
B(2)

]
w,y

.

The fact that P (1) is uniformly distributed implies that P (2) and P (3) are uni-
formly distributed and thus, as φ, ξ, and ψ are balanced, that X, Z, and Y are
also uniformly distributed. In that case, we know that

∑
w∈W

[
B(2)

]
w,y

= 0,

which proves that B = B(1) ×B(2). We also have[
B̂(1) × B̂(2)

]
u,v

=
∑
a∈W

[
B̂(1)

]
u,a

[
B̂(2)

]
a,v

=
∑

(x,w)∈X×W
(w′,y)∈W×Y

(−1)u·x⊕v·y
[
B(1)

]
x,w

[
B(2)

]
w′,y

∑
a∈W

(−1)a·(w⊕w′)

= |W|
∑

(x,y)∈X×Y
(−1)u·x⊕v·y

∑
w∈W

[
B(1)

]
x,w

[
B(2)

]
w,y

= |W|
∑

(x,y)∈X×Y
(−1)u·x⊕v·y [B]x,y

= |W|
[
B̂
]

u,v
,

which proves that B̂ = 1
|W|B̂

(1)×B̂(2). Finally, from Cauchy-Schwarz inequality:

‖ B(1) ×B(2) ‖22 =
∑

(x,y)∈X×Y

(∑
w∈W

[
B(1)

]
x,w

[
B(2)

]
w,y

)2

≤
∑

(x,y)∈X×Y

(∑
w∈W

[
B(1)

]2
x,w

)(∑
w′∈W

[
B(2)

]2
w′,y

)
= ‖ B(1) ‖22 ‖ B(2) ‖22 ,

How Far Can We Go Beyond Linear Cryptanalysis? 445

with equality if, and only if, for all x, y ∈ X ×Y there exists some λx,y such that[
B(1)

]
x,w

= λx,y

[
B(2)

]
w,y

, so that
[
B(1)

]
x,w

= λx,0
[
B(2)

]
w,0 = αxγw. Taking

βy equal to α0/λ0,y when λ0,y �= 0 and to zero otherwise leads to the announced
result. �

How to find projections φ, ψ and ξ on larger spaces exhibiting such a Marko-
vian property in a given block cipher remains however an open question to us.
We may hope to approximate such a Markovian process.

4 Distinguishers Versus Key Recovery

In this section we show that our framework can adapt to key recovery instead of
distinguishers. Let us consider a process which generates independent random
variables Z1,K , . . . ,Zn,K depending on some key K ∈ {0, 1}k. We assume that
for one unknown value K = K0 all Zi,K ’s follow distribution D0, whereas when
K �= K0 all Zi,K ’s follow distribution D1. We consider the simple key ranking
procedure which, for all possible K ∈ {0, 1}k, instantiates zn

K and ranks K ac-
cording to the grade GK = LLR(zn

K). For any K �= K0 we obtain (similarly to
what we had in Theorem 6) that GK0 − GK is approximatively normally dis-
tributed with expected value nΔ(D0) and standard deviation

√
2nΔ(D0). Hence

we obtain GK0 < GK (i.e., a wrong key K has a better rank than the right key
K0) with probability approximatively Φ

(
−
√

nΔ(D0)/2
)
. Let d be such that

n = d/Δ(D0). This probability becomes Φ
(
−
√

d/2
)

which is approximatively

e−d/4/
√

2π when d is large. So K0 gets the highest grade with probability ap-

proximatively equal to
(
1− e−d/4/

√
2π
)2k−1 ≈ exp

(
−2k · e−d/4/

√
2π
)
, which is

high provided that d ≥ 4k log 2. Hence we need

n ≥ 4k log 2
Δ(D0)

.

This formula is quite useful to estimate the complexity of many attacks, e.g.
[19, 20]7. We can finally note that the expected rank of K0 (from 1 up to 2k) is
1 + (2k − 1)Φ

(
−
√

nΔ(D0)/2
)
.

5 Conclusion

Most modern block ciphers are proven to be resistant to linear cryptanalysis in
some sense. In this paper, we wonder how this resistance extends to (both known
and unknown) generalizations of linear cryptanalysis. For this, we define a sound

7 Note that [19, 20] use slightly different notations: Δ(D0) denotes the Euclidean Im-
balance instead of the Squared Euclidean Imbalance.

446 T. Baignères, P. Junod, and S. Vaudenay

and rigorous statistical framework which allows us to interpret most of these
attacks in a simple and unified way; secondly, we develop a set of useful statistical
tools to describe such attacks and to analyze their performance. Recently, our
results on GF(2)-linear projections were exploited by [20] to obtain a small
improvement factor in an attack on E0, and by [19] in another attack against
two-level E0 [19]. In the sequel of this paper, we observe that resistance to
linear cryptanalysis implies (a somewhat weaker) resistance to generalizations
based on GF(2)-linear projections; however this resistance does not extend to all
statistical cryptanalysis, as demonstrated by our example exploiting correlations
in Z4, which confirms observations of Parker and Standaert et al. [27, 29]. The
next natural step, which we hope to have rendered easier, will be to exhibit
such a practical statistical cryptanalysis against a block cipher immune to linear
cryptanalysis, like AES [4].

References

[1] D. Coppersmith, S. Halevi, and C. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Yung, editor, Advances in Cryptology - Crypto’02, volume
2442 of LNCS, pages 515–532. Springer-Verlag, 2002.

[2] T. Cover and J. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. John Wiley & Sons, 1991.

[3] J. Daemen, R. Govaerts, and J. Vandewalle. Correlation matrices. In B. Preneel,
editor, Fast Software Encryption - FSE’94, volume 1008 of LNCS, pages 275–285.
Springer-Verlag, 1995.

[4] J. Daemen and V. Rijmen. The Design of Rijndael. Information Security and
Cryptography. Springer-Verlag, 2002.

[5] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley Series
in Probability and Mathematical Statistics. John Wiley & Sons, third edition,
1968.

[6] H. Handschuh and H. Gilbert. χ2 cryptanalysis of the SEAL encryption algorithm.
In E. Biham, editor, Fast Software Encryption - FSE’97, volume 1267 of LNCS,
pages 1–12. Springer-Verlag, 1997.

[7] C. Harpes, G. Kramer, and J. Massey. A generalization of linear cryptanaly-
sis and the applicability of Matsui’s piling-up lemma. In L.C. Guillou and J.-
J. Quisquater, editors, Advances in Cryptology - Eurocrypt’95, volume 921 of
LNCS, pages 24–38. Springer-Verlag, 1995.

[8] C. Harpes and J. Massey. Partitioning cryptanalysis. In E. Biham, editor, Fast
Software Encryption - FSE’97, volume 1267 of LNCS, pages 13–27. Springer-
Verlag, 1997.

[9] T. Jakobsen. Higher-order cryptanalysis of block ciphers. PhD thesis, Department
of Mathematics, Technical University of Denmark, 1999.

[10] T. Jakobsen and C. Harpes. Non-uniformity measures for generalized linear crypt-
analysis and partitioning cryptanalysis. In J. Pribyl, editor, Pragocrypt’96.
CTU Publishing House, 1996.

[11] P. Junod. On the optimality of linear, differential and sequential distinguishers.
In E. Biham, editor, Advances in Cryptology - Eurocrypt’03, volume 2656 of
LNCS, pages 17–32. Springer-Verlag, 2003.

How Far Can We Go Beyond Linear Cryptanalysis? 447

[12] P. Junod and S. Vaudenay. Optimal key ranking procedures in a statistical crypt-
analysis. In T. Johansson, editor, Fast Software Encryption - FSE’03, volume
2887 of LNCS, pages 235–246. Springer-Verlag, 2003.

[13] B. Kaliski and M. Robshaw. Linear cryptanalysis using multiple approximations.
In Y.G. Desmedt, editor, Advances in Cryptology - Crypto’94, volume 839 of
LNCS, pages 26–39. Springer-Verlag, 1994.

[14] J. Kelsey, B. Schneier, and D. Wagner. modn cryptanalysis, with applications
against RC5P and M6. In L. Knudsen, editor, Fast Software Encryption - FSE’99,
volume 1636 of LNCS, pages 139–155. Springer-Verlag, 1999.

[15] L. Knudsen and M. Robshaw. Non-linear approximations in linear cryptanalysis.
In U. Maurer, editor, Advances in Cryptology - Eurocrypt’96, volume 1070 of
LNCS, pages 224–236. Springer-Verlag, 1996.

[16] X. Lai, J. Massey, and S. Murphy. Markov ciphers and differential cryptanalysis.
In D.W. Davies, editor, Advances in Cryptology - Eurocrypt’91, volume 547 of
LNCS, pages 17–38. Springer-Verlag, 1991.

[17] C.H. Lim. CRYPTON: A new 128-bit block cipher. In The First AES Candidate
Conference. National Institute for Standards and Technology, 1998.

[18] C.H. Lim. A revised version of CRYPTON: CRYPTON V1.0. In L. Knudsen,
editor, Fast Software Encryption - FSE’99, volume 1636 of LNCS, pages 31–45.
Springer-Verlag, 1999.

[19] Y. Lu and S. Vaudenay. Cryptanalysis of Bluetooth Keystream Generator Two-
level E0. In Advances in Cryptology - Asiacrypt’04, LNCS. Springer-Verlag,
2004.

[20] Y. Lu and S. Vaudenay. Faster correlation attack on Bluetooth keystream gen-
erator E0. In M. Franklin, editor, Advances in Cryptology - Crypto’04, volume
3152 of LNCS, pages 407–425. Springer-Verlag, 2004.

[21] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor,
Advances in Cryptology - Eurocrypt’93, volume 765 of LNCS, pages 386–397.
Springer-Verlag, 1993.

[22] M. Matsui. The first experimental cryptanalysis of the Data Encryption Standard.
In Y.G. Desmedt, editor, Advances in Cryptology - Crypto’94, volume 839 of
LNCS, pages 1–11. Springer-Verlag, 1994.

[23] M. Matsui. New structure of block ciphers with provable security against
differential and linear cryptanalysis. In D. Gollman, editor, Fast Software
Encryption - FSE’96, volume 1039 of LNCS, pages 205–218. Springer-Verlag,
1996.

[24] M. Minier and H. Gilbert. Stochastic cryptanalysis of Crypton. In B. Schneier,
editor, Fast Software Encryption - FSE’00, volume 1978 of LNCS, pages 121–133.
Springer-Verlag, 2000.

[25] S. Murphy, F. Piper, M. Walker, and P. Wild. Likelihood estimation for block
cipher keys. Technical report, Information Security Group, University of London,
England, 1995.

[26] National Institute of Standards and Technology, U. S. Department of Commerce.
Data Encryption Standard, NIST FIPS PUB 46-2, 1993.

[27] M. Parker. Generalized S-Box linearity. Technical report
nes/doc/uib/wp5/020/a, NESSIE Project, 2003. Available on
https://www.cryptonessie.org.

448 T. Baignères, P. Junod, and S. Vaudenay

[28] T. Shimoyama and T. Kaneko. Quadratic relation of S-Box and its application
to the linear attack of full round DES. In H. Krawczyk, editor, Advances in
Cryptology - Crypto’98, volume 1462 of LNCS, pages 200–211. Springer-Verlag,
1998.

[29] F.-X. Standaert, G. Rouvroy, G. Piret, J.-J. Quisquater, and J.-D. Legat. Key-
dependent approximations in cryptanalysis: an application of multiple Z4 and
non-linear approximations. In 24th Symposium on Information Theory in the
Benelux, 2003.

[30] A. Tardy-Corfdir and H. Gilbert. A known plaintext attack of FEAL-4 and FEAL-
6. In J. Feigenbaum, editor, Advances in Cryptology - Crypto’91, volume 576 of
LNCS, pages 172–182. Springer-Verlag, 1992.

[31] S. Vaudenay. An experiment on DES statistical cryptanalysis. In 3rd ACM
Conference on Computer and Communications Security, pages 139–147. ACM
Press, 1996.

[32] S. Vaudenay. On the security of CS-cipher. In L. Knudsen, editor, Fast Software
Encryption - FSE’99, volume 1636 of LNCS, pages 260–274. Springer-Verlag,
1999.

[33] S. Vaudenay. Decorrelation: a theory for block cipher security. Journal of Cryp-
tology, 16(4):249–286, 2003.

[34] D. Wagner. Towards a unifying view of block cipher cryptanalysis. In B. Roy and
W. Meier, editors, Fast Software Encryption - FSE’04, volume 3017 of LNCS,
pages 16–33. Springer-Verlag, 2004.

A A Strange Distribution

We consider a source generating a random variable S = (X1, . . . ,Xn+1) ∈ Z
n+1
4 ,

where n is some large integer, which follows either D0 or D1 (the uniform distribu-
tion). The distribution D0 is such that the X1, . . .Xn are uniformly distributed
iid random variables and Xn+1 = (Y +

∑n
i=1 Xi) mod 4, where Y ∈ {0, 1} is

uniformly distributed and independent of X1, . . . ,Xn. We claim that the linear
probability of the best linear distinguisher with one query is very small (equal
to 2−(n+1)) whereas it is still possible to find a projection h such that Z = h(S)
has a high SEI. In order to simplify the proof, we will suppose that n + 1 is a
multiple of 4.

Proposition 18. Let h : Z
n+1
4 → Z2 be defined by

h(S) = msb ((Xn+1 −
∑n

i=1 Xi) mod 4). Then the SEI of Z = h(S) is 1.

The following lemmas will be used to prove that the best linear distinguisher
is drastically less powerful than the distinguisher of Proposition 18.

Lemma 19. Let u = u1u2 . . . un be a string of n bits. If we denote w the Ham-
ming weight of u then we have∑

1≤j<k≤n

ujuk =
w(w − 1)

2
.

How Far Can We Go Beyond Linear Cryptanalysis? 449

Lemma 20. For any positive integer N , we have:

�N/4�∑
j=0

(
N

4j

)
=

1
4
(
2N + (1 + i)N + (1− i)N

)
and

�(N−1)/4�∑
j=0

(
N

4j + 1

)
=

1
4
(
2N − i(1 + i)N + i(1− i)N

)
,

where i is the imaginary unit equal to
√
−1.

Proposition 21. When S follows D0 we have LPS
max = 2−(n+1).

Proof. Each Xi is in Z4 so that it can be described by two bits, denoted XH
i XL

i .
If S is considered like a bit string, a linear distinguisher will be defined by a hash
function h such that

h(S) =

⎛⎝n+1⊕
j=1

ajX
L
j

⎞⎠⊕
⎛⎝n+1⊕

j=1

bjX
H
j

⎞⎠ ,

where a1, . . . , an+1, b1, . . . , bn+1 ∈ {0, 1} with at least one non-zero value. We
easily prove that

XL
n+1⊕Y =

n⊕
j=1

XL
j and XH

n+1 =

⎛⎝ n⊕
j=1

XH
j

⎞⎠⊕
⎛⎝ ⊕

j<k≤n

XL
j XL

k

⎞⎠⊕
⎛⎝ n⊕

j=1

XL
j Y

⎞⎠ .

Thus, if B denotes the value of the bit h(S), we have

B =

⎛⎝ n⊕
j=1

(aj ⊕ an+1)XL
j

⎞⎠⊕
⎛⎝ n⊕

j=1

(bj ⊕ bn+1)XH
j

⎞⎠⊕ an+1Y

⊕

⎛⎝bn+1

⊕
1≤j<k≤n

XL
j XL

k

⎞⎠⊕
⎛⎝bn+1

n⊕
j=1

XL
j Y

⎞⎠ .

If bn+1 = 0 we can see that (as at least one of the a1, . . . , an+1, b1, . . . , bn is
strictly positive) Pr D0 [B = 0] = 1

2 , hence LP(B) = 0. If bn+1 = 1, we have

B =

⎛⎝ n⊕
j=1

(aj ⊕ an+1)XL
j

⎞⎠⊕
⎛⎝ n⊕

j=1

bjX
H
j

⎞⎠⊕ an+1Y

⊕

⎛⎝ ⊕
1≤j<k≤n

XL
j XL

k

⎞⎠⊕
⎛⎝ n⊕

j=1

XL
j Y

⎞⎠ .

450 T. Baignères, P. Junod, and S. Vaudenay

If one of the bj ’s is non-zero, then B is uniformly distributed so LP(B) = 0.
We now assume that bj = 1 for all j = 1, . . . , n. We have

B =

⎛⎝ n⊕
j=1

(aj ⊕ an+1)XL
j

⎞⎠⊕ an+1Y ⊕

⎛⎝ ⊕
1≤j<k≤n

XL
j XL

k

⎞⎠⊕
⎛⎝ n⊕

j=1

XL
j Y

⎞⎠ .

Let us define Uj = XL
j ⊕ a⊕ aj for j ∈ {0, . . . , n} and Uj = Y ⊕ a for j = n+ 1,

with a =
⊕n+1

j=1 aj . We can show that

B =

⎛⎝ ⊕
1≤j<k≤n+1

UjUk

⎞⎠⊕ c ,

where c ∈ {0, 1} is a constant. Using Lemma 19 and denoting W the Hamming
weight of the random string of bits U1, . . . ,Un+1 we obtain

Pr [B = c] = Pr
[
W (W − 1)

2
≡ 0 (mod 2)

]
= Pr [W mod 4 = 0 or 1]

=
1

2n+1

n+1
4∑

j=0

(
n + 1

4j

)
+

1
2n+1

� n
4 �∑

j=0

(
n + 1
4j + 1

)
.

Using Lemma 20 we deduce

Pr [B = c] =
1
2

+
(1 + i)n + (1− i)n

4× 2n
=

1
2

+
cos
(

nπ
4

)
2

n
2 +1 =

1
2

+
(−1)

n+1
4

2
n+3

2

,

where we used the fact that n + 1 is a multiple of 4. Finally, LPS
max = 2−(n+1).

�

The Davies-Murphy Power Attack

Sébastien Kunz-Jacques, Frédéric Muller, and Frédéric Valette

DCSSI Crypto Lab 51, Boulevard de Latour-Maubourg,
75700 Paris, 07 SP France

{Sebastien.Kunz-Jacques, Frederic.Muller,
Frederic.Valette}@sgdn.pm.gouv.fr

Abstract. In this paper, we introduce a new power analysis attack
against DES. It is based on the well known Davies-Murphy attack. As
for the original attack, we take advantage of non-uniform output distri-
butions for two adjacent S-boxes. We show how to detect these biased
distributions by power analysis on any DES inner round and thus obtain
one bit of information about the key.

An advantage of this new attack is that no information about DES
inputs or outputs is required. Therefore it is likely to defeat many actual
countermeasures, in particular the popular masking techniques.

1 Introduction

Side-channel attacks have been developed in parallel to “classical” attack tech-
niques since about 10 years. The initial publication by Kocher [13, 14] of Simple
Power Analysis (SPA) and Differential Power Analysis (DPA) has been a ma-
jor breakthrough in the domain. The general idea in this new family of attacks
is to use “non-conventional” sources of information. Typically, the situation is
we have a cryptographic device manipulating secret key or data which is pro-
tected against physical intrusion (we can think of this device as a smart-card,
for instance). Then an attacker tries to obtain these secrets by measuring some
external elements of information about the device. A leakage can result from the
electric consumption of the device, its electromagnetic radiations, or simply by
timing measurements. Some related attacks are also based on analyzing faults
during the execution of the cryptographic computations [8].

Side channel attacks using the electric consumption are generally called
“Power Attacks”. It is widely believed that power consumption is always some-
how correlated to the manipulated data. The question is thus to find appropriate
countermeasures in order to thwart all known attacks. Power Attacks have been
developed without distinction to secret and public key primitives. However in this
paper, we mostly focus on the analysis of block ciphers. In this particular con-
text, the most popular family of attacks are DPA [14] and its extended version,
Higher-Order DPA [17, 21]. Advanced attacks usually revisit some techniques of
“classical” cryptanalysis, like collision attacks [20] or differential attacks [15].

The goal of this paper is to propose a new power attack. We revisit the well-
known Davies-Murphy cryptanalysis of DES [5, 11] and transform it into a power

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 451–467, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

452 S. Kunz-Jacques, F. Muller, and F. Valette

analysis attack. The “classical” attack uses non-uniform output distributions for
each pair of adjacent S-boxes in DES. This property results from the duplication
of some state bits by the expansion function. Non-uniform distributions result in
detectable imbalance in electric consumption, and we propose several techniques
to detect and exploit this imbalance. We call our new attack the Davies-Murphy
Power Attack (DMPA).

First we discuss the model used to describe the correlation between interme-
diate data and power consumption. Then we recall the principles of DES, the
Davies-Murphy attack and investigate some additional properties. In Section 5,
the general principle of DMPA is exposed and we propose some tricks to apply
it to various scenarios and different kinds of implementation. The final sections
are dedicated to discussing the advantages and the extensions of DMPA.

2 The Power Consumption Model

In power analysis attacks, the basic assumption is that power consumption is
somehow correlated with some data handled during the execution of an instruc-
tion. A classical assumption is the Hamming weight model [1, 9] where we
suppose that the power consumption is proportional to the hamming weight of
the manipulated data D. Let W be the power consumption and H the hamming
weight function. We suppose that

W = λ H(D ⊕R) + θ

where θ is a term of noise, λ a scalar and R a reference state from which we
measure the number of bits flipped. For instance, R is often seen as a constant,
unknown machine word (but R is not necessarily zero). The underlying assump-
tion for electric consumption is that flipping a bit from 0 to 1 or flipping it from
1 to 0 costs almost the same thing, while keeping a bit unchanged costs almost
nothing.

Many papers on side channel attacks [7, 10, 14, 18] observed empirically this
correlation between the consumption of a smart card and the hamming weight
of the operands. This model has also been verified more formally (see [9] for
instance). Although a finer analysis has revealed that an extended linear model
was sometimes more appropriate [1], it is still widely believed in practice that the
Hamming weight model is a reasonable approximation. Actually it seems partic-
ularly well suited to model circuits based on the widely used CMOS technology,
while it may be less appropriate for other technologies.

In the following, we suppose that the Hamming weight model is verified. We
stress out that this model is not specifically helpful for our attack. We choose it
because it is frequently used in the literature, and from our experience of cryp-
tographic hardware, we believe it is very often appropriate. However our attack
could probably be adapted to another model, as long as an actual correlation
exists between W and D.

It is classically known that implementations can be subject to power analysis
attacks when one of the following condition holds :

The Davies-Murphy Power Attack 453

– the intermediate data D depends only on the plaintext and a small portion of
key bits. This is the fundamental hypothesis for Differential Power Analysis
(DPA).

– a simple function of several intermediate data D1, . . . , Dt depends only on the
plaintext and a small portion of key bits. This is the fundamental hypothesis
for Higher-Order Differential Power Analysis (HO-DPA)1.
Then an attacker would use the correlation between intermediate data and

power consumption to detect a correct guess of the key bits. Recent implemen-
tations take into account this threat by protecting all inner instructions. For
instance a popular family of countermeasures consists in masking the manip-
ulated data [2–4]. The underlying idea is that intermediate values should look
random, even when the plaintext is known. However, most countermeasures do
not take into account the fact that intermediate data may be biased indepen-
dently of the plaintext. In the case of DES, this is actually the case because
of Davies’ observation about pairs of adjacent S-boxes [11]. In the next section,
we focus on DES and recall the well-known Davies-Murphy attack.

3 DES and the Davies-Murphy Attack

The Data Encryption Standard (DES) is one of the most popular block cipher.
Since it was selected as a standard by the NBS in 1977 [19], it has been the
target of many research on cryptanalysis. Among all the results against DES,
three attacks have emerged :

– Differential Cryptanalysis (DC) [6] was proposed by Biham and Shamir in
1990. It has been a major breakthrough and many applications to other
algorithms have been demonstrated thereafter. Since then, it was revealed
that the principle of DC was already known by the designers of DES.

– Linear Cryptanalysis (LC) [16] was proposed by Matsui in 1993. Like DC,
it became quickly very popular and was applied successfully to other algo-
rithms. In addition, this attack was practically implemented by Matsui in
the case of DES. This technique was presumably not known by the designers
of DES.

– The Davies-Murphy Cryptanalysis [5, 11] is a dedicated attack against DES.
It takes advantage of biased distributions for two adjacent S-boxes. Although
less generic than the previous two, Davies-Murphy cryptanalysis is a concern
for Feistel ciphers with a non-bijective round function.

First we remind the general structure of DES (see Figure 1). We call F the
round function, iterated 16 times in this case.

F is represented in more details in Figure 2. The general idea of Davies-
Murphy attack is to look at two adjacent S-boxes (say S1 and S2). Because of
the expansion phase, two bits of the input have been duplicated and are shared
by the inputs of S1 and S2. These two bits are the two rightmost bits of S1 and

1 Here it is t-th order DPA, since t intermediate data are considered.

454 S. Kunz-Jacques, F. Muller, and F. Valette

L

.

. ..
.

F

F

R

.

Fig. 1. The general structure of DES

the two leftmost bits of S2. Consequently the output distributions for S1 and for
S2 are not independent. A precise analysis shows that the joint distribution is
not uniform. Moreover, depending on one key bit2, two distributions (both non
uniform) can be observed. Theoretically this allows an attacker to learn the sum
of the 4 key bits corresponding to the shared positions in S1 and S2 (see [5, 11]).

S8

PERMUTATIONPERMUTATION

SUBKEY ADDITION

S1 S2 S3 S4 S5 S6 S7

Fig. 2. The round function of DES

To give an illustration of the Davies-Murphy biased distributions, we focus
on the S-boxes S1 and S2. We denote by (k1, k2, k3, k4) the 4 subkey bits corre-
sponding to the “shared” positions of S1 and S2, and we call k = k1⊕k2⊕k3⊕k4
the sum of these 4 bits. In Table 1 we represent the output distributions for both
cases k = 0 and k = 1. y1 and y2 represent respectively the outputs of S1 and
S2. These distributions were simply obtained by looping on all possible inputs
of S1 and S2.

This kind of imbalance was initially observed by Davies [11]. At first, it was
thought that the attack could not be extended to the full DES. Indeed the pre-
vious observation extends to 16 rounds by composing 8 times the distributions.

2 Actually, it is one linear combination of key bits.

The Davies-Murphy Power Attack 455

Table 1. Biased Distributions for S1 and S2 (all elements in the table should be divided
by 210)

���y2
y1 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

00 4
01 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
02 2 2 4 6 4 4 6 4 6 4 0 4 4 2 6 6 6 6 4 2 4 4 2 4 2 4 8 4 4 6 2 2
03 4
04 4
05 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
06 4
07 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
08 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
09 4
10 6 6 4 2 4 4 2 4 2 4 8 4 4 6 2 2 2 2 4 6 4 4 6 4 6 4 0 4 4 2 6 6
11 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
12 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5
13 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
14 3 3 4 5 4 4 5 4 5 4 2 4 4 3 5 5 5 5 4 3 4 4 3 4 3 4 6 4 4 5 3 3
15 4

Case k = 0 Case k = 1

The XOR of plaintext and ciphertext is therefore non uniform and it turns out
things depend only on one combination of key bits. Unfortunately the resulting
imbalance is too small to be detected. Later on, Biham and Biryukov demon-
strated how to improve this attack to obtain an attack faster than exhaustive
search for the full DES [5]. In this paper we focus on Davies-Murphy’s biased
distributions for just one round.

4 Extension of Davies-Murphy to the Hamming Weight

The key observation of Davies-Murphy attack is that, for any DES inner round,
intermediate data are not distributed uniformly, for randomly-chosen inputs.
However in a power attack we do not have access directly to the intermediate
data but to the power consumption (which is hopefully correlated to the data).
Since we assume the Hamming weight model, this correlation depends on the
Hamming weight of the S-box output. Hence it is natural to consider how the
Davies-Murphy property translates to the Hamming weight.

As a first example, we consider the S-boxes S1 and S2 and look at the joint
distribution of (h1, h2) = (H(S1(x1)), H(S2(x2))) where x1 and x2 are uniformly
chosen. The resulting distribution is given in Table 2.

Four values are biased in Table 2 (the corresponding positions are (h1, h2) =
(0, 2), (4, 2), (0, 3) and (4, 3)). Hence the imbalance exists but is not huge. Still,
we hope to make it exploitable but we need to introduce appropriate statistical
tools.

Definition 1. Let D1, D2 be two distributions over some finite domain X. The
statistical distance between D1 and D2 is defined as

|D1 −D2| =
∑
x∈X

|D1(x)−D2(x)|

456 S. Kunz-Jacques, F. Muller, and F. Valette

Table 2. Distributions of output hamming weight for S1 and S2 (all elements in the
table should be divided by 210)

Random Distribution Case k = 0 Case k = 1

����h2

h1 0 1 2 3 4
����h2

h1 0 1 2 3 4
����h2

h1 0 1 2 3 4

0 4 16 24 16 4 0 4 16 24 16 4 0 4 16 24 16 4

1 16 64 96 64 16 1 16 64 96 64 16 1 16 64 96 64 16

2 24 96 144 96 24 2 26 96 144 96 22 2 22 96 144 96 26

3 16 64 96 64 16 3 14 64 96 64 18 3 18 64 96 64 14

4 4 16 24 16 4 4 4 16 24 16 4 4 4 16 24 16 4

Using this definition, we can compute the statistical distance between the
previous distributions. Let U be the distribution of hamming weight for uni-
formly chosen inputs. Di denotes the distribution in the case k = i. For S-boxes
S1 and S2, we can easily compute :

|D0 − U| =
1

128

|D1 − U| =
1

128

|D1 −D0| =
1
64

The imbalance for S-boxes S1 and S2 is not the best we can obtain. We
repeated the same experience with different pairs of S-box and obtained better
results. This is summarized in Table 3.

When using random inputs, all pairs of adjacent S-boxes present an imbalance
regarding the output hamming weight. The best ones are obtained for (S2,S3),
(S7,S8) and (S8,S1). One can also notice that

Table 3. Statistical distance between distributions U , D0 and D1

S-boxes |D0 − U| |D1 − U| |D1 − D0|

S1 and S2
1

128
1

128
1
64

S2 and S3
3
64

3
64

3
32

S3 and S4
1

256
1

256
1

128

S4 and S5
1

128
1

128
1
64

S5 and S6
1

128
1

128
1
64

S6 and S7
3

128
3

128
3
64

S7 and S8
1
32

1
32

1
16

S8 and S1
1
32

1
32

1
16

The Davies-Murphy Power Attack 457

|D0 − U| = |D1 − U| = 0.5× |D1 −D0|

always holds due to the symmetry property :

D0(x) +D1(x) = 2 · U(x)

Therefore we have exhibited a Hamming weight version of the Davies-Murphy
imbalance on DES, and we are confident that the electric consumption for adja-
cent S-boxes is biased, even for randomly-chosen plaintexts.

5 The Davies-Murphy Power Attack

In this section, we want to turn the imbalance of Hamming weight into a pow-
erful side channel attack against DES. First, we need to specify which specific
assumptions we make about the power consumption of the cryptographic device.

5.1 Assumptions

As mentioned previously, our general assumption is the Hamming weight model.
However, before describing an attack, we need to precise more specifically this
model.

A first and crucial question is to determine what the reference state R cor-
responds to in practice. In [9], some experiments were conducted on different
hardwares to answer this question. Depending on the chips, different results
were obtained. In many cases, R corresponded to the address of the input value
or to the opcode of the current instruction. For other chips, R was always 0, pre-
sumably because these chips clear the bus between each instruction. Overall it is
reasonable to consider that each instruction corresponds to a unique constant R.

More formally, we make the assumption that there is a constant Ri, inde-
pendent of the round, such that the electric consumption Wi of S-box
Si is

Wi = λ H(yi ⊕Ri) + θ

with the same notations than in Section 3.
Moreover, we suppose that all S-box computations are done separately,

hence we can observe any Wi separately by looking at an appropriate portion of
the power consumption curves. This assumption is reasonable, but may be sub-
ject to discussions, depending on the implementation. Indeed some computations
might be done in parallel (for instance, on a 8-bit architecture, it is likely that
pairs of adjacent S-boxes are executed simultaneously, thus we could observe
only W2i + W2i−1).

We further explore these different scenarios in Section 6. Here, we explore
only the case where all S-boxes are computed sequentially. This is convenient to
describe a basic attack.

458 S. Kunz-Jacques, F. Muller, and F. Valette

5.2 The Principle of the Attack

We have already seen that (H(yi),H(yi+1)) is biased a priori for random plain-
text, depending just on one key bit k. Actually what we observe also depends
on the unknown constants Ri, Ri+1 and on the noisy term θ. The general idea
of the attack is decomposed in 3 steps:
– First, we observe that the distribution of (H(yi⊕Ri),H(yi+1⊕Ri+1)) is, in

general, still biased for most constants Ri, Ri+1.
– Secondly, we build an empirical distribution of (H(yi⊕Ri),H(yi+1⊕Ri+1))

by encrypting a set of randomly chosen plaintexts. Hence we need to iden-
tify the portion of curves corresponding to Wi and Wi+1, then to counter
the influence of the noisy term. The resulting empirical distribution is then
matched with theoretical results.

– Finally, a good method to perform this matching is proposed. Our strategy
is to compare distributions for two different inner rounds (not necessarily
consecutive).

1 - Adding the Constants in the Distributions. To analyze the influence
of constants Ri, we simply explored all possible cases. Hence we have looked at
distributions (H(yi ⊕Ri),H(yi+1 ⊕Ri+1)) for various pairs of S-boxes, with all
possible constants (Ri, Ri+1). These results are summarized in Table 4. As be-
fore, distribution Di corresponds to the case k = i. Besides the column “constant
= 0” corresponds to the previous results (see Table 3).

Table 4. Statistical distances with constant Ri’s

S-boxes Statistical Distance |D1 − D0|

constant = 0 worst constant best constant average value

(S1,S2) 1
64 0 5

32
1.5
32

(S2,S3) 3
32

3
32

7
32

3.656
32

(S3,S4) 1
128 0 9

128
0.473
32

(S4,S5) 1
64 0 9

64
0.984
32

(S5,S6) 1
64

1
64

3
32

1.195
32

(S6,S7) 3
64

1
64

9
128

1.262
32

(S7,S8) 1
16

1
16

25
128

3.094
32

(S8,S1) 1
16

1
128

3
32

0.711
32

Clearly, we observe that the average distance is quite significant for all pairs
(it ranges from 0.473

32 %
1
64 to 3.656

32 %
1
8). We also observe that there are “good”

and “bad” constants, but in average an imbalance is expected.

2 - Getting Rid of the Noise. In the second phase, our goal is to build
empirical distributions. More precisely, we encrypt a set of M randomly chosen

The Davies-Murphy Power Attack 459

plaintexts and we monitor the electric consumption. We target the appropriate
portion of the curves to observe (Wi,Wi+1). Our goal is, from these observations,
to decide the underlying value of (H(yi ⊕Ri),H(yi+1 ⊕Ri+1)) for each sample,
despite the noise. Hence we obtain an empirical distribution over M samples. It
is well known that when M grows, the empirical distribution converges to the
theoretical distribution. More precisely, to get rid of the noise, two situations
must be distinguished :
1. Suppose we can repeat each experiments. Typically, we can obtain twice

from the cryptographic device the same encryption and the same execution.
This assumption is commonly used in power analysis attacks. In this case the
noise is eliminated by multiplying the samples for each trace and computing
the average consumption.

2. Suppose we cannot repeat any experiments. Typically, any encryption corre-
sponds to a random plaintext. This can result from masking countermeasures
(with a fresh mask for each block !) or from a randomized mode of operation
(CBC plus IV for instance).

In the first hypothesis, there is just an extra workload per message to make
the noise arbitrarily small. Typically, if we have a Gaussian noise with expected
value 0 and standard deviation σ, we expect to reduce the standard deviation by
a factor

√
M if we repeat M times each experiment. Therefore, since our model is:

Wi = λ H(yi ⊕Ri) + θ

we consider the noise is sufficiently small when λ* σ√
M

, i.e. the noise is negli-
gible compared to the data-dependent term.

In the second hypothesis, we cannot eliminate the noise by averaging methods.
However we hope that it will only slightly perturb our empirical distributions.
Hence we suppose λ * σ, so when making a decision for each hamming weight,
we have a small probability p of making a mistake. Our practical experiments on
a smart card confirmed this supposition (see Section 6). A justification is that the
data-dependent terms represent the consumption of bus lines which is generally
dominant in a chip. More precisely, our decisions are made using thresholds:

t− 1
2
<

Wi

λ
< t +

1
2
⇒ H(yi ⊕Ri) = t

For example if Wi

λ is in the range [2.5 - 3.5], we decide H(yi ⊕ Ri) = 3.
If the noise is indeed negligible, we are successful in predicting the hamming
weight with overwhelming probability. This threshold strategy is summarized in
Figure 3 and further analyzed in Appendix A. Of course, in practice, λ is not
known but we can set up thresholds experimentally to fit to the observations. We
stress out that this analysis requires a good knowledge of the electric behavior
of the chip.

3 - Comparing Two Inner Rounds. After the step 2, we construct an empir-
ical distribution of hamming weight from power consumption curves. We know
this is biased depending on one round key bit k. However since the key is fixed,

460 S. Kunz-Jacques, F. Muller, and F. Valette

−0.5

0 1 2 3 4
observation

decide h=0 decide h=4

+0.5

Fig. 3. Threshold rules of decision when observing Wi
λ

we have nothing to compare it with. Besides it is impossible to tell the value of k
just by looking at the distribution, because it highly depends on the unknown Ri.

However an attack is still possible by looking at two different inner
rounds of DES (not necessarily consecutive rounds). For instance, suppose
we encrypt random plaintexts and compare the consumptions of round 1 and
2 for the adjacent S-boxes (S2, S3). At round 1 we observe (W2,W3), which is
distributed differently depending on whether some first round key bit k is 0 or
1. These distributions are respectively called D1 and D0. A similar observation
holds for round 2 with a second round key bit k′. Thus

– If k = k′ = i, we have distributions Di for both rounds.
– If k �= k′, we have distributions D0 for one round and D1 for the other.

D1 and D0 depend on the constants Ri, but we have seen that, in average

|D1 −D0| =
3.656
32

% 0.114

and even in the worst case, this value is 3
32 . So, in theory, if the number of

samples M is sufficient (typically M ≥ 1
0.1142 % 100), we should be able to tell if

k = k′ or k �= k′ and thus learn one bit of information about the key. In practice,
we retrieve two empirical distributions E0 and E1. We must decide whether these
distributions are the same (k = k′) or if they are different (k �= k′). Because of
the symmetry property exhibited in Section 4, we use the following indicator :

I =
∑

x

(E0(x)− U(x))× (E1(x)− U(x))

Basically, we have normalized the empirical distributions by subtracting the
U distribution, and then we compute a scalar product. If k = k′ = i, then this
indicator is positive :

Ik=k′ =
∑

x

(Di(x)− U(x))2

Otherwise, if k �= k′, then the indicator should be negative

Ik �=k′ =
∑

x

(D0(x)− U(x))× (D1(x)− U(x))

= −
∑

x

(D0(x)− U(x))2

= −
∑

x

(D1(x)− U(x))2

The Davies-Murphy Power Attack 461

because of the symmetry property described in Section 4. Therefore

Ik=k′ = −Ik �=k′

and these values are sufficiently large to be detected in practice.

5.3 Simulations

We ran some simulations of the previous distinguisher to evaluate our ability
to predict correctly whether k = k′, and we obtained the results summarized
in Table 5. Four intensity of noise where considered (see Appendix A for the
role of the probability p) as well as several values for the number of samples M .
We repeated the attack about 1000 times in each case, with a random choice of
constants Ri.

Table 5. Simulation results

Probability of success in Deciding if k = k′

p = 0 0.1 0.25

M = 256 4000 40000 256 4000 40000 256 4000 100000

(S1, S2) 0.5 0.65 0.98 0.5 0.59 0.90 0.5 0.51 0.69

(S2, S3) 0.67 0.99 1 0.58 0.96 1 0.52 0.61 0.99

(S3, S4) 0.5 0.54 0.83 0.5 0.54 0.72 0.5 0.5 0.54

(S4, S5) 0.5 0.59 0.94 0.5 0.56 0.80 0.5 0.51 0.59

(S5, S6) 0.5 0.59 0.93 0.5 0.56 0.81 0.5 0.51 0.63

(S6, S7) 0.51 0.61 0.96 0.5 0.57 0.84 0.5 0.51 0.65

(S7, S8) 0.70 0.99 1 0.58 0.95 1 0.51 0.59 0.99

(S8, S1) 0.5 0.57 0.91 0.5 0.56 0.77 0.5 0.51 0.58

It appears from Table 5 that the best pairs of S-boxes are (S2, S3) and
(S7, S8), as predicted in Section 5.2. Hence, for our basic attack we will use
any of these two pairs. For the variation attack with an 8-bit architecture, we
can only use pairs with index of the form (2i, 2i−1). Fortunately we can use the
pair (7, 8) here, which is strongly biased.

6 Some Variations of the Attack

In the previous section, we considered a simple hypothesis where all S-boxes
were computed separately. Therefore we could identify portions of the power
consumption curves corresponding to each S-box. In practice, the implementa-
tions are often more complex and we need to investigate if our attack applies to
other situations

462 S. Kunz-Jacques, F. Muller, and F. Valette

6.1 A Real-Life Situation : 8-Bit Architecture

As an example of our attack, we have considered a recent smart-card running
a software DES implementation. The card also featured some usual hardware
countermeasure (but no software countermeasure like masking). These counter-
measures included a variable internal clock and some random peaks of power.
Despite these protections, we managed to identify the power consumption cor-
responding to each portion of the DES execution. This analysis required first
to understand well the behavior of the card. The trickiest part was to eliminate
the random peaks of power but it turned out they were not “that” random and
their presence was strongly correlated with the external clock.

In addition, we realized that two S-boxes are executed simultaneously by the
card, i.e. each pair of adjacent S-boxes (S1 and S2, S3 and S4, etc ...). Therefore,
the power consumption observed is W2i + W2i−1 for i = 1 . . . 4. It is strongly
correlated with the sum of the hamming weights:

H(y2i ⊕R2i) + H(y2i−1 ⊕R2i−1)
= H((y2i ⊕R2i)||((y2i−1 ⊕R2i−1)))

Accordingly, we expect to observe 9 groups of curves locally, if we have many
samples (corresponding to hamming weight ranging from 0 to 8). In fact, due
to the noise influence, it is difficult to make the groups appear very distinctly,
but if we display a few curves (see Figure 4), a clear distinction starts to ap-
pear depending on the hamming weight. Low hamming weight correspond to low
consumption (few bits are flipped from the reference states), while high ham-
ming weights curves are located at the top of this Figure. In addition, these
experiments illustrate the fact that some noise θ is indeed present, but it is rel-
atively small compared to the data-dependent term, since the Hamming weight
distinction appears clearly.

In this scenario, we can only observe the sum of power consumption for cer-
tain pairs of S-boxes. We computed theoretically the expected imbalance for
these pairs (see Table 6). Here the distributions considered are over the sum
of hamming weights h1 + h2 and not the joint distribution (h1, h2) as previ-
ously.

Hence, the statistical distances are still relatively high for the four pairs of
S-boxes. To perform the Davies-Murphy power attack here, we can use again the
trick of comparing two different inner rounds, like in Section 5.2.

6.2 Case When More S-Boxes are Computed Simultaneously

When considering software implementations of DES, we believe the most com-
mon situation are those where 1 or 2 S-boxes at most are computed simulta-
neously. This was developed in Section 5 and Section 6.1. To our knowledge,
no software implementation presents a higher degree of parallelization than
that.

However, when turning to DES hardware implementations, more than two
S-boxes are often computed at the same time. Things are thus more complex

The Davies-Murphy Power Attack 463

Fig. 4. Distinction of Curves According to the Hamming Weight

Table 6. Statistical distances in the 8-bit scenario

S-boxes Statistical Distance |D1 − D0|

constant = 0 worst constant best constant average value

(S1,S2) 1
64 0 1

8
1.097
32

(S3,S4) 1
128 0 3

64
0.406
32

(S5,S6) 1
64

1
64

21
256

1.076
32

(S7,S8) 1
16

1
16

39
256

2.627
32

because we observe many biased distributions simultaneously, and this depends
on many key bits. We are currently investigating some refined version of our
attack in this case. We believe an attack can be achieved since the imbalance is
detectable in theory, but it will probably not be very efficient.

7 Impact on DES Implementations

Modern countermeasures against Side Channel Attacks are often focused against
DPA. Accordingly they try to make intermediate data handled during the block
cipher computation as random and unpredictable as possible. Two main tech-
niques have receive a huge interest in recent years

– Masking Techniques [2–4] where the idea is to ensure that critical intermedi-
ate data are equal to the “true” data XOR some random mask. Masking the

464 S. Kunz-Jacques, F. Muller, and F. Valette

round input has clearly no effect, since we process randomly-chosen data.
However masking the output is problematic since the Davies imbalance now
depends on the mask. But, for consistency, masking countermeasures gen-
erally require some unmasked round output (see [4]). This was not believed
to be critical because the goal was to thwart DPA and HO-DPA. However
DMPA will still work here, except we need to choose two inner rounds with
unmasked output.

If all round outputs were masked with the same value, an higher-order
version of DMPA could be envisaged3. So the best protection consists in
masking all round outputs with a distinct value. But this is probably too
expensive in practice (actual countermeasures use one or two masking values
at most).

– Duplication Techniques [12] where all intermediate data are split into two
parts, using the secret sharing principle. However, by analyzing simulta-
neously the behavior of both parts, the Davies imbalance should still be
observed. Since everything is duplicated, the analysis is probably more com-
plicated because 4 S-boxes need to be considered instead of just 2.

Therefore the Davies-Murphy Power Attack (DMPA) is likely to defeat most
“software” countermeasures. In fact, this new attack is not fundamentally dif-
ferent from classical DPA : both gather power traces and sort them according to
some intermediate data, the goal being to verify a guess on a few key bits. How-
ever, while DPA focuses on predicting some data from the plaintext and a few
key bits, DMPA does not require the knowledge of the plaintext. The analysis
is based only on the internal structure of DES and we can predict intermediate
data (actually a bias on intermediate data), only from a few key bits. The ad-
vantage is that we can focus our analysis on any inner round, while DPA usually
focuses on the first (or last) rounds of DES.

An other advantage is that countermeasures designed specifically to thw art
the family of DPA attack (like masking, duplication, or others ...) are unlikely to
be very efficient as a protection against DMPA. The main drawback of the attack
is that it is rather expensive in terms of messages encrypted. Moreover it requires
a fine analysis of the electric behavior of the target cryptographic hardware, in
order to find an appropriate power consumption model and to identify each
portion of the DES execution. So there is a lot of preliminary analysis to do
before applying the attack.

Finally DMPA proves that even slight weakness or small “non-random” be-
havior of a cipher can be exploited to mount a side channel attack. Software
countermeasures are helpful to complicate the task of the attacker, but a better
protection against power attacks will be obtained if

– the cipher behaves as randomly as possible.
– efficient hardware countermeasures are implemented, to limit the information

leaked in the electric consumption.

3 Actually the trick from Section 5.2 of using power traces of any two inner rounds is
already, by definition, a second-order attack.

The Davies-Murphy Power Attack 465

8 Extensions

All our analysis has focused on the case of DES. Indeed the principle of Davies-
Murphy attack was initially developed specifically against DES. However, more
generally, for any Feistel cipher with a non-bijective round function, some im-
balance in the round output necessarily exists. In this case, the requirements for
DMPA are

– Express the output imbalance with a small number of key bits.
– Find a correlation between the non-randomly distributed data and the elec-

tric consumption

The first requirement depends on the cipher, while the second depends on
the cryptographic hardware considered. We did not explore further to find ap-
plications on other algorithms but we believe it is an interesting topic for further
research.

9 Conclusion

We have proposed a new side channel attack against DES, the Davies-Murphy
Power Attack. It is based on the well known Davies-Murphy attack. Like its
predecessor, our attack uses non-uniform output distributions of adjacent S-
boxes. Then we detect this imbalance using electric consumption curves.

DMPA is very powerful, because it requires no information about the plain-
text and can be performed on any inner rounds of DES. Therefore we believe
it can defeat software countermeasures, which do not take into account this
type of threat. However DMPA is rather expensive : good knowledge of the de-
vice behavior regarding power consumption is required, and the data processing
complexity is rather high. For a non-protected implementation of DES, simpler
side-channel attacks (like DPA) should be preferred.

References

1. M.-L. Akkar, R. Bevan, P. Dischamp, and D. Moyart. Power Analysis, What Is
Now Possible ... In T. Okamoto, editor, Advances in Cryptology – Asiacrypt’00,
volume 1976 of Lectures Notes in Computer Science, pages 489–502. Springer, 2000.

2. M.-L. Akkar, R. Bevan, and L. Goubin. Two Power Analysis Attacks against One-
Mask Methods. In B. Roy and W. Meier, editors, Fast Software Encryption – 2004,
pages 308–325, 2004. Pre-proceedings Version.

3. M.-L. Akkar and C. Giraud. An Implementation of DES and AES Secure against
Some Attacks. In Ç. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems (CHES), volume 2162 of Lectures Notes in Computer
Science, pages 309–318. Springer, 2001.

4. M.-L. Akkar and L. Goubin. A Generic Protection against High-Order Differential
Power Analysis. In T. Johansson, editor, Fast Software Encryption – 2003, volume
2887 of Lectures Notes in Computer Science, pages 192–205. Springer, 2003.

466 S. Kunz-Jacques, F. Muller, and F. Valette

5. E. Biham and A. Biryukov. An Improvement of Davies’ Attack on DES. In A. De
Santis, editor, Advances in Cryptology – Eurocrypt’95, volume 950 of Lectures Notes
in Computer Science, pages 461–467. Springer, 1995.

6. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In
A. Menezes and S. Vanstone, editors, Advances in Cryptology – Crypto’90, volume
537 of Lectures Notes in Computer Science, pages 2–21. Springer, 1990.

7. E. Biham and A. Shamir. Power Analysis of the Key Scheduling of the AES
Candidates. In Second AES Candidate Conference, 1999.

8. D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults (Extended Abstract). In W. Fumy, editor, Advances
in Cryptology – Eurocrypt’97, volume 1233 of Lectures Notes in Computer Science,
pages 37–51. Springer, 1997.

9. E. Brier, C. Clavier, and F. Olivier. Optimal Statistical Power Analysis, 2003.
Available on Eprint : http://eprint.iacr.org/2003/152/.

10. C. Clavier, J.-S. Coron, and N. Dabbous. Differential Power Analysis in the Pres-
ence of Hardware Countermeasures. In Ç. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems (CHES), volume 1965 of Lectures Notes in Com-
puter Science, pages 252–263. Springer, 2000.

11. D. Davies and S. Murphy. Pairs and Triplets of DES S-Boxes. Journal of Cryptol-
ogy, 8(1):1–25, 1995.

12. L. Goubin and J. Patarin. DES and Differential Power Analysis, The ”Duplication”
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems (CHES), volume 1717 of Lectures Notes in Computer Science, pages 158–
172. Springer, 1999.

13. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Others Systems. In N. Koblitz, editor, Advances in Cryptology – Crypto’96, volume
1109 of Lectures Notes in Computer Science, pages 104–113. Springer, 1996.

14. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – Crypto’99, volume 1666 of Lectures Notes in Computer
Science, pages 388–397. Springer, 1999.

15. H. Ledig, F. Muller, and F. Valette. Enhancing Collision Attacks. In Cryptographic
Hardware and Embedded Systems (CHES), 2004. to appear.

16. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In T. Helleseth, editor,
Advances in Cryptology – Eurocrypt’93, volume 765 of Lectures Notes in Computer
Science, pages 386–397. Springer, 1993.

17. T. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant soft-
ware. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems (CHES), volume 1965 of Lectures Notes in Computer Science, pages 238–
251. Springer, 2000.

18. T. Messerges, E. Dabbish, and R. Sloan. Investigations of Power Analysis At-
tacks on Smartcards. In USENIX Workshop on Smartcard Technology 1999, 1999.
Available at http://www.usenix.org/.

19. NIST FIPS PUB 46-3. Data Encryption Standard, 1977.
20. K. Schramm, T. Wollinger, and C. Paar. A New Class of Collision Attacks and its

Application to DES. In T. Johansson, editor, Fast Software Encryption – 2003,
volume 2887 of Lectures Notes in Computer Science. Springer, 2003.

21. J. Waddle and D. Wagner. Towards Efficient Second Order Power Analysis. In
Cryptographic Hardware and Embedded Systems (CHES), 2004. to appear.

The Davies-Murphy Power Attack 467

A Statistical Influence of the Noise

In Section 5, we are interested in distinguishing two distributions, D0 and D1.
Our analysis of DES revealed that the statistical distance d = |D0 − D1| was
sufficiently large to distinguish between these two distributions. But in practice
we need to build an empirical observation of these distributions in the presence of
noise. As we argued, this noise is generally small, but still it may result in errors
of prediction in the threshold technique of Figure 3. There is a small probability
p that the noise is larger than 0.5 λ and thus we predict h+1 or h−1 instead of
the “true” h. We call D′

i the new distribution obtained when the noise is taken
into account. We have :

D′
i(h) = p Di(h− 1) + p Di(h + 1) + (1− 2p) Di(h)

Thus

Δ(h) = D′
i(h)−Di(h) = p · [Di(h− 1) +Di(h + 1)− 2 Di(h)]

Δ(h) is the difference of probability of deciding h, resulting from the noise in-
fluence. We see that if p& 1, then Δ(h)& 1 for all h ∈ {0, . . . , 4}. Therefore

|D′
i −Di| =

∑
h

|Δ(h)| = ε& 1

for i = 0, 1. Hence, it is still possible to make the difference between the two
distributions since

|D′
1 −D′

0| ≤ |D′
1 −D1|+ |D1 −D0|+ |D′

0 −D0|
≤ |D1 −D0|+ 2 ε

Therefore as long as the noise results in small probabilities of incorrect deci-
sions, we can still apply the same methods.

Time-Memory Trade-Off Attacks on
Multiplications and T -Functions

Joydip Mitra1 and Palash Sarkar2

1 Management Development Institute, Post Box No. 60, Mehrauli Road,
Sukhrali Gurgaon 122001, Haryana, India

joydip@mdi.ac.in
2 Cryptology Research Group, Applied Statistics Unit, Indian Statistical Institute,

203, B.T. Road, Kolkata, India 700108
palash@isical.ac.in

Abstract. T–functions are a new class of primitives which have recently
been introduced by Klimov and Shamir. The several concrete proposals
by the authors have multiplication and squaring as core nonlinear op-
erations. Firstly, we present time-memory trade-off algorithms to solve
the problems related to multiplication and squaring. Secondly, we apply
these algorithms to two of the proposals of multi-word T -functions. For
the proposal based on multiplication we can recover the 128 unknown bits
of the state vector in 240 time whereas for the proposal based on squaring
the 128 unknown bits can be recovered in 221 time. The required amount
of key stream is a few (less than five) 128-bit blocks. Experimental data
from implementation suggests that our attacks work well in practice and
hence such proposals are not secure enough for stand-alone usage. Fi-
nally, we suggest the use of conjugate permutations to possibly improve
the security of T–functions while retaining some attractive theoretical
properties.

Keywords: stream cipher, T–functions, multiplication, cryptanalysis,
time-memory trade-off.

1 Introduction

Stream ciphers are a fundamental primitive in cryptography. Encryption is per-
formed by XORing the message bit sequence with a pseudo-random bit sequence
while decryption is performed by XORing the cipher bit sequence once more with
the same pseudo-random bit sequence.

The cryptographic strength of a stream cipher depends on the unpredictabil-
ity of the pseudo-random bit sequence. The other important issue is efficiency of
the pseudo-random generator. Most practical proposals for stream ciphers strive
to achieve a good balance between speed and security. Typically stream ciphers
are built out of linear feedback shift registers, nonlinear Boolean functions and
S-boxes. See [4] for various models of stream ciphers.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 468–482, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Time-Memory Trade-Off Attacks on Multiplications and T -Functions 469

RecentlyKlimovandShamir [1–3]haveproposedanewclassofprimitives forde-
sign of stream ciphers. They call their primitive T–functions and have developed a
nice theory for analysingT–functions.Fromanefficiencypoint of view,T–functions
areextremelyattractive, sincetheycanbebuiltusing fastandeasilyavailableopera-
tions onmostprocessors.Froma securitypoint of view, there aremanynice features
including the single cycle property of the underlying permutation.

Klimov and Shamir [3] have also introduced multi-word T–functions and have
extended their theory to cover such functions. In [3], they present several concrete
constructions of multi-word T–functions. A key constituent of their proposals is
multiplication modulo 264.

Our Contributions: In the first part of the paper, we study the following
problem related to multiplication. Suppose x, y and z are n-bit integers satisfying
xy mod 2n = z. Further, suppose the m most significant bits of x, y and z are
known. The problem is to compute all possible combinations of the (n−m) least
significant bits of x and y such that the multiplication holds.

We present a time-memory trade-off algorithm to solve this problem and make
a detailed study of the effectiveness of the algorithm under different scenarios.
We also study the related problem of squaring, i.e., when x = y. It turns out
that the algorithm for multiplication is not efficient for squaring and hence we
develop a separate algorithm to solve this problem. Apart from the application
to T–functions, our algorithm can possibly be used for analysing other ciphers
based on multiplication.

The second part of the paper consists of analysing the security of two concrete
proposals of multi-word T–functions from [3]. The first proposal involves multi-
plication and the T -function operates on a state vector consisting of four 64-bit
words. The pseudo-random bit sequence obtained from the state vector consists
of the 32 most significant bits of each of the four 64-bit words. Thus the state
vector has 128 unknown bits. We perform a detailed analysis of this T -function.
The major step in the analysis consists of an application of (a modification) of
the algorithm to solve multiplication as mentioned above. The final result that
we obtain is that the 128 unknown bits can be computed in 240 time which
makes this proposal unsafe for stand-alone use as a pseudo-random generator.

The second proposal that we consider also operates on a state vector of
four 64-bit words and produces 128 bits as before. The difference is that this
proposal involves squaring instead of multiplication. Consequently, our analysis
of this proposal involves the algorithm to solve squaring. In this case, we obtain
an algorithm that determines the 128 unknown bits in 221 time. Hence this
proposal is much more insecure than the one based on multiplication.

The required amount of known pseudo-random key stream for both the above
attacks is only a few (less than five) 128-bit consecutive key stream blocks. In
most cases, we expect the attack to work with only three 128-bit consecutive key
stream blocks. This shows that these two proposals, and probably other similar
proposals, are not secure enough for stand-alone usage.

One possibility for improving the security is to extract less number of bits
from each state vector. We consider this possibility for the multiplication based

470 J. Mitra and P. Sarkar

T–function mentioned above, where only 16 most significant bits of each 64-
bit word of the state vector is produced as output. Thus a total of 64 bits are
produced from each state vector and 192 bits are unknown. Our attack also
applies to this situation and the 192 unknown bits can be obtained in 2112 time.
Though infeasible in practice, this constitutes a theoretical attack on the system.

We have implemented the algorithm to solve multiplication and our esti-
mate of the expected run-time is supported by experimental data. We have also
implemented the attack on a scaled down version of the multiplication based
T–function. Instead of a state vector consisting of four 64-bit words we have
worked with four 32-bit words. In this case, we can actually recover the 64 un-
known bits of the state vector. This shows that our attack works quite well in
practice. We have also implemented the algorithm to solve the squaring prob-
lem and the corresponding attack on the 64-bit version of the squaring based
T -function proposal. Experiments show that the attack performs as predicted
by the theoretical analysis.

Finally, we suggest a method based on conjugate permutations to possibly
improve the security of T -functions while maintaining some desirable features
such as the single cycle property.

2 Multiplication

We consider the following problem. Suppose two n-bit integers x and y are
multiplied modulo 2n to obtain an n-bit integer z. The m most significant bits
(MSBs) of x, y and z are known and we have to find all possible solutions for
the (n −m) least significant bits (LSBs) of x and y such that xy mod 2n = z.
This problem can be stated more precisely as follows:

Problem: Mult
Input: Three integers x(1), y(1) and z(1) such that, 0 ≤ x(1), y(1), z(1) < 2m.
Task: Find all pairs of integers (x(0), y(0)) such that, 0 ≤ x(0), y(0) < 2n−m,
x = 2n−mx(1) + x(0), y = 2n−my(1) + y(0) and⌊

xy mod 2n

2n−m

⌋
=
⌊ xy

2n−m

⌋
mod 2m = z(1). (1)

Note that the operation x mod 2t returns the t LSBs of x and the operation
	x/2t
 returns x* t, i.e. the binary representation of x right shifted t times. The
number of unknown bits in the pair (x(0), y(0)) is 2(n−m) and the m known
bits on the right hand side of (1) imposes m restrictions on these unknowns.
Hence, on an average, one should expect 22(n−m)−m = 22n−3m distinct pairs of
(x(0), y(0)) to be solutions to Mult. See Section 5 for an emperical justification
of this statement.

We first consider the naive approaches to solve Mult. There are (2n − 2m)
unknown bits and one approach is to try all possible combinations of these un-
known bits. This approach requires 22n−2m time. The second naive approach
using an offline table computation can be described as follows. For each pos-
sible pair of n-bit integers (x, y) compute the product z = xy mod 2n. Store

Time-Memory Trade-Off Attacks on Multiplications and T -Functions 471

in Tab[x(1), y(1), z(1)] the set of all pairs (x(0), y(0)) which are solutions to Mult
for the instance x(1), y(1), z(1). This table takes 22n time to prepare and store.
The preparation of the table can be done offline. Given a particular instance
x(1), y(1), z(1) of Mult the solutions can be directly obtained from the entries of
the row Tab[x(1), y(1), z(1)]. Since, on an average, there are 22n−3m solutions, at
least this amount of online time will be required in producing the solutions.

Thus the online time will be at least 22n−3m (requiring 22n precomputation
time and a table of size 22n) and at most 22n−2m (using exhaustive online search
but without using any look-up table). We describe solutions to Mult whose online
time complexity is between the two extreme values and which uses a table of
moderate size. Thus our algorithms can be considered to be time-memory trade-
off algorithms.

To improve readability, we will use the same notation for an integer and its
binary representation. Also the length of a binary string will be denoted by |.|.
Thus a binary string x of length |x| = k denotes an integer x ∈ {0, . . . , 2k − 1}.
For two binary strings x1 and x2, by (x2, x1) we denote the binary string x
obtained by concatenating x2 and x1. Using the integer representation of x1, x2
and x we have x = 2|x1|x2 + x1.

Using this notation, we write x = x(1)2n−m + x(0), y = y(1)2n−m + y(0) and
z = z(1)2n−m + z(0), where |x| = |y| = |z| = n, |x(1)| = |y(1)| = |z(1)| = m and
|x(0)| = |y(0)| = |z(0)| = n − m. We now introduce parameters n0, n1 and n2
defined by the following equations.

x = X(2)2n1+n0 + X(1)2n0 + X(0)

y = Y (1)2n1 + Y (0)

z = Z(1)2n1+n0 + Z(0)

⎫⎬⎭ (2)

where |X(2)| = n2, |X(1)| = n1, |X(0)| = n0, |Y (1)| = n − n1, |Y (0)| = n1,
|Z(1)| = n2 and |Z(0)| = n1 + n0. We require these parameters to satisfy certain
conditions. These conditions are given below.

1. n0 + n1 + n2 = n : This is required since x, y and z are n-bit integers.
2. n0 ≤ n−m : This ensures that X(0) is a suffix of x(0).
3. n2 ≤ m : This ensures that X(2) is a prefix of x(1).
4. n1 ≤ n−m : This ensures that Y (0) is a suffix of y(0).
5. n1 ≤ n2 : This ensures that the expected number of entries in

each row of Tab[] (see later) is one. The case n1 > n2
is also feasible but does not provide better results.

6. n2 + n1 > m : The case n2 + n1 ≤ m is also feasible, but does not
provide better results and hence we do not consider it.

We now define binary strings U (1),U (2) and V (1) in the following manner. The
strings U (1) and U (2) are such that x(0) = (U (1),X(0)) and X(1) = (U (2),U (1)),
where |U (1)| = n − m − n0, |U (2)| = m − n2. Then x(1) = (X(2),U (2)). The
string V (1) is such that y(0) = (V (1),Y (0)), where |V (1)| = n − m − n1. Then
Y (1) = (y(1), V (1)). Note that the portion U (2) of X(1) is provided as part of the

472 J. Mitra and P. Sarkar

input whereas the part U (1) of X(1) has to be determined. Also the string V (1)

is part of y(0) and has to be determined. These substrings are shown in Figure 1.

�� ��x(1) x(0)

�� �� �� ��
X(2) U (2) U (1) X(0)

��
X(1)

�� ��y(1) y(0)

�� ��
V (1) Y (0)

��
Y (1)

�� ��z(1) z(0)

�� ��
Z(1) Z(0)

Fig. 1. Definitions of substrings

Our algorithm is based on the following result.

Proposition 1.
⌊ xy

2n−n2

⌋
= r + d + c, where r =

⌊
Y (1)x2n1

2n−n2

⌋
, d = Y (0)X(2) +⌊

Y (0)X(1)2n0

2n−n2

⌋
and c ∈ {0, 1, 2}.

Proof: We write⌊ xy

2n−n2

⌋
=
⌊
xY (1)2n1

2n−n2
+ Y (0)X(2) +

Y (0)X(1)2n0

2n−n2
+

Y (0)X(0)

2n−n2

⌋
.

Note that r =
⌊
xY (1)2n1

2n−n2

⌋
=
⌊
X(2)Y (1)2n1 + X(1)Y (1) +

X(0)Y (1)2n1

2n0+n1

⌋
.

Now
⌊

X(0)Y (1)2n1

2n0+n1
+

Y (0)X(1)2n0

2n−n2
+

Y (0)X(0)

2n−n2

⌋
=
⌊

X(0)Y (1)2n1

2n0+n1

⌋
+
⌊

Y (0)X(1)2n0

2n−n2

⌋
+
⌊

Y (0)X(0)

2n−n2

⌋
+ c

for some c ∈ {0, 1, 2}. Further, since Y (0) < 2n1 , X(0) < 2n0 , we have X(0)Y (0) <
2n0+n1 = 2n−n2 and hence

⌊
Y (0)X(0)/2n−n2

⌋
= 0. Putting all these together

gives us the required result. �

Time-Memory Trade-Off Attacks on Multiplications and T -Functions 473

Based on Proposition 1 we have the following algorithm to solve Mult. The
algorithm uses a table Tab[] which is prepared in the first phase and is used to
solve Mult in the second phase.

Algorithm 1
Input: x(1), y(1) and z(1).

1. Write x(2) = (X(2),U (2)), where |X(2)| = n2 and |U (2)| = m− n2;
2. set Z(1) to the n2 most significant bits of z(1);
3. for U (1) ∈ {0, 1}n−m−n0

4. set X(1) = (U (2),U (1));
5. for Y (0) ∈ {0, 1}n1

6. compute d(1) = Y (0)X(2) + 	(Y (0)X(1)2n0)/2n−n2
 mod 2n2 ;
7. Tab[d(1)] = Tab[d(1)] ∪ {Y (0)};
8. end for;
9. for (X(0), V (1)) ∈ {0, 1}n0 × {0, 1}n−m−n1

10. set Y (1) = (y(1), V (1)); set x = (X(2),X(1),X(0));
11. compute r(1) = 	(xY (1)2n1)/2n−n2
 mod 2n2 ;
12. for c ∈ {0, 1, 2}
13. compute d(2) = Z(1) − r(1) − c (mod 2n2);
14. for each Y (0) ∈ Tab[d(2)]
15. set y = (Y (1),Y (0));
16. if ((xy)/2n−m
 mod 2m = z(1)) then
17. set x(0) = (U (1),X(0)) and y(0) = (V (1),Y (0));
18. output (x(0), y(0));
19. end if;
20. end for;
21. end for;
22. end for;
23. end for;

2.1 Complexity of Algorithm 1

The space complexity of Algorithm 1 is the space required to store Tab[]. By
construction Tab[] has 2|d(1)| = 2n2 rows and a total of 2|Y (0)| = 2n1 entries in
all the rows. By Condition 5 after Equation (2) we have n1 ≤ n2 and hence on
an average the number of entries in each row of Tab[] is at most one.

The time required by Algorithm 1 depends on the number of entries in a row
of Tab[]. The expected number of such entries is one and this allows us to obtain
the expected run-time R of Algorithm 1:

R = 2|U(1)|
(
2|Y (0)| + 3× 2|X(0)| × 2|V (1)|

)
= 2n−m−n0(2n1 + 3× 2n−m−n1+n0)
= 2n−m−n0+n1 + 3× 22(n−m)−n1

⎫⎪⎬⎪⎭ (3)

474 J. Mitra and P. Sarkar

We now consider two cases and obtain the value of R in each case.

Case 1: n2 =m. Hence n0 +n1 =n−m. In this case R = 22n1 +3×22(n−m)−n1 .

Subcase 1a: n = 64 and m = 32. Then R = 22n1 + 3× 264−n1 . This expression
is minimized when n1 = 22, whence R = 244 + 3× 242 = 7× 242.

Subcase 1b: n= 64 and m= 16. Then R= 22n1 + 3×296−n1 . Since n1 ≤ n2 =
m=16, the maximum value of n1 is 16. Choosing n1 =16 gives R=232 +3×280.

Case 2: n2 < m. This case is more complicated to analyse and we first perform
a special case analysis by setting n2 = n1. Then n0 = n−2n1 and R = 23n1−m +
3× 22(n−m)−n1 .

Subcase 2a: n = 64 and m = 32. Choosing n1 = 24 we have R=240+3×240 =242.

In general n2 �= n1. However, we have verified that for n = 64 and m = 32
and for all possible distinct values of n0, n1 and n2, the value of R is minimized
for n2 = n1 = 24 and n0 = 16. Thus the special case is also optimal for the
general case. In fact, for n = 64 and m = 32, R = 242 is the minimum possible
expected run-time for Algorithm 1.

2.2 Offline Table Preparation

The expected run-time of Algorithm 1 can be made optimal by using a larger table
which can be prepared offline. We describe this idea for n = 64 and m = 32.
Write x = 232x(1) + x(0) and y = 232y(1) + y(0). We write 	(xy)/232
 = d + r,
where d = 	(xy(0))/232
 and r = xy(1).

In the offline table preparation phase, for each (x(1), x(0), y(0)) ∈ {0, 1}32 ×
{0, 1}32 × {0, 1}32, we compute d = 	(xy(0))/232
 mod 232 and set
Tab[x(1), x(0), d] = Tab[x(1), x(0), d] ∪ {y(0)}.

In the online phase, we are given x(1), y(1) and z(1). For each possible value
of x(0) ∈ {0, 1}32, we compute r = xy(1) mod 232; d = r − z(1) mod 232 and for
each y(0) ∈ Tab[x(1), x(0), d] output (x(0), y(0)).

The run-time for table preparation is 296; the space required to store Tab[]
is also 296 and the (expected) runtime of the online phase is 232. Since there are
232 solutions, the online run-time is the minimum possible. This comes at an
expense of huge offline processing time and space.

3 Squaring

In the case x = y, the problem Mult reduces to squaring which can be formally
stated as follows.
Problem: Sqr
Input: Two integers x(1) and z(1) such that, 0 ≤ x(1), z(1) < 2m.
Task: Find all integers x(0) such that, 0 ≤ x(0) < 2n−m, x = 2n−mx(1) +x(0) and⌊

x2 mod 2n

2n−m

⌋
=
⌊

x2

2n−m

⌋
mod 2m = z(1). (4)

Time-Memory Trade-Off Attacks on Multiplications and T -Functions 475

Note that there are (n − m) unknown bits and m constraints. Hence the
expected number of solutions is max(1, 2n−2m). If n = 2m, then the expected
number of solutions is one. Algorithm 1 is not very efficient for Sqr so that we
have to deal with the problem separately.

Let n0, n1 be such that n0 +n1 = n−m and x = 2n−mX(2) +2n0X(1) +X(0),
where |X(2)| = m, |X(1)| = n1 and |X(0)| = n0 with n0 ≤ m.

Proposition 2.
⌊

x2

2n1+2n0

⌋
=
⌊
z(1)

2n0

⌋
= r + d + c, where r = 2n1

(
X(2)

)2
+⌊(

X(1)
)2

2n1

⌋
+ 2X(2)X(1), d =

⌊
2X(2)X(0)

2n0

⌋
and c ∈ {0, 1, 2, 3}.

Based on Proposition 2, we have the following algorithm to solve Sqr.

Algorithm 2
Input: x(1), z(1).

1. set k = n− (n1 + 2n0) = m− n0;
2. for X(0) ∈ {0, 1}n0

3. compute d = 	(2X(2)X(0))/2n0
 mod 2k;
4. Tab[d] = Tab[d] ∪ {X(0)};
5. end for;
6. for X(1) ∈ {0, 1}n1

7. compute r = 2n1(X(2))2 + 	(X(1))2/2n1
+ 2X(2)X(1) mod 2k;
8. for each c ∈ {0, . . . , 3}
9. compute d = 	z(1)/2n0
 − r − c mod 2k;
10. for each X(0) ∈ Tab[d]
11. if (x2/2n−m
 mod 2m = z(1)) then output (X(1),X(0));
12. end for;
13. end for;
14. end for;

The space complexity of Algorithm 2 is 2m−n0 and the (expected) time com-
plexity is R = 2n0 + 4× 2n1 .

Case 1: n = 64, m = 32. In this case we choose n0 = n1 = 16. Then the space
complexity is 216 and the time complexity is R = 216 + 4× 216 = 5× 216. This
particular choice of n0 and n1 minimizes the value of R.

Case 2: n = 64, m = 16. Choosing n0 = 8 and n1 = 40 gives a run-time
R = 28 + 4× 240.

4 Attacks on T -Functions

We consider two specific proposals of multiword T -functions from [3] and de-
scribe attacks on them. These T–functions operate on an internal state vector
which consists of four 64-bit words. Applying a T–function once to the state

476 J. Mitra and P. Sarkar

vector changes the value of each of the four 64-bit words. As suggested in [3],
the extracted output consists of the most significant 32 bits of each of the four
64-bit words of the state vector. Thus applying the T–function repeatedly to the
state vector produces a sequence of 128-bit (four 32-bit words) output blocks.
These output blocks are treated as the generated pseudo-random sequence. The
secret key consists of the initial 256-bit (four 64-bit words) value of the state
vector.

For the attack we will assume that several consecutive output blocks are
known. We actually require only two consecutive output blocks to perform the
attack and a few more to verify the correctness. The goal of our attack is to
obtain the complete 256-bit (four 64-bit words) value of the internal state vector
at some point of time.

For a 64-bit word w, let msb(w) (resp. lsb(w)) denote the 32 most (resp. least)
significant bits of w. Let (x0, x1, x2, x3) be the internal state vector at some
point of time. Let (y0, y1, y2, y3) be the state vector after application of T to
(x0, x1, x2, x3), i.e., (y0, y1, y2, y3) = T (x0, x1, x2, x3). The outputs correspond-
ing to (x0, x1, x2, x3) and (y0, y1, y2, y3) are (msb(x0),msb(x1),msb(x2),msb(x3))
and (msb(y0),msb(y1),msb(y2),msb(y3)) respectively. We assume that these out-
puts are known and our attack is to compute (lsb(x0), lsb(x1), lsb(x2), lsb(x3)).

There are a total of 128 unknown bits in (x0, x1, x2, x3) and a method to
obtain them in time less than 2128 constitutes an attack on the system. Our
algorithms are much more efficient – the attacks in Section 4.1 and Section 4.2
require time 240 and 221 respectively to compute the 128 unknown bits.

4.1 Attack on Multiplication Based T–Function

Consider the following T–function:

T

⎛⎜⎜⎝
x0
x1
x2
x3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x0 ⊕ s ⊕ (2(x1 ∨ C1)x2)
x1 ⊕ (s ∧ a0) ⊕ (2x2(x3 ∨ C3))
x2 ⊕ (s ∧ a1) ⊕ (2(x3 ∨ C3)x0)
x3 ⊕ (s ∧ a2) ⊕ (2x0(x1 ∨ C1))

⎞⎟⎟⎠ =

⎛⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎠ (5)

where a0 = x0, ai = ai−1∧xi, 1 ≤ i < 4, s = a3⊕ (a3 +C0). Also, C0 is odd and
known, C1 = (12481248)16 and C3 = (48124812)16 (Equation (13) in Klimov
and Shamir [3]). Each of C1 and C3 are considered to be 64-bit words where the
leading 32 bits are all zeros.

During use of this T -function as pseudo-random generator, the quantities
msb(xi),msb(yi) are known for i = 0, 1, 2, 3. Our attempt will be to obtain
lsb(xi) for i = 0, 1, 2, 3. This proceeds in several steps.

Step 1:
First note that msb(w1⊕w2) = msb(w1)⊕msb(w2) and msb(w1∧w2) = msb(w1)∧
msb(w2). Hence we have msb(a0) = msb(x0), msb(a1) = msb(x0) ∧ msb(x1),
msb(a2) = msb(x0) ∧ msb(x1) ∧ msb(x2) and msb(a3) = msb(x0) ∧ msb(x1) ∧
msb(x2) ∧msb(a3). The quantity s involves an addition mod 264 and cannot be
directly tackled in this manner. However, we can determine the upper part of
s with only one bit of uncertainty in the following manner. First note that we

Time-Memory Trade-Off Attacks on Multiplications and T -Functions 477

have, msb(a3 + C0 mod 264) = msb(a3) + msb(C0) + ε mod 232 where ε is the
carry of lsb(a3) + lsb(C0) and hence ε = 0, 1. Thus

msb(s) = msb(a3)⊕
(
msb(a3) + msb(C0) + ε mod 232)

and hence msb(s) can take only two values as determined by ε.
Thus, with respect to the known 32 most significant bits, equation 5 reduces

to⎛⎜⎜⎝
msb (2(x1 ∨ C1)x2)
msb (2x2(x3 ∨ C3))
msb (2(x3 ∨ C3)x0)
msb (2x0(x1 ∨ C1))

⎞⎟⎟⎠ =

⎛⎜⎜⎝
msb(y0) ⊕ msb(x0) ⊕ msb(s)
msb(y1) ⊕ msb(x1) ⊕ (msb(s) ∧msb(a0))
msb(y2) ⊕ msb(x2) ⊕ (msb(s) ∧msb(a1))
msb(y3) ⊕ msb(x3) ⊕ (msb(s) ∧msb(a2))

⎞⎟⎟⎠ . (6)

Equation (6) gives a relation between known quantities. Let W0 = 2x0, W1 =
(x1 ∨ C1), W2 = 2x2 and W3 = (x3 ∨ C3). Also let K0 = msb(y0) ⊕ msb(x0) ⊕
msb(s), K1 = msb(y1)⊕msb(x1)⊕(msb(s) ∧msb(a0)), K2 = msb(y2)⊕msb(x2)⊕
(msb(s) ∧msb(a1)) and K3 = msb(y3)⊕msb(x3)⊕(msb(s) ∧msb(a2)). Our next
step is to solve for W0,W1,W2 and W3 such that

msb(W1W2)=K0, msb(W2W3)=K1, msb(W3W0)=K2, msb(W0W1)=K3. (7)

Since there are two choices of ε, the rest of the steps have to be carried out
for each value of ε.

Step 2:
We use Algorithm 1 to solve (7). There are, however, a few adjustments, which
improve the run-time of Algorithm 1. Note that due to masking with C1 and C3,
eight bits of each of lsb(W1) and lsb(W3) are fixed and known. Also W0 = 2x0.
We know msb(x0) which means we do not know the last bit of msb(W0) which
is equal to the first bit of lsb(x0). To apply Algorithm 1 we have to know all the
32 bits of msb(W0). This means that we have to guess the last bit of msb(W0).
On the other hand, since W0 = 2x0, the last bit of W0 (and hence of lsb(W0)) is
zero. Similar considerations hold for W2.

Now suppose we are solving for lsb(W0) and lsb(W1) from the equation
msb(W0W1) = K3. While invoking Algorithm 1, we let W1 play the role of x
and W0 play the role of y. Further, we choose n2 = n1 = 24 (Subcase 2a in
Section 2.1). Then in Algorithm 1, |U (1)| = 16, |Y (0)| = 24, |X(0)| = 16 and
|V (1)| = 8. As mentioned before, due to the masking of W (1) with C1, four bits
of each of U (1) and X(0) are fixed to be one. Hence the number of choices of
U (1) in Step 3 and X(0) in Step 9 of Algorithm 1 both reduces to 212 from 216.
The last bit of Y (0) is zero and hence the number of choices of Y (0) in Step 5
of Algorithm 1 reduces to 223 from 224. The length of V (1) is eight. However, we
also need to guess the last bit of msb(W0), which is the next bit after V (1). Thus
the number of possible choices of V (1) in Step 9 of Algorithm 1 increases to 29

from 28.
In Step 18, Algorithm 1 produces (lsb(W1), lsb(W0)) as output. The modifica-

tion described above also determines the last bit of msb(W1). Suppose this bit

478 J. Mitra and P. Sarkar

is b. By definition, the last bit of lsb(W0) is zero. Then lsb(x0) is obtained by
prefixing b to lsb(W0) and dropping the last bit. We assume that the modified
Algorithm 1 produces (lsb(W1), lsb(x0)) as output. Similar considerations hold
for the other equations in (7).

Recall from Equation (3) that the original expression for the expected run-
time of Algorithm 1 is R = 2|U(1)|

(
2|Y (0)| + 3× 2|X(0)| × 2|V (1)|

)
. Due to the

changes in the number of possible choices of U (1),Y (0),X(0) and V (1), as ex-
plained above, this expression reduces to

R = 216−4(224−1 + 3× 216−4 × 29)
= 235 + 3× 233 = 7× 233 < 236.

The time for solving one equation in (7) is approximately 236 and hence
the total time to solve all four equations is 238. The solutions to (7) are stored
in separate lists, as we explain below. Define wi = lsb(Wi) for i = 1, 3 and
wi = lsb(xi) for i = 0, 2.

• Lst10 stores (w1, w0), sorted on w1, such that msb(W0W1) = K3.
• Lst12 stores (w1, w2), sorted on w1, such that msb(W1W2) = K0.
• Lst30 stores (w3, w0), sorted on w3, such that msb(W3W0) = K2.
• Lst32 stores (w3, w2), sorted on w3, such that msb(W2W3) = K1.

Step 3:
The next task is to “merge” the four lists to obtain solutions (w0, w1, w2, w3)
which are consistent with all four equations. This is done as follows.

• Merge Lst10 and Lst12 on w1 to obtain list Lst102
containing pairs of the form (w0, w2, w1).
• Merge Lst30 and Lst32 on w1 to obtain list Lst302

containing pairs of the form (w0, w2, w3).
• Sort each of Lst102 and Lst302 on (w0, w2).
• Merge Lst102 and Lst302 on (w0, w2) to obtain a list Fin which contains

tuples of the form (w0, w1, w2, w3) which are solutions to (7).

The time for merging and sorting (ignoring logarithmic factors) is 232 and
hence the above steps can be completed in approximately 234 steps.

We consider the expected number of solutions to (7). There are 24 unknown
bits in each of lsb(W1) and lsb(W3). On the other hand, there are 31 unknown
bits in each of lsb(W0) and lsb(W2). In addition, we have to determine the
last bits of both msb(W0) and msb(W2). Thus there are a total of 112 unknown
bits in (7). Each of the equations in (7) provide 32 restrictions on these unknown
bits. Hence there are a total of 128 restrictions on these 112 unknown bits. Thus,
on an average, we can expect the solution to (7) to be unique. See Section 5 for
an emperical justification of this statement.

Step 4:
The list Fin contains the possible solutions (w0, w1, w2, w3). Now wi = lsb(Wi)
for i = 1, 3 and we want lsb(xi). As mentioned before, the masking of x1 and x3

Time-Memory Trade-Off Attacks on Multiplications and T -Functions 479

by C1 and C3 respectively fixes 8 bits each of W1 and W3. Thus from lsb(W1)
and lsb(W3) we do not obtain the values of these 16 bits of lsb(x1) and lsb(x3).
Instead, for each possible solution (w0, w1, w2, w3) in Fin and each possible value
of these 16 bits, we construct a possible solution (lsb(x0), lsb(x1), lsb(x2), lsb(x3))
and verify it using the definition of the T–function given in (5) and a few more
outputs of the pseudo-random generator. The expected number of solutions
(lsb(x0), lsb(x1), lsb(x2), lsb(x3)) is also one and the complexity of this step is 216.

This completes the description of the attack. By combining all the complex-
ities, we see that the complexity of the attack is less than 240 in determining
the 128 unknown bits of (lsb(x0), lsb(x1), lsb(x2), lsb(x3)). This makes the at-
tack quite practical and suggests that this T–function should not be used as a
stand-alone pseudo-random generator.

4.2 Attack on Squaring Based T–Function

Consider the following T–function:

T

⎛⎜⎜⎝
x0
x1
x2
x3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x0 ⊕ s ⊕ x2

1 ∧M
x1 ⊕ s ∧ a0 ⊕ x2

2 ∧M
x2 ⊕ s ∧ a1 ⊕ x2

3 ∧M
x3 ⊕ s ∧ a2 ⊕ x2

0 ∧M

⎞⎟⎟⎠ (8)

where, a0 = x0, ai = ai−1∧xi, 1 ≤ i < 4, s = a3⊕ (a3 +1), and M = 1 . . . 11102.
This is Equation (10) in [3]. Since, msb(a0) = msb(x0) and msb(ai) = msb(ai−1)∧
msb(xi), 1 ≤ i < 4, we know msb(ai) for 0 ≤ i < 4. Now,

s =
(
msb(a3)× 232 + lsb(a3)

)
⊕
(
msb(a3)× 232 + lsb(a3) + 1

)
= 232 {msb(a3)⊕ (msb(a3) + ε)}+

{
lsb(a3)⊕

(
lsb(a3) + 1 mod 232

)}
where ε is the carry of lsb(a3)+1. If ε = 1, then lsb(a3) equals 1 . . . 1112 = 232−1.
But, lsb(a3) = lsb(x0) ∧ lsb(x1) ∧ lsb(x2) ∧ lsb(x3) and hence lsb(xi) = 1 . . . 1112
for 0 ≤ i < 4. In other words, ε = 1⇒ lsb(xi) = 1 . . . 1112 for 0 ≤ i < 4 and we
can verify if this is indeed the case.

If this is not the case, then ε = 0 and so, msb(s) = msb(a3) ⊕ msb(a3) =
0 . . . 0002. But then, msb(s ∧ ai) = msb(s) ∧ msb(ai) = 0 . . . 0002. Also, the 32
most significant bits of M are all ones and hence, msb(x ∧M) = msb(x) for all
x. Hence, with respect to the 32 most significant bits, Equation (8) reduces to

T

⎛⎜⎜⎝
x0
x1
x2
x3

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x0 ⊕ x2

1
x1 ⊕ x2

2
x2 ⊕ x2

3
x3 ⊕ x2

0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
y0
y1
y2
y3

⎞⎟⎟⎠ (9)

with msb(xi) and msb(yi) known for 0 ≤ i < 4. Let zi = msb(xi−1)⊕msb(yi−1),
where the computation on the subscripts is done modulo 4. Then zi, 0 ≤ i ≤ 3 are
known and we need to solve for (x0, x1, x2, x3) such that the following equation
holds for i = 0, 1, 2, 3.

msb
(
x2

i mod 264) = zi (10)

480 J. Mitra and P. Sarkar

We use Algorithm 2 to solve these four equations. Solving each equation takes
time 5 × 216 < 219 (see Case 1 of Section 3) and hence the time to solve all
four equations is less than 221. The possible solutions for lsb(x0), lsb(x1), lsb(x2)
and lsb(x3) are kept in four lists L0, L1, L2 and L3 respectively. Since n = 64 =
2× 32 = 2m, the expected number of entries in each list is one. We then form a
list Fin which contains tuples (lsb(x0), lsb(x1), lsb(x2), lsb(x3)) such that lsb(xi)
is in Li. Then for each entry in Fin, we verify the solution by evolving the T–
function in the forward direction a few times and comparing the output with
the already available pseudo-random bits.

Thus, we get an algorithm to determine the 128 unknown bits in the input of
Equation (8). It is easy to verify that the entire attack takes 221 time. This shows
that the T -function based on squaring is completely insecure as a stand-alone
pseudo-random generator.

4.3 Extracting Lesser Bits

In this subsection, we use the notation msbk(x) (resp. lsbk(x)) to denote the k
most (resp. least) significant bits of x. The state vector for the T–function in (5)
is (x0, x1, x2, x3). Suppose that instead of producing 128-bit output only the 64
bits (msb16(x0),msb16(x1),msb16(x2),msb16(x3)) are produced as output. Thus
there are 192 unknown bits in (x0, x1, x2, x3) which have to be determined. We
consider the effectiveness of our attack for this situation. The attack described
in Section 4.1 goes through for this case.

The complexity of the total attack depends on the complexity of solving
Equation 7. We use Subcase 1b of Section 2.1 along with the modification de-
scribed in Step 2 of Section 4.1. Then the run-time of the modified Algorithm 1
becomes 216−4(216−1 +3×232−4×233) = 227 +3×273. The number of unknown
bits in (7) is 2 × (48 − 8) + 2 × 48 = 176. The number of constraints in (7) is
4× 16 = 64. Hence the expected number of solutions in Fin is 2112. The correct
solution can be determined by iterating the T–function and comparing the out-
put with the available pseudo-random string. Thus the time taken to determine
the 192 unknown bits will be 2112. Though this is infeasible in practice, it still
constitutes a theoretical attack on the system.

5 Implementation

We have performed some experiments to verify some of the assumptions about
the average case behaviour. In this section, we briefly describe these results.

The first thing to consider is the expected number of solutions to Mult. As
mentioned in Section 2, the expected number of solutions is 22n−3m. We de-
scribe some experimental results for n = 16 and m = 8. The expected number
of solutions is 28 = 256. The total number of possible instances (x(1), y(1), z(1))
is 224. The number of instances such that the number of solutions is at most
256 is around 55% of the total number of instances while the number of in-
stances such that the number of solutions is at most 512 is more than 99%. The

Time-Memory Trade-Off Attacks on Multiplications and T -Functions 481

maximum number of solutions occurs for the case (x(1), y(1), z(1)) = (0, 0, 0) and
such pathological situations are extremely rare.

We have implemented the attack on a reduced version of the multiplication
based T–function described in Section 4.1. We have chosen the state vector to
be four 32-bit words instead of four 64-bit words. Correspondingly, we have
extracted the top 16 bits of each word. Also the constants C1 and C3 have been
suitably scaled down. The attack has been implemented on randomly chosen
instances and in each case the size of Fin was found to be one. This provided 28

choices for the state vector and the unique one could be found using only one
more block of the available pseudo-random bit string. Thus the attack worked
extremely well with only three consecutive blocks of output. We expect the
attack to scale up quite well when applied to the T–function having state vector
consisting of four 64-bit words.

For the problem on squaring, we have implemented Algorithm 2. In the case
n = 64 and m = 32, the complexity of Algorithm 2 is 5 × 216. Our experiments
confirm this theoretical result and hence the attack on the squaring based T–
function in Section 4.2 works as expected.

6 Possible Countermeasure

Our attacks show that T–functions are probably not secure enough for stand-
alone use especially when half of the bits of the state vector are produced as
output. As suggested by Klimov and Shamir, T–functions can be used in con-
junction with S-boxes for design of stream ciphers. We provide one suggestion
for possibly improving the security of T–functions while retaining some of the
nice theoretical properties.

There is a large and easily identifiable subclass C of T–functions such that
any function in C defines a single cycle permutation on the state space. This is
an attractive theoretical property. In our suggestion, we would like to preserve
this property. To do this we apply the notion of conjugate permutations. (A
similar idea has been used in the context of one-way permutations [5].) If π and
τ are any two permutations of a set S, then σ = τ−1 ◦ π ◦ τ has the same cycle
structure as π; further, σ and π are called conjugate permutations.

We apply it to the context of T–functions in the following manner. Suppose
π is the permutation on the set of all state vectors induced by a T–function from
C. Then π has a single cycle and any conjugate of π also has a single cycle. Note
that this property does not depend on the choice of the permutation τ . Hence
we can choose τ so as to improve the security of the overall mapping.

In our attack, the basic weakness that we exploit is that there is insufficient
intermixing of higher and lower bits. One simple operation which can help in
improving such intermixing is the circular shift (which is not a T–function). Thus
we can construct a permutation τ on the state space by using circular shifts
and other nonlinear operations. These operations can be arbitrarily chosen (in
particular they need not be T–functions) to ensure higher security as long as τ
is a permutation and that they are efficient to apply.

482 J. Mitra and P. Sarkar

One penalty for introducing this countermeasure will be reduction in speed.
The exact amount of speed reduction will depend on the concrete proposal.
Developing such a concrete proposal based on our guideline is a future research
problem.

7 Conclusion

In this paper, we studied multiplication, squaring and T–functions. In the first
part of the paper, we presented a time-memory trade-off algorithm to solve the
problems of multiplication and squaring. These algorithms are used in the second
part of the paper to analyse two concrete proposal of multi-word T–functions
from [3]. For the proposal based on multiplication, the 128 unknown bits of
the state vector can be determined in 240 time while for the proposal based on
squaring, these bits can be determined in 221 time. Experimental results from
our implementation suggests that our attack works well in practice. Hence one
can conclude that these two (and other similar) constructions of T–functions are
not secure enough for stand-alone use. We also suggest the use of conjugate per-
mutations for possibly improving the security of T–functions while maintaining
some nice theoretical properties.

Notes: An anonymous reviewer of the paper has suggested that the problems
Mult and Sqr can be formulated as closest vector problems in a two-dimensional
lattice. Using this approach, the time complexity of Algorithm 1 will be 232 with
minimal storage space. At the time of preparing this final version, we have not
been able to obtain the details of such an algorithm. We hope to present such
details in a later communication.

References

1. A. Klimov and A. Shamir. A New Class of Invertible Mappings, Proceedings of
CHES 2002, LNCS, 2002, pp 470–483.

2. A. Klimov and A. Shamir. Cryptographic Applications of T–functions, Proceedings
of SAC 2003, LNCS.

3. A. Klimov and A. Shamir. New Cryptographic Primitives Based on Multiword T–
functions, Proceedings of FSE 2004, LNCS, to appear.

4. A. Menezes, P. C. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptogra-
phy. CRC Press, Boca Raton, 1997.

5. M. Naor, O. Reingold. Constructing Pseudo-Random Permutations with a Pre-
scribed Structure, Journal of Cryptology, 15(2): 97-102 (2002).

Cryptanalysis of Bluetooth Keystream
Generator Two-Level E0

Yi Lu� and Serge Vaudenay

EPFL
http://lasecwww.epfl.ch

Abstract. In this paper, we carefully study both distinguishing and
key-recovery attacks against Bluetooth two-level E0 given many short
frames. Based on a flaw in the resynchronization of Bluetooth E0, we are
able to fully exploit the largest bias of the finite state machine inside E0
for our attacks. Our key-recovery attack works with 240 simple operations
given the first 24 bits of 235 frames. Compared with all existing attacks
against two-level E0, this is the best one so far.

1 Background

The short-range wireless technology Bluetooth uses the keystream generator E0
to produce the keystream for encryption. After the earlier results [10, 9, 6] of
correlation (also called bias) properties inside the Finite State Machine (FSM)
towards the one-level E0, most recently, [12] systematically studied the biases
and proved two previously known large biases to be the only largest up to 26
consecutive bits of the FSM output sequences. Attacks against E0 mostly focus
on one-level E0 only and the best attacks [12, 1, 5] work on one impractically long
frame of keystream without exception. Nevertheless, a few attacks [15, 11, 7–9]
apply to two-level E0; compared with feasible attack complexities on one-level
E0, attack complexities on two-level E0 are extremely high and make the prac-
tical Bluetooth E0 unbroken.

The main contribution of this paper is that first based on one of the two
largest biases inside the FSM within one-level E0, we identify the bias at two-
level E0 due to a resynchronization flaw in Bluetooth E0. Unlike the traditional
approach to find the bias, the characterized bias does not involve the precompu-
tation of the multiple polynomial with low weight. Second, to utilize the iden-
tified bias, we develop a novel attack to directly recover the original encryption
key for two-level E0 without reconstructing the initial state of E0 at the second
level. Our key-recovery attack works with 240 simple operations given the first
24 bits of 235 frames. Compared with all existing attacks [15, 11, 7–9] against
two-level E0, this is the best so far.

� supported in part by the National Competence Center in Research on Mobile Infor-
mation and Communication Systems (NCCR-MICS), a center of the Swiss National
Science Foundation under the grant number 5005-67322.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 483–499, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

484 Y. Lu and S. Vaudenay

��
��

��
��

��
��

�

�

�

�

� � �

� �

�

� ��

�

LFSR LFSR

FSM FSM

G1

G2

G3

P i

K′
c Ri

αi

Si

zi

βi

V i

the first level the second level

Fig. 1. Diagram of two-level E0 keystream generation

The rest of the paper is structured as follows. In Section 2 we review de-
scription of two-level E0. In Section 3 we study the attack against one-level E0.
Then, we investigate the E0 resynchronization flaw, which allows to develop the
basic attack of previous section into the distinguishing and key-recovery attacks
against two-level E0 in Section 4; we further extend our key-recovery attack in
Section 5. Finally, we conclude in Section 6.

2 Preliminaries

2.1 The Core of Bluetooth E0

To briefly outline, the core of E0 (both dashed boxes in Fig. 1) can be viewed as a
nonlinear filtering generator. The filtering generator consists of four
LFSRs (R1, . . . , R4) which are equivalent to a single L-bit LFSR with connection
polynomial1 p(x) and a 4-bit FSM, where L = 128. The keystream bit of the
generator is obtained by xoring the output bit of the regularly-clocked LFSR
with that of the FSM, which takes the current state of the LFSR as input and
emits one bit (denoted by c0t in Bluetooth specification) out of its 4-bit memory.

2.2 Review on Two-Level Bluetooth E0

Let Kc be the L-bit secret key computed by the key generation algorithm E3 [3,
p783]. According to [3], the effective key K of length 8� (1 ≤ � ≤ 16) is computed
by

K(x) = Kc(x) mod g
(�)
1 (x),

where the polynomial g(�)
1 (x) is specified in [3, p770] and has degree 8�. Bluetooth

two-level E0 (depicted in Fig. 1) uses two L-bit inputs: one is the known nonce2

1 Note that the connection polynomial of the equivalent single LFSR equals the
product of those of the four LFSRs.

2 By convention, hereafter we always use the superscript i to indicate the context of
the i-th frame.

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 485

P i, the other is the linearly expanded L-bit key K′
c from K by K′

c(x) = g
(�)
2 (x) ·

K(x), where the polynomial g(�)
2 (x) is also specified in [3, p770] and has degree

no larger than L− 8�; or equivalently, we can rewrite it as

K′
c = E(K), (1)

where E is a linear mapping. After initialization of the equivalent LFSR for the
first level E0, we can express its initial state3 Ri

[−199,...,L−200] = (Ri
−199, . . . ,

Ri
L−200) as

Ri
[−199,...,L−200] = G1(K′

c)⊕G2(P i), (2)

for i = 1, . . . ,m, where G1 and G2 are affine transformations over GF (2)L. Next
comes the so-called two-level E0:

– During the first level, with the FSM initial state preset to zero, E0 runs L
clocks producing 200-bit output Si

t = Ri
t ⊕ αi

t and updating Ri
[t,...,t+L−1] by

Ri
[t+1,...,t+L] = M(Ri

[t,...,t+L−1]) for t = −199, . . . , 0, where M is the linear
mapping over GF (2)L that corresponds to the companion matrix associ-
ated with p(x). Note that first, αi

t is the output bit of the FSM fed with
Ri

[t,...,t+L−1]; second, the last L-bit output at the first level E0 is Si
[1−L,...,0];

last, Ri
[1−L,...,0] = (M72 ◦G1)(K′

c)⊕ (M72 ◦G2)(P i).
– At the beginning of the second level, the equivalent single LFSR is initialized

by V i
[1,...,L] = G3(Si

[1−L,...,0]), where G3 : GF (2)128 → GF (2)128 is another
affine transformation (see [3, p772]); the FSM initial state at the second
level remains the same as the one in the end of the first level. Note that the
present time is t = 1.

– During the second level, for t = 1, . . . , 2745, E0 produces the keystream
zi
t = V i

t ⊕ βi
t for encryption of the i-th frame and updates V i

[t,...,t+L−1] by
V i

[t+1,...,t+L].

2.3 An Important Note on G3

We observe that G3 is implemented in such a simple way4 that the last L-bit
output sequence of the first level E0 is byte-wise reloaded into the four component
LFSRs in parallel at the second level E0 with only a few exceptions, which turns
out to be a flaw as introduced later in Section 4. For completeness, Table 1 lists
in time order the first 24 output bits of R1, . . . , R4 individually at the beginning
of E0 level two, in terms of the L-bit input v0, . . . , vL−1.

2.4 The Bias Inside the FSM

Our starting point would be the bias inside the FSM, which was discovered
by [9, 6] and further proved in [12] to be the the largest bias up to 26-bit output

3 Throughout the rest of the paper, we use the unified notation Ωi
[a,...,b] with the

formatted subscript to denote the vector (Ωi
a, . . . , Ωi

b).
4 It is believed to help increase the rate of keystream generation.

486 Y. Lu and S. Vaudenay

Table 1. The first 24 output bits of LFSRs at E0 level two

LFSR output bits
R1 v71 · · · v64, v39 · · · v32, v7 · · · v0

R2 v79 · · · v72, v47 · · · v40, v15 · · · v8

R3 v111 · · · v104, v87 · · · v80, v55 · · · v48

R4 v119 · · · v112, v95 · · · v88, v63 · · · v56

sequence of the FSM involving the smallest number of consecutive bits. Let
λ = 25

256 , we have

Pr(c0t ⊕ c0t+1 ⊕ c0t+2 ⊕ c0t+3 ⊕ c0t+4 = 1) =
1
2

+
λ

2
,

for any integer t, assuming that the L + 4 = 132-bit initial state of E0 is ran-
dom and uniformly distributed. Hereafter, we analyze as exactly described in
Bluetooth specification [3]. For convenience, we denote c0t used for the first and
second level keystream generation by αi

t, β
i
t respectively. Therefore {αi

t}, {βi
t}

being separated sequences of {c0t} both satisfy the same statistical property:

Pr(αi
t ⊕ αi

t+1 ⊕ αi
t+2 ⊕ αi

t+3 ⊕ αi
t+4 = 1) =

1
2

+
λ

2
, (3)

Pr(βi
t ⊕ βi

t+1 ⊕ βi
t+2 ⊕ βi

t+3 ⊕ βi
t+4 = 1) =

1
2

+
λ

2
, (4)

for any t and any i.

3 Security Analysis on E0 Level One

The goal of the attacker in this section is to recover the effective 8�-bit encryption
key K with knowledge of m L-bit output sequences Si

[1−L,...,0] of the first level
E0 for i = 1, . . . ,m and the corresponding m nonces P 1, . . . , Pm.

3.1 Finding the Closest Sequences with Fixed Differences

We begin with a very simple problem: given 2m L-bit sequences s1, . . . , sm and
δ1, . . . , δm, where δ1 = 0 and δi �= δj for all i �= j, find the L-bit sequence r1

that maximizes N(r1) =
∑m

i=1
∑L

t=1(s
i
t⊕ ri

t) where ri
t = r1

t ⊕ δi
t for i = 1, . . . ,m

and t = 1, . . . , L.
Similar to the well-known approach (see [9, p251]), the solution based on the

idea of minority vote goes fairly easy. We have

N(r1) =
L∑

t=1

m∑
i=1

(si
t ⊕ r1

t ⊕ δi
t).

Thus, in order to maximize N(r1), we must have

r1
t = minority{si

t ⊕ δi
t : i = 1, . . . ,m}

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 487

for all t = 1, . . . , L. Note that in case of a tie for r1
t , we have two answers for

this t-th bit regardless of all the other bits. We finally obtain all the answers
that achieve the same maximal N(r1). The time and memory complexities of
the above algorithm both equal the data complexity O(mL).

3.2 Attack Against E0 Level One

Let Δi
[1−L,...,0] = R1

[1−L,...,0] ⊕ Ri
[1−L,...,0] for i = 1, . . . ,m. By Eq.(2) we have

Δi
[1−L,...,0] = (M72 ◦G2)(P 1 ⊕ P i). We further set

ri
t =

4⊕
j=0

Ri
t+j ,

δi
t =

4⊕
j=0

Δi
t+j ,

si
t =

4⊕
j=0

Si
t+j ,

for i = 1, . . . ,m and t = 1−L, . . . ,−4. Note that si
t⊕ri

t =
⊕4

j=0 α
i
t+j follows the

biased distribution by Eq.(3). As long as
∑m

i=1
∑−4

t=1−L(si
t ⊕ ri

t) is the maximal
and Δi

t, S
i
t are known, we can apply the preceding algorithm to recover (L −

4) bits of r1 followed by an exhaustive search on the remaining 4 bits, next
solve R1, then K′

c by Eq.(2), and finally deduce K from K′
c by Eq.(1). The

time/memory/data complexities all equal O(mL + 24L), i.e. O((m + 16)L). No
precomputation is needed.

About the minimal m to guarantee the valid precondition
∑m

i=1
∑−4

t=1−L(si
t⊕

ri
t) is the maximal, we use the result in [12, Eq.(10)] based on [2] that says

regardless of the value of L and �, we need the minimum

m ≈ 4 log 2
λ2 (frames). (5)

Consequently, we require m = 512 to recover K from Si and P i for i =
1, . . . ,m. This results in the time/data/memory complexities all the same as
O(216). To verify this, we ran experiments on 512 frames of the randomly-chosen
132-bit E0 initial state 225 times. It turned out that we had 1.5 errors and 0.4
tie in average, which means we can easily correct all errors by an extra checking
step in the end in negligible time. Finally, Table 2 compares our result with
the only known5 four attacks [7, 8, 11, 15] working on frames of L-bit consecutive
keystreams. Note that existing attacks [7, 8, 11, 15] directly apply to two-level E0

5 In the similar approached paper [9], m is chosen as 45 for E0 level one without the
complexity estimate, because the authors focused on the two-level E0 and traded m
with the time complexity of E0 level one, whose time complexity is negligible with
that of the E0 level two.

488 Y. Lu and S. Vaudenay

as well with the level-by-level key-recovery scheme6; in contrast, our attack is
completely disabled against two-level E0 with this scheme as the attack is based
on a naive assumption that we directly observe the output of E0 level one7. In
the next section, we introduce a resynchronization flaw in Bluetooth E0 that
leads to a shortcut extended attack against the two-level E0.

Table 2. Comparison of our attack with existing attacks against E0 level one given
frames of L bits

Attack Type Precomputation Time Frames Data Memory
Divide & Conquer [15] - 293 1 27 -

BDD [11] - 277 1 27 -
Algebraic Attack [7] - 251 2 28 251

Algebraic Attack [8] - 223.4 3 28.6 223.4

Our Correlation Attack - 216 29 216 216

4 Security Analysis on Two-Level E0

4.1 The Resynchronization Flaw in Bluetooth Two-Level E0

Define
U i = (U i

1, . . . ,U
i
L) = G3(Ri

[1−L,...,0]). (6)

Following the description of G3 in Subsection 2.3, we can easily verify that

V i
t = U i

t ⊕ αi
−56−t ⊕ αi

−48−t ⊕ αi
−16−t ⊕ αi

−8−t, for t = 1, . . . , 8,
V i

t = U i
t ⊕ αi

−80−t ⊕ αi
−72−t ⊕ αi

−32−t ⊕ αi
−24−t, for t = 9, . . . , 16,

V i
t = U i

t ⊕ αi
−104−t ⊕ αi

−96−t ⊕ αi
−56−t ⊕ αi

−48−t, for t = 17, . . . , 24.

From the above equations, we summarize the characteristics of V i
t by

V i
t = U i

t ⊕ αi
at
⊕ αi

at+8 ⊕ αi
bt
⊕ αi

bt+8, (7)

for t = 1, . . . , 24, where at = −t + const� t−1
8 � and bt = −t + const′

� t−1
8 �. Note

that Eq.(7) is our crucial observation about Bluetooth E0 resynchronization flaw
which enables a shortcut attack throughout the two levels of E0. Now, we express
the output bit zi

t of the second level E0 keystream by

zi
t = U i

t ⊕ αi
at
⊕ αi

at+8 ⊕ αi
bt
⊕ αi

bt+8 ⊕ βi
t, (8)

6 namely, the initial state at the first level is reconstructed after the initial state at
the second level is recovered.

7 As a matter of fact, according to [3, p763], Bluetooth takes the correlation properties
into account and adopts the two-level scheme of keystream generation in practice on
purpose.

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 489

for t = 1, . . . , 24. Let ui
t =

⊕4
j=0 U i

t+j and si
t =

⊕4
j=0 z

i
t+j . From Eq.(8), we

have that

si
t ⊕ ui

t =
4⊕

j=0

αi
at−j ⊕

4⊕
j=0

αi
at−j+8 ⊕

4⊕
j=0

αi
bt−j ⊕

4⊕
j=0

αi
bt−j+8 ⊕

4⊕
j=0

βi
t+j (9)

for t = 8k + 1, . . . , 8k + 4, k = 0, 1, 2. Therefore, we deduce an important corre-
lation concerning the practical implementation of E0 from Eq.(3,4,9):

Theorem 1. Assuming independence of αi
t’s and βi

t’s, we have

Pr(si
t ⊕ ui

t = 1) =
1
2

+
λ5

2
for t = 8k + 1, . . . , 8k + 4, k = 0, 1, 2.

4.2 A Near-Practical Distinguishing Attack Against Two-Level E0

Using the standard technique of linear cryptanalysis, we expect that si
t ⊕ ui

t

equals one most of the time for t = 8k + 1, . . . , 8k + 4, k = 0, 1, 2 with a total of
λ−10 ≈ 234 samples. Since the difference

U i ⊕ U j = G3(Ri
[1−L,...,0])⊕G3(R

j
[1−L,...,0]) = (G3 ◦M72 ◦G2)(P i ⊕ P j),

is known for all i and j by Eq.(2,6), we apply the algorithm in Subsection 3.2 to
recover the bit u1

1 separately with two sets of 234 frames sharing only one common
frame denoted as the first frame for both sets. If we get a unique solution, we
conclude the keystreams are generated by E0; otherwise, we accept them as truly
random sources. The time/data complexities are O(2× 234 × 5), i.e. O(237). In
contrast to the conventional treatment based on finding a multiple polynomial
with low weight, no precomputation is needed in our scenario. So far, this is the
only known near-practical attack against the full two-level E0. We can further
improve the distinguisher by recovering u1

t for t = 1, . . . , 4 with two different sets
of frames of the first 8 bits. Comparing two sets of solutions for the four bits, if we
get a majority of identical bits, then we conclude the keystreams are generated
by E0, otherwise we accept them as truly random sources. The number of frames
we need is 2 × 234/4 = 233. This results in time/data complexities O(233 × 8),
i.e. O(236).

4.3 The Key-Recovery Attack Against Two-Level E0

From last subsection and Theorem 1, we know that with 234 frames of keystreams,
we can recover twelve bits, i.e. u1

t for t = 8k+1, . . . , 8k+4, k = 0, 1, 2. After that,
we try exhaustively for the remaining |K|−12 bits assuming linear independency
of the twelve bits8. Note that we have

U i = (G3 ◦M72 ◦G1)(K′
c)⊕ (G3 ◦M72 ◦G2)(P i), (10)

8 We tested and found that the twelve bits are linearly independent for all choices of
effective keylength |K| = 8� except for |K| = 8 in which case our attack is worse
than the brute force attack and becomes meaningless anyway.

490 Y. Lu and S. Vaudenay

by Eq.(6,2). So, we deduce from Eq.(10,1) that

U i = (G3 ◦M72 ◦G1 ◦ E)(K)⊕ (G3 ◦M72 ◦G2)(P i),

which means U i is an affine transformation of K given P i and so is ui. Thus, we
can ultimately solve the effective key K from ui. The total time complexity of
our attack is computed as

234 + 2|K|−13 =
{

234, |K| < 48
2|K|−13, |K| ≥ 48

The data complexity of our attack is (234 − 1) · 24 + 128, i.e. O(238.6), as
we need 234 − 1 frames of the first 24 bits plus one frame of 128 bits. Table 3
compares our attack with existing attacks [15, 11, 7, 8, 9] against the two-level
Bluetooth E0. Note that the number of required frames completely depends on
the frame size in [7] to meet the requirement of data amount. This is, to our
best knowledge, the first non-trivial9 attack against practical E0 with various key
length. Notice that when 40 ≤ |K| ≤ 80, our attack offers the best performance
over the others.

Table 3. Comparison of our attack with existing attacks against two-level Bluetooth E0

Attack Precomputation Time Frames Data Memory

exhaustive search - 2|K|−1 1 |K| -
[15] - 293 1 27 -
[11] - 2113 1 27 -
[7] - 273 - 243 251

[8] 280 265 2 212.4 280

[9] 280 270 45 217 280

Our Attack - 2|K|−13 + 234 234 238.6 234

Remark 2. Note that our attack is based on one of the largest two (linearly
dependent) biases which is introduced in Eq.(3). As time/data tradeoff, we
might also expect to have some other linearly independent biases to be large
enough so that the time is decreased at somewhat reasonably increasing cost of
data/memory complexities. Nonetheless, using the computation formula of [12],
we find none such bias that leads to the data complexity of less than 250.

Remark 3. As the nonces P i’s are affine transformation of a 26-bit clock and
a master device address, our attack requiring much more than 226 frames of
keystreams still remains impractical unfortunately.

9 in contrast to the brute force attack.

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 491

5 Extended Key-Recovery Attack Against Two-Level E0

5.1 A Partial Key-Recovery Attack

Notice that on one hand, each of the four leftmost biased bits on the right-hand
side of Eq.(9) is computed only with a certain subset of fixed key bits, the known
nonce and the unknown variable FSM initial state; on the other hand, the value of
Eq.(9) can be easily predetermined from the left-hand side, after we recover ui

t’s
with 234 frames by the distinguisher in Subsection 4.2. Consequently, the well-
known technique of statistical cryptanalysis leads us to the following approach
to advance our key-recovery attack: supposing we manage to guess one of those
four biased bits for all frames by guessing only the related key bits, then, for
each frame, we XOR the guess on the biased bit with the predetermined value
of Eq.(9) to obtain one bit. Thanks to Eq.(9), this bit shows bias for the right
guess and almost balancedness for the wrong guess (which is also called statistical
distinguishable); we’re able to spot out the right guess of all guesses finally.

FSM

R1

R2

R3

R4

αatRat

Rat−2,
Rat−1,

αat−2,
αat−1,

Sat−2, Sat−1, Sat

Fig. 2. Computation diagram of Sat−2, Sat−1, Sat

More specifically, we observe two important points about E0 FSM state: first,
the FSM state at time t always contains the two bits c0t , c

0
t−1; second, the 4-bit

FSM state is updated by its current state together with four current output bits
of LFSRs. Therefore, for fixed t ∈ {8k + 1, . . . , 8k + 4} and k ∈ {0, 1, 2}, the
bit10

⊕4
j=0 α

i
at−j computed from 5 consecutive bits αi

at
, . . . , αi

at−4, is derived
from the same subset of 4× 3 = 12 bits of the shared key K in all frames given
P i together with the unknown frame-dependent FSM state at time at − 3 (see

10 For our convenience, we discuss the first biased bit on the right-hand side of Eq.(9)
from now on; however, due to symmetry of the subscripts on the right-hand side of
Eq.(9), our discussion also applies to the other three biased bits but the last.

492 Y. Lu and S. Vaudenay

Fig. 2). We can compute all the possible sequences11 α′
at
, . . . , α′

at−2 in according
to every possible FSM state for each frame i with t ∈ {8k + 1, . . . , 8k + 4} and
k ∈ {0, 1, 2}. Within one frame, of all the choices of 12-bit K ′ of K and the FSM
state, the sequence computed with the right shared 12-bit K and the right FSM
state yields

⊕4
j=0 α

i
at−j , which equals

⊕4
j=0(α

i
at−j+8 ⊕αi

bt−j ⊕αi
bt−j+8 ⊕ βi

t+j)
with bias λ4 when xoring with the computable bit si

t⊕ui
t by Eq.(9); meanwhile,

the sequence obtained with the wrong FSM state and/or the wrong shared 12-bit
K ′ is expected to produce a new biased bit

⊕4
j=0 α

′
at−j (with bias λ) which when

xoring with si
t ⊕ ui

t finally generates a bit with much smaller bias λ6 that could
be approximated by a randomly and uniformly distributed bit. Therefore, we
estimate that for every frame, the 12-bit guess K ′ would yield 24 randomly and
uniformly distributed bits, except for the correct guess that produces 24−1 = 15
randomly and uniformly distributed bits as well as one biased bit (with bias λ4).

Alternatively, for every frame i, we can guess 4(2 + τ) bits K ′ of K to-
gether with the FSM state at time at − τ − 2 to compute consecutively τ
bits

⊕4
j=0 α

′
at−j , . . .,

⊕4
j=0 α

′
at−j−τ+1 with τ ≤ 5 − (t mod 8) for fixed t ∈

{8k + 1, . . . , 8k + 4} and k ∈ {0, 1, 2}. Denote the parameter m as the required
number of frames to be discussed later. For the same reason as before, when we
xor the τ bits with si

t ⊕ ui
t, . . . , s

i
t+τ−1 ⊕ ui

t+τ−1, we expect the 16m sequences
to comply with a truly random distribution D0 of τ -bit vectors for all wrong
guesses K ′, and the 16m sequences for the right guess K to comply with the
biased distribution D1 of τ -bit vectors approximated by

D1 ≈
D′ + 15D0

16
, (11)

whereD′ def= D⊗4 with⊗ representing the regular convolutional product (see [12]),
and D is the distribution of

⊕4
j=0 c

0
t−j , . . . ,

⊕4
j=0 c

0
t−τ−j+1. Note that Eq.(11)

means all the biases in D′ dwindles 16 times in D1, i.e. we have the following
relation between the two Walsh coefficients D̂1(x), D̂′(x) of any nonzero τ -bit
vector x:

D̂1(x) =
1
16
D̂′(x). (12)

Let f : GF (2)τ → R be a weighted grade for those resultant sequences
χ1

K′ , . . . , χ16m
K′ from the guess K ′. We accordingly grade each guess K ′ by

GK′ =
16m∑
j=1

f(χj
K′). (13)

Using analysis of [16] and [2] (see Appendix for complete treatment), we show
that with minimal

m ≈ τ + 2
2τ − 1

· 234.5,

11 We omit the superscript i and use α′
t to denote the candidate for αi

t.

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 493

the score GK of the right guess tops the chart by choosing f(x) = D1(x)− 1
16 for

all x ∈ GF (2)τ . Note that with f(x) = D′(x) we obtain equivalently the same
resultant score GK′ for all K ′. Also, recall that to predetermine ui

t, . . . , u
i
t+τ−1

we need 234 frames for the distinguisher. Thus we must have

m ≈ max
(

234,
τ + 2
2τ − 1

· 234.5
)
. (14)

Algorithm 1 details the above partial key-recovery attack for 4(2 + τ) bits.

Algorithm 1 The extended attack against two-level E0 to recover 4(2 + τ) bits
Parameters:
1: D1 by Eq.(11)
2: τ ∈ [1, 4]
3: m by Eq.(14)

Input:
4: keystreams zi

1 · · · zi
24 generated by the same K together with P i under two-level E0

for i = 1, . . . , m
Processing:
5: choose k ∈ {0, 1, 2} and t ∈ {8k + 1, . . . , 8k + 4} with τ ≤ 5 − (t mod 8)
6: for 4(2 + τ) bits K′ of K that are used to compute α′

at−τ−1, . . . , α
′
at

and are
consistent with previously recovered bits do

7: initialize GK′ to zero
8: for i = 1, . . . , m do
9: initialize counters μ0, μ1, . . . , μ2τ −1 to zero

10: for all 4-bit FSM state at time at − τ − 2 do
11: compute α′

at−τ−1, . . . , α
′
at

12: compute b = b0, . . . , bτ−1 with bn = ui
t+n ⊕ si

t+n ⊕
⊕4

j=0 α′
at−j−n

13: increment μb

14: end for
15: increment GK′ by

∑
b μb(D1(b) − 1

16)
16: end for
17: add the pair (GK′ , K′) into the list
18: end for
19: find the largest GK in the list and output K

5.2 Complexities and Optimization Issues

About the performance of the partial key-recovery attack, it is seen from Algo-
rithm 1 that to recover 4(2+τ) bits, it runs 24(2+τ)·m·24(2+τ) = m(2+τ)·212+4τ

times to compute each α′
t for grading 24(2+τ) candidates. In total, we have to

perform T = m(2 + τ) · 212+4τ operations, where m is set by Eq.(14).
Additionally, the loop from Line 9 to Line 15 can be done by one oper-

ation after precomputation as detailed below, which makes T = m · 24(2+τ).
During preprocessing, we run through every yat−1, . . . , yat−τ−2 (where yt de-
notes the Hamming weight of the original four component LFSRs’ output bits
at time t) to compute the 24 possible sequences α′

at
, . . . , α′

at−τ−1 which yield

494 Y. Lu and S. Vaudenay

24 sequences b′ =
⊕4

j=0 α
′
at−j , . . . ,

⊕4
j=0 α

′
at−j−τ+1 accordingly; and then for

each τ -bit b′′, we increment the counter μb′′
b′⊕b′′ ; last, we build up a table to

store h(yat−1, . . . , yat−τ−2; b′′) =
∑

b′ μb′′
b′⊕b′′(D1(b′ ⊕ b′′) − 1

16). The precompu-
tation needs memory 2τ · 52+τ ≈ 23.32τ+4.6 and time 24 · 52+τ · (2 + τ) · 2τ ≈
(τ + 2)23.32τ+8.6. After that, in real-time processing, for each frame i, we just
compute bi′′

= bi′′
0 , . . . , bi′′

τ−1 with bi′′
n = ui

t+n ⊕ si
t+n for n = 0, . . . , τ − 1, deduce

yi
at−1, . . . , y

i
at−τ−2 from K ′, P i and increment GK′ by h(yi

at−1, . . . , y
i
at−τ−2; b

i′′
).

Thus, we get T = m · 24(2+τ).
Moreover, when 24(2+τ) · 2τ ≤ m, i.e. 28+5τ ≤ m, we can further reduce T

down to m + 216+9τ . Notice that it is the same subset of 4(2 + τ)-bit Ωi of P i

that is used to compute yi = (yi
at−1, . . . , y

i
at−τ−2) with K ′. For convenience, let

g : GF (2)L → GF (2)4(2+τ) map P i to Ωi. We precompute a table h′(Ω, q) for
every 4(2 + τ)-bit Ω and τ -bit q defined by:

h′(Ω, q) =
m∑

i=1

1Ω=g(P i),q=ui
t⊕si

t

with ui = (ui
t, . . . , u

i
t+τ−1) and si = (si

t, . . . , s
i
t+τ−1). This takes time O(m) with

memory O(28+5τ). Recall that ui is determined independent of K ′ by the distin-
guisher in Subsection 4.2, and ui, si, yi completely determine how to increment
GK′ for frame i, i.e. by h(yi;ui⊕si) from last paragraph. So, in real-time process-
ing, for every K ′, instead of processing frame by frame to update GK′ , we simply
go through every (8 + 5τ)-bit pair (Ω, q), deduce y = (yat−1, . . . , yat−τ−2) from
Ω and K ′, then increment GK′ by h′(Ω, q)h(y; q). We reach the time complexity
T = m + 24(2+τ) · 28+5τ = m + 216+9τ for 28+5τ ≤ m.

To summarize, we have T = m+24(2+τ) ·min(m, 28+5τ). Table 4 lists the best
complexities of our partial key-recovery attack corresponding to τ = 1, . . . , 4.
Note that the success probability of the attack in the table is estimated according
to the hypothesis test result of Eq.(11), i.e. the percentage of the 4(2 + τ)-bit
keys to generate a non-uniformly distributed sequence α′

at−τ−3, . . . , α
′
at

with all
the possible FSM state.

5.3 The Overall Key-Recovery Attack

Now we discuss how we proceed with the optimized Algorithm 1 to recover the
full K. With τ = 2 and fixed k, we independently run Algorithm 1 three times
with t = 8k + 1, . . . , 8k + 3. And we expect at least two successes out of three

Table 4. Performance of our partial key-recovery attack against two-level E0

Frames Time Prob. of recovered key bits
τ m T Success 4(2 + τ)
1 236 236 50.8% 12
2 235 235 87.0% 16
3 234.5 243 99.0% 20
4 234.3 252 99.9% 24

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 495

runs. After checking consistency of all the overlapping bits for every possible
pair of the algorithm outputs, we identify all the successful runs and obtain the
minimum 16 + 4 = 20 key bits.

We can easily adjust Algorithm 1 to target at any of the middle three biased
bits on the right-hand side of Eq.(9) to recover 16 bits. With each modified partial
key-recovery algorithm, we repeat previous procedure to recover minimum 20
bits. In total, we are sure to gather 4×20 = 80 bits. Since we already have 12 bits
by the distinguisher, we finally exhaustively search the remaining L−80−12 = 36
bits within one frame. Algorithm 2 gives the abstract strategy of our complete
attack. Therefore, to recover L-bit K, our key-recovery attack works on m = 235

frames, in time 24m+4×3×235 ≈ 240. The comparison of our attack with the best
known attacks [7, 8, 9] against two-level E0 for |K| = L is available in Table 5.

Table 5. Comparison of our attack with the best attacks [7–9] against two-level E0
for |K| = L

Attack Precomputation Time Frames Data Memory
[7] - 273 - 243 251

[8] 280 265 2 212.4 280

[9] 280 270 45 217 280

Our Attack - 240 235 239.6 235

Algorithm 2 The abstract of the complete attack against two-level E0 for
|K| = L

Parameters:
1: m by Eq.(14)

Input:
2: m frames of 24-bit keystreams generated by the same K together with known nonces

under two-level E0
Processing:
3: for each of the leftmost four biased bits on right-hand side of Eq.(9) do
4: choose k ∈ {0, 1, 2} and set τ = 2
5: for t = 8k + 1, 8k + 2, 8k + 3 do
6: use the optimized partial key-recovery attack to obtain 16 bits
7: end for
8: checking consistency among pairs of those 16 bits to obtain minimum 20-bit K
9: end for

10: exhaustively search the remaining 36 key bits within one frame
11: output the L-bit K

6 Conclusion

In this paper, based on one of the two largest biases inside the FSM within
one-level E0, for the first time, we identify the bias at two-level E0 due to a

496 Y. Lu and S. Vaudenay

resynchronization flaw in Bluetooth E0. Unlike the traditional approach to find
the bias, the characterized bias does not involve the precomputation of the mul-
tiple polynomial with low weight. Second, to utilize the identified bias, we de-
velop a novel attack to directly recover the original encryption key for two-level
E0 without reconstructing the initial state of E0 at the second level. Our key-
recovery attack works with 240 simple operations given the first 24 bits of 235

frames. Compared with all existing attacks [15, 11, 7, 8, 9] against two-level Blue-
tooth E0, this is the best one so far, although the impossibly high amount of
frames thwarts our attack to be practical. It remains an open challenge to de-
crease the data complexity with practical time and memory complexities. Finally,
our attack illustrates the theory of statistical attacks in [2, 16] with an example
which is not based on linear cryptanalysis.

Acknowledgments

We owe a lot grateful thanks to Anne Canteaut and Willi Meier. And we would
also like to thank the anonymous reviewers for many helpful suggestions.

References

1. Frederik Armknecht, Matthias Krause, Algebraic Attacks on Combiners with Mem-
ory, Advances on Cryptography - CRYPTO 2003, Lecture Notes in Computer
Science, vol.2729, D. Boneh Ed., Springer-Verlag, pp. 162-175, 2003

2. Thomas Baignères, Pascal Junod, Serge Vaudenay, How Far Can We Go Beyond
Linear Cryptanalysis?, in these proceedings

3. BluetoothTM, Bluetooth Specification, version 1.2, pp. 903-948, November, 2003,
available at http://www.bluetooth.org

4. Philippe Chose, Antoine Joux, Michel Mitton, Fast Correlation Attacks: An Al-
gorithmic Point of View, Advances in Cryptology - EUROCRYPT 2002, Lecture
Notes in Computer Science, vol.2332, L. R. Knudsen Ed., Springer-Verlag, pp.
209-221, 2002

5. Nicolas T. Courtois, Fast Algebraic Attacks on Stream Ciphers with Linear Feed-
back, Advances on Cryptography - CRYPTO 2003, Lecture Notes in Computer
Science, vol.2729, D. Boneh Ed., Springer-Verlag, pp. 176-194, 2003

6. Patrik Ekdahl, Thomas Johansson, Some Results on Correlations in the Bluetooth
Stream Cipher, Proceedings of the 10th Joint Conference on Communications and
Coding, Austria, 2000

7. Scott Fluhrer, Stefan Lucks, Analysis of the E0 Encryption System, Selected Areas
in Cryptography- SAC 2001, Lecture Notes in Computer Science, vol. 2259, S.
Vaudenay and A. Youssef Eds., Springer-Verlag, pp. 38-48, 2001

8. Scott Fluhrer, Improved Key Recovery of Level 1 of the Bluetooth Encryption Sys-
tem, available at http://eprint.iacr.org/2002/068

9. Jovan Dj. Golić, Vittorio Bagini, Guglielmo Morgari, Linear Cryptanalysis of Blue-
tooth Stream Cipher, Advances in Cryptology - EUROCRYPT 2002, Lecture Notes
in Computer Science, vol. 2332, L. R. Knudsen Ed., Springer-Verlag, pp. 238-255,
2002

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 497

10. Miia Hermelin, Kaisa Nyberg, Correlation Properties of the Bluetooth Combiner,
Information Security and Cryptology- ICISC’99, Lecture Notes in Computer Sci-
ence, vol. 1787, JooSeok. Song Ed., Springer-Verlag, pp. 17-29, 2000

11. Matthias Krause, BDD-Based Cryptanalysis of Keystream Generators, Advances
in Cryptology - EUROCRYPT 2002, Lecture Notes in Computer Science, vol. 2332,
L. R. Knudsen Ed., Springer-Verlag, pp. 222-237, 2002

12. Yi Lu, Serge Vaudenay, Faster Correlation Attack on Bluetooth Keystream Gener-
ator E0, Advances on Cryptography - CRYPTO 2004, Lecture Notes in Computer
Science, vol.3152, M. Franklin Ed., Springer-Verlag, pp. 407-425, 2004

13. Mitsuru Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryp-
tology - EUROCRYPT’93, Lecture Notes in Computer Science, vol.765, Springer-
Verlag, pp. 386-397, 1993

14. Alfred J. Menezes, Paul C. van. Oorschot, Scott A. Vanstone, Handbook of Applied
Cryptography, CRC, 1996

15. Markku Saarinen, Re: Bluetooth and E0, Posted at sci.crypt.research, 02/09/00
16. Serge Vaudenay, An Experiment on DES - Statistical Cryptanalysis, Proceedings

of the 3rd ACM Conferences on Computer Security, pp. 139-147, 1996

Appendix

All our analysis here is similar with [16] and inspired by [2]. First, by Eq.(13),
we have

Exp(GK′) =
16m
2τ

∑
b

f(b)

for a random wrong guess K ′, and by Eq.(11) we have

Exp(GK) =
15m
2τ

∑
b

f(b) + m
∑

b

D′(b)f(b),

for the right K. Hence,

ΔExp(GK′) = m
∑

b

(
D′(b)− 1

2τ

)
f(b). (15)

Meanwhile, we compute the variance of GK′ as

Var(GK′) =
16m
2τ

∑
b

(f(b))2 − 16m
22τ

(∑
b

f(b)

)2

. (16)

We can estimate the rank of GK over all possible GK′ by

Exp(RankGK
) ≈ 24(2+τ)Φ

(
− ΔExp(GK′)√

2Var(GK′)

)
. (17)

In order to achieve the top rank for GK , we see that the fraction

498 Y. Lu and S. Vaudenay

ΔExp(GK′)√
Var(GK′)

(18)

must be large enough. This can be satisfied as long as the number m of avail-
able frames is sufficiently large. However, aiming at a practical attack, we are
concerned with the question of how to choose f in order to minimize m under
the constraint of the top rank GK . In order to maximize the fraction (18), we
first maximize the numerator with the constraint that the denominator is a con-
stant and then try to maximize the fraction over all the solutions. Define the
multivariate polynomial

gf = m
∑

b

(
D′(b)− 1

2τ

)
f(b) +

16mγ

2τ

∑
b

(f(b))2 − 16mγ

22τ

(∑
b

f(b)

)2

.

Using Lagrange’s multiplier, we have

∂gf

∂f(b)
= m

(
D′(b)− 1

2τ

)
+

32mγ

2τ
f(b)− 32mγ

22τ

∑
b′

f(b′) = 0, (19)

for all b ∈ GF (2)τ . From Eq.(19) we infer that

f(b)− f(b′)
D′(b)−D′(b′)

= const.

for all b �= b′. Therefore we have a universal expression of f as

f(b)− const.
D′(b)

= const′.

for all b ∈ GF (2)τ , which yields the same quantity of (18) regardless of the
constants in f . So the easiest way to define f could be f(b) = D′(b)− 1

2τ for all
b ∈ GF (2)τ . Then Eq.(15) reduces to

ΔExp(GK′) = m
∑

b

(
D′(b)− 1

2τ

)2

=
m

2τ

∑
b �=0

(
D̂(b)

)8

≈ m

2τ
(2τ − 1)λ8.

On the other hand Eq.(16) reduces to

Var(GK′) ≈ 16m
22τ

(2τ − 1)λ8.

Cryptanalysis of Bluetooth Keystream Generator Two-Level E0 499

So we deduce from Eq.(17) that

Exp(RankGK
) ≈ 24(2+τ)Φ

(
−λ4

4

√
m(2τ − 1)

2

)

≈ 24(2+τ)
√

2π
e− m(2τ−1)

64 λ8
.

This means RankGK
is expected to top the chart with

m ≈ 256(2 + τ) log 2
λ8(2τ − 1)

≈ τ + 2
2τ − 1

· 234.5.

On Provably Secure Time-Stamping Schemes

Ahto Buldas1,2,3,� and Märt Saarepera4

1 University of Tartu, Liivi 2, 50409 Tartu, Estonia
Ahto.Buldas@ut.ee

2 Cybernetica, Akadeemia tee 21, 12618 Tallinn, Estonia
3 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia

4 Independent researcher
marts@neoteny.com

Abstract. It is almost a folklore-knowledge that hash-based time-stam-
ping schemes are secure if the underlying hash function is collision-
resistant but still no rigorous proofs have been published. We try to
establish such proof and conclude that the existing security conditions
are improper because they ignore precomputations by adversaries. After
analyzing a simplistic patent filing scenario, we suggest a new security
condition for time-stamping schemes that leads to a new security prop-
erty of hash functions – chain-resistance. We observe that if the variety
of possible shapes of hash-chains is polynomial (and the verification pro-
cedure is suitably improved), then the time-stamping scheme becomes
provably secure, assuming that the underlying hash function is collision-
resistant. Finally, we show that in some sense, the restrictions in the
security definition are necessary – conventional black-box techniques are
unable to prove that chain-resistance follows from collision-resistance.

1 Introduction

The main goal of digital time-stamping is to prove that electronic data-items
were created or registered at a certain time. A simple method is to use a trusted
service (with a precise clock) that provides data items with current time value
and digitally signs them. The assumption of unconditionally trusted service hides
a risk of possible collusions that may not be acceptable in applications. The risks
are especially high in centralized applications like electronic patent- or tax filing
as well as in electronic voting, where the possible collusions are related to direct
monetary (or even political) interests.

First attempts to eliminate trusted services from time-stamping schemes were
made in [4], where cryptographic hash functions and publishing were used to
replace electronic signatures. To date, several improvements of hash-based time-
stamping schemes have been presented [1–3]. Such schemes have been used in
business applications and are even included in international standards [9].

The combined monetary value of electronic content (insured, in particular,
with time stamps) increases over time and so does the risk associated with it. A

� Supported by Estonian SF grant no. 5113.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 500–514, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Provably Secure Time-Stamping Schemes 501

decision of a content manager to start using a certain time-stamping service for
protecting electronic records must involve the assessment of long-term security
risks. Desirably, such assessments should be based on analytical arguments. As
an example of such argument, modern cryptography can prove that there are
no structural flaws (or principal design errors) in security solutions, assuming
that their basic building blocks (such as hash functions) are secure. The use of
provably secure time-stamping schemes can avoid many practical risks.

Regardless of the growing importance of hash-based time-stamping schemes,
their security is only superficially studied in scientific literature. In [5], a formal
security condition for hash-based time-stamping schemes was presented and an
informal sketch of a security proof was outlined. Though no rigorous proofs were
presented it has become almost a public myth that the security of hash-based
time-stamping schemes can be reduced to the collision-resistance of underlying
hash functions. Thus far, no more related studies have been published.

In this paper, we revisit the security analysis of hash-based time-stamping
schemes [5]. We observe that the formal security condition stated in [5] is un-
reachably strong because it overlooks pre-computations of the adversary.

Inspired by a simplistic patent filing scenario, we present a new security
condition for time-stamping schemes that leads to a new security condition for
hash functions – chain-resistance – necessary for the scheme [5] to be secure. We
show that additional checks in the verifying procedure render the conventional
time-stamping schemes provably secure in the new sense, based on collision-
resistance of the hash function. The additions concern an examination of whether
the shape of the hash-chain included into a time stamp belongs to a certain
(polynomial) set of templates. This may seem a minor detail but as no currently
used time-stamping schemes implement it, none of them are provably secure.

We further examine the necessity of said additional checks in the verification
procedure and prove that without these checks it is probably very hard (if not
impossible) to prove the security of the schemes of type [5] based on collision-
resistance alone. We present an oracle relative to which there exist collision-
resistant hash functions which are not chain-resistant. Almost all security proofs
relativize – are valid relative to any oracle. Therefore, any security proof of the
unmodified schemes should use either non-standard (non-relativizing) proof tech-
niques or stronger/incomparable security assumptions on the underlying hash
function. For example, it is easy to prove that entirely random hash functions
(random oracles) are chain-resistant. In practice, it is often assumed that SHA-1
and other hash functions behave like random oracles which means that in such
setting, their use in practical time-stamping schemes is justified. At the same
time, it is still possible that a time-stamping scheme that uses SHA-1 is totally
insecure while no collisions are found for SHA-1.

2 Notation and Definitions

By x ← D we mean that x is chosen randomly according to a distribution D.
If A is a probabilistic function or a Turing machine, then x← A(y) means that

502 A. Buldas and M. Saarepera

x is chosen according to the output distribution of A on an input y. By Un we
denote the uniform distribution on {0, 1}n. If D1, . . . ,Dm are distributions and
F (x1, . . . , xm) is a predicate, then Pr[x1 ← D1, . . . , xm ← Dm:F (x1, . . . , xm)]
denotes the probability that F (x1, . . . , xm) is true after the ordered assignment of
x1, . . . , xm. We write f(k) = O(g(k)) if there are c, k0 ∈ R, so that f(k) ≤ cg(k)
(∀k > k0). We write f(k) = ω(g(k)) if g(k) = O(f(k)) but f(k) �= O(g(k)).
A function f : N → R is negligible if f(k) = k−ω(1). A Turing machine M is
polynomial-time (poly-time) if it runs in time kO(1), where k denotes the input
size. Let F∗ be the class of all functions f : {0, 1}∗ → {0, 1}∗. Let FP be the class of
all functions f ∈ F∗ computable by poly-time Turing machines M. A distribution
D on {0, 1}∗ is polynomially sampleable if it is an output distribution of a poly-
time Turing machine.

By an oracle Turing machine we mean an incompletely specified Turing ma-
chine S that comprises calls to oracles. The description can be completed by
defining the oracle as a function O ∈ F∗. In this case, the machine is denoted
by SO. An oracle O is not necessarily computable but may still have assigned
a conditional (worst-case) running time t(k), which may or may not reflect the
actual amount of computations performed by O internally. Running time of SO

comprises the conditional worst-case running time t(k) of oracle calls – each call
takes t(k) steps. An oracle O is poly-time if t(k) = kO(1). We say that S is a
poly-time oracle machine, if the running time of SO is polynomial, whenever O
is poly-time. Let FP• denote the class of all poly-time oracle machines. Let FPO

be the class of all functions computable by poly-time oracle machines SO.
A primitive P is a class of (not necessarily computable by ordinary Turing

machines) functions intended to perform a security related task (e.g. data confi-
dentiality, integrity etc.). Each primitive P is characterized by the success δ(k)
of an adversary A. For example, a collision-resistant hash function is a function
family {hk}k∈N, where hk: {0, 1}2k → {0, 1}k and

δ(k) = Pr[(x, x′)← A(1k):x �= x′, hk(x) = hk(x′)] .

In more rigorous definitions [12], hk is randomly chosen from a set F ⊆
F∗. Otherwise A may output a fixed collision. We write h(x) instead of hk(x).
Sometimes, we need hash functions H = {Hk}k∈N of type Hk: {0, 1}∗ → {0, 1}k.
An adversary A ∈ F∗ breaks f ∈ P (and write A breaks

P
f) if A has non-negligible

success. An instance f ∈ P is secure if no A ∈ FP breaks f . An instance f ∈ P
is secure relative to an oracle O if no A ∈ FPO breaks f .

3 Time-Stamping Schemes and Their Security

3.1 The Scheme of Haber and Stornetta

A time-stamping scheme [5] involves three parties: a Client C, a Server S, and
a Repository R; and two procedures for time-stamping a data item and for

On Provably Secure Time-Stamping Schemes 503

verifying a time stamp (Fig. 1). It is assumed that R is write-only and receives
items from S in an authenticated manner.

Time-stamping procedure is divided into rounds of equal duration. During each
round, S receives requests from Clients. For simplicity, all requests x1, . . . , xm

are assumed to be bit-strings xi ∈ {0, 1}k. If the t-th round is over, S computes a
compound hash rt ∈ {0, 1}k by using a function h: {0, 1}2k → {0, 1}k and a tree-
shaped hashing scheme rt = Gh(x1, . . . , xm). For example, if the requests of the
t-th round are x1, x2, x3, x4, then S may compute rt = h(x1, h(h(x2, x3), x4)).
Next, S sends rt to R (in a secure way), where it is stored as a pair (t, rt).

Server

x x2 x3

z

z

x4 x5 x6 x7 x8 x9

z

z

rt

1

1

3

2 4
h(x ,x)1 2

Repository

rt

Client

x1

Fig. 1. The scheme of Haber and Stornetta (a simplified model)

After that, S issues for each request x a time-certificate c = (x, t, n, z), where
t is current time value, n is an identifier n = n1n2 . . . n� ∈ {0, 1}�, and z is a
sequence z = (z1, z2, . . . , z�) ∈

(
{0, 1}k

)�. In the scheme of Fig. 1, the time-
certificate for x1 is (x1, t, 0000, (z1, z2, z3, z4)), where z1 = x2, z2 = h(x3, x4),
z3 = h(h(x5, x6), x7), and z4 = h(x8, x9).

Verification procedure is performed by C as follows. To verify (x, t, n, z), C com-
putes a hash value r′

t by using h and a Fh(x;n; z), which computes a sequence
y = (y0, y1, . . . , y�) ∈

(
{0, 1}k

)� inductively, so that y0 := x, and

yi :=
{
h(zi, yi−1) if ni = 1
h(yi−1, zi) if ni = 0 (1)

for i > 0, and outputs r′
t = Fh(x;n; z) := y�. Second, C sends a query t to R

and obtains rt as a reply. Finally, C checks whether r′
t = rt. Note that n and z

can be equal to empty string 	
, in which case Fh(x;n; z) = x.

Security condition [5] states that the time-stamping scheme above is secure
against AHS ∈ FP that sends requests x1, . . . , xq to S and queries to R. As a
result, AHS outputs a time-certificate (x, t, n, z), where x ∈ {0, 1}k, n ∈ {0, 1}�,
and z ∈ ({0, 1}k)�. The attack is considered successful, if x �∈ {x1, . . . , xq} and
Fh(x;n; z) = rt, where rt is assumed to be the correct response of R to query t.

504 A. Buldas and M. Saarepera

3.2 Analysis of the Security Condition

The scheme described above is insecure against the following behavior of AHS:

– AHS chooses x and z0 uniformly at random.
– AHS sends x0 = h(x, z0) to S and obtains a time-certificate (x0, t, n, z).
– AHS computes a faked time-certificate (x, t, 0‖n, z0‖z),

where ‖ denotes concatenation. By definition, Fh(x; 0‖n; z0‖z) = Fh(x0;n; z) =
rt. Hence, the attack is successful whenever x �= x0 because x0 was the only
request made by AHS. If h has reasonable security properties then Pr[x �= x0] is
non-negligible1. This “attack” shows that the formal security definition does not
follow the intuition behind time-stamping, because it overlooks the possibility
of precomputations. As a success criterion, the condition x �∈ {x1, . . . , xq} is
improper because the notion of already time-stamped items is not sufficiently
precise.

4 New Security Condition and Improved Schemes

4.1 New Security Condition

The new security condition is inspired by the following simplistic attack-scenario,
where Bob, a criminal who steals inventions, co-operates with a server S:

– Bob precomputes (not necessarily with Gh) some hash values r1, . . . , rs that
may help him to back-date documents in the future. His collaborator S sends
the hash values to R, where they are stored as pairs (t1, r1), . . . , (ts, rs).

– Alice, an inventor, creates a description XA ∈ {0, 1}∗ of her invention and
requests a time certificate for xA = H(XA), where H: {0, 1}∗ → {0, 1}k is a
(collision-resistant) hash function.

– Some time later, the invention is disclosed to the public and Bob tries to
steal the rights to Alice’s invention. He creates a slightly modified version
XB of XA (at least the author’s name should be replaced), and tries to
back-date it relative to XA. Bob is successful, if he finds n and z, so that
Fh(xB ;n; z) ∈ {r1, . . . , rs}. Bob can use (xB , t, n, z) to claim his rights to
the invention.

In order to formalize such attack scenario, a two-staged adversary A =
(A1,A2) is needed. The first stage A1 precomputes a set R = {r1, . . . , rs} after
which the second stage A2 obtains a new document X ∈ {0, 1}∗ (“a document,
unknown to mankind before”) and tries to back-date it by finding n and z, so

1 If h is collision-resistant, Pr[x = x0] = Pr[x, z0 ← Uk: h(x, z0) = z] = δ, and px =
Pr[x′ ← Uk: h(x, x′) = x], then the collision-finding adversary (xx′, xx′′) ← A(1k)
(where x, x′, x′′ ← Uk are independent random bit-strings) has non-negligible suc-
cess. Indeed, the probability δ′ that A outputs a collision for h (possibly, with x′ =
x′′) is δ′ ≥

∑
x Pr[x] · p2

x ≥
(∑

x Pr[x] · px

)2 = δ2, where Pr[x] = Pr[X ← Uk: X = x].
Hence, the overall success of A is at least δ2 − 2−k.

On Provably Secure Time-Stamping Schemes 505

that Fh(H(X);n; z) ∈ R. The term new document is hard to define formally. As
we saw, the condition H(X) �∈ {x1, . . . , xq} does not guarantee that X is really
new. We assume that X is chosen according to a distribution D on {0, 1}∗ that
is somewhat unpredictable to A. The success of A is defined as follows:

δ(k) = Pr[(R, a)←A1(1k),X←D, (n, z)←A2(X, a):Fh(H(X);n; z)∈R] , (2)

where a denotes a state information sent from A1 to A2. Note that (2) can be
simplified by assuming | R |= 1, because this reduces δ(k) only polynomially.

Necessary Conditions for D. Intuitively, the prediction of D must require super-
polynomial time-success ratio, i.e. every A with running time T (k) and success
δ(k) = Pr[R ← A(1k), x ← D:x ∈ R] has time-success ratio T (k)

δ(k) = kω(1). In
case D is polynomially sampleable, an equivalent assumption is that

PC(D) = Pr[y ← D, x← D:x = y] = k−ω(1), (3)

where PC(D) is the collision probability of D. Indeed, if for a poly-time A we
have Pr[R←A(1k), x←D:x∈R] = T (k) · k−O(1), then there is R0⊆{0, 1}k, so
that |R0 |= kO(1) and Pr[x←D:x∈R0] = k−O(1). Thus,

∃r∈R0: p = Pr[x←D:x = r] = |R0 |−1 ·k−O(1) = k−O(1)

and hence PC(D) ≥ p2 = k−O(1). If, in turn, PC(D) = k−O(1), then every A with
output distribution D has success δ(k) = k−O(1).

The condition (3) is equivalent to the requirement that D has Rényi entropy
H2(D) = − log2 PC(D) = ω(log k), and is in fact necessary for a time-stamping
scheme to be secure relative to D. Indeed, if A1 is defined to output y ← D and
(
, 	
)← A2(x, a) (for any x and a), then (A1,A2) has success PC(D).

Chain-Resistant Hash Functions. The security definition (2) implies that h must
satisfy the following new security condition for hash functions:

Definition 1. A hash function h is chain resistant (relative to a distribution
Dk on {0, 1}k), if for every adversary A = (A1,A2) ∈ FP:

Pr[(R, a)←A1(1k), x←Dk, (n, z)←A2(x, a):Fh(x;n; z)∈R] = k−ω(1) . (4)

It is easy to show that if a time-stamping scheme is secure relative to D, then
the hash function h is chain-resistant relative to H(D).

4.2 Improved Verification Procedure

We will prove later that the conventional black-box techniques are insufficient to
imply chain-resistance from collision-resistance, and hence, also the security of
time-stamping schemes in the sense of (2) cannot be proved under the collision-
resistance condition alone. We modify the verification procedure in a way that
prevents the adversary from finding chains for h without finding collisions as by-
products. We restrict the set N ⊂ {0, 1}∗ of identifiers (possible shapes of hash

506 A. Buldas and M. Saarepera

chains) that are considered valid by the verification procedure and show that if
|N|= kO(1), then the collision-resistance of h is sufficient for a time-stamping
scheme to be secure. The modified verification procedure is defined as follows:

New Verification Procedure. To verify a time-certificate (x, t, n, z) for X ∈ {0, 1}∗,
C checks if x = H(X), computes a hash value r′

t using Fh(x;n; z) defined by (1),
sends a query t to R to obtain rt, and checks if r′

t = rt and n ∈ N.

To be usable in practical time-stamping, the condition n ∈ N must be ef-
ficiently verifiable. One way to achieve this is to set N = {0, 1}k0 , where k0 is
constant, which means that n ∈ N is equivalent to ‖n‖ = k0 and is naturally
efficiently computable. The set N can be viewed as a template of a hashing
scheme that is published by the service provider before the service starts. As we
consider service providers as possible adversaries, N is created by an adversary.
The restrictions above lead us to a weaker condition with the following notion
of success:

Pr[(R,N,a)←A1(1k),X←D, (n, z)←A2(X, a):Fh(H(X);n; z)∈R, n∈N] . (5)

4.3 Proof of Security

We prove that the security of the modified hash-based time-stamping schemes
follows from the collision-resistance of h and H.

Definition 2. Let y = (y0, y1, . . . , y�) and y′ = (y′
0, y

′
1, . . . , y

′
�′) be two sequen-

ces produced by Fh(x;n; z) and Fh(x′;n′; z′) respectively, by using (1). Let z =
(z1, . . . , z�), z′ = (z′

1, . . . , z
′
�′), n = n1 . . . n�, and n′ = n′

1 . . . n
′
�′ . We say that

sequences y and y′ comprise a collision, if for some indices i ∈ {1, . . . , �} and
j ∈ {1, . . . , �′}, h(a, b) = yi = y′

j = h(a′, b′), but (a, b) �= (a′, b′), where

(a, b) =
{

(zi, yi−1) if ni = 1
(yi−1, zi) if ni = 0

and (a′, b′) =
{

(z′
j , y

′
j−1) if n′

j = 1
(y′

j−1, z
′
j) if n′

j = 0 .

Lemma 1. If x �= x′ and Fh(x;n; z) = Fh(x′;n; z′), then the sequences y and
y′ computed internally by Fh(x;n; z) and Fh(x′;n; z′) comprise a collision.

Proof. Let � be the bit-length of n. As x = y0 �= y′
0 = x′ and y� = Fh(x;n; z) =

Fh(x′;n; z′) = y′
�, there exists i ∈ {1, . . . , �}, such that yi = y′

i and yi−1 �= y′
i−1.

Hence, either h(zi, yi−1) = h(z′
i, y

′
i−1) or h(yi−1, zi) = h(y′

i−1, z
′
i). In both cases,

we have a collision. �

Theorem 1. If h and H are collision-resistant, then the time-stamping scheme
is secure in the sense of (5) relative to every polynomially sampleable D with
Rényi entropy H2(D) = ω(log k).

Proof. Let A = (A1,A2) be an adversary with running time T (k) that breaks
the time-stamping scheme in the sense of (5) with success δ(k). Assuming the

On Provably Secure Time-Stamping Schemes 507

collision-resistance of H, we construct a collision-finding adversary A′ for h with
running time T ′(k) = kO(1)T (k) and with success δ′(k) ≥ δ2(k)

T 2(k) − k−ω(1), and

hence, T ′(k)
δ′(k) = kO(1)

(
T (k)
δ(k)

)2
. The adversary A′:

– calls A1 and obtains R = {r1, . . . , rm}, N ⊂ {0, 1}∗, and a ∈ {0, 1}∗;
– generates two independent random strings X,X ′ ← D and calls A2 twice to

obtain (n, z)← A2(X, a) and (n′, z′)← A2(X ′, a);
– simulates Fh(H(X);n; z) and Fh(H(X ′);n′; z′).

If Fh(H(X);n; z) = Fh(H(X ′);n′; z′), H(X) �= H(X ′), and n = n′, then by
Lemma 1 above, A′ is able to find a collision for h. By Lemma 2 below, the
probability that all these conditions hold is at least δ2(k)

T 2(k) − 2−H2(H(D)).
It remains to show that 2−H2(H(D)) = PC(H(D)) = k−ω(1). Let C be a

collision-finding adversary that on input 1k generates X ← D and X ′ ← D inde-
pendently at random and outputs (X,X ′). Let E1 denote the event that X = X ′.
Hence, Pr[E1] = PC(D) = k−ω(1). Let E2 be the event that H(X) = H(X ′). As H
is collision-resistant, the success of C is Pr[E2\E1] = k−ω(1) and due to E1 ⊆ E2,
we have PC(H(D)) = Pr[E2] = Pr[E1]+Pr[E2\E1] = k−ω(1)+k−ω(1) = k−ω(1). �

Lemma 2. The success of A′ is at least δ2(k)
T 2(k) − 2−H2(H(D)). (See Appendix)

Remark. Using the improved verification procedure, it is possible to achieve the
original security condition of Haber and Stornetta, assuming that the server S
is honest and the set N is a prefix-free code with a polynomial number of words.

5 Necessity of the Improved Verification

In this section, we prove that the conventional proof techniques used in theo-
retical cryptography – black-box reductions and semi black-box reductions – are
unable to prove that collision-resistance implies chain-resistance. Hence, in some
sense the modifications in time-stamping schemes are necessary for establishing
their provable security. For the self-containedness of this paper, we introduce
some basic results about oracle separation, which have been used to prove sev-
eral ”impossibilities” in theoretical cryptography [6–8, 13].

5.1 Cryptographic Reductions and Oracle Separation

Almost all known constructions of a new primitive P2 from another P1 belong
to one of the following two types:

Definition 3. A semi black-box reduction from P1 to P2 is a machine P ∈
FP•, so that (1) P f ∈ P2 (∀f ∈ P1); and (2) for any A2 ∈ FP• there exists
A1 ∈ FP•, so that Af

2 breaks
P2

P f implies Af
1 breaks

P1

f (∀f ∈ P1).

508 A. Buldas and M. Saarepera

Definition 4. A (fully) black-box reduction from P1 to P2 is a pair of ma-
chines P, S ∈ FP•, so that (1) P f ∈ P2 (∀f ∈ P1); and (2) A breaks

P2

P f

implies SA,f breaks
P1

f (∀f ∈ P1,∀A ∈ F∗).

Note that the universal quantifiers apply over F∗ instead of FP. The reason is
that uniform reductions stay valid if the quantifiers’ range is extended from FP
to F∗ and this is exactly what expresses the black-box nature of f and A in these
reductions. We will use the following folklore lemmas about oracle separation.

Lemma 3. (A) If there is f ∈ P1∩FPO secure relative to O but no g ∈ P2∩FPO

is secure relative to O, then there exist no (fully) black-box reductions from P1
to P2. (B) If in addition, O = πf (equality of functions) for a π ∈ FP•, then
there exist no semi black-box reductions from P1 to P2.

Proof. (A) Suppose (S, P) is a black-box reduction from P1 to P2. According
to the assumptions, g = P f ∈ P2 ∩ FPO and g is insecure relative to O. Hence,
A breaks

P2

g = P f for some A ∈ FPO ⊂ F∗. It follows that Sf,A breaks
P1

f ,

contradicting Sf,A ∈ FPO. (B) Suppose P is a semi black-box reduction from P1
to P2. Let f ∈ P1 ∩FPO be a secure (relative to O) instance of P1. Let O = πf

for some π ∈ FP•. According to the assumptions, g = P f ∈ P2 ∩ FPO and g is
insecure relative to O. Hence, A breaks

P2

g = P f for some A ∈ FPO. Therefore,

taking A2 = Aπ ∈ FP• we have that A = AO = Aπf

= Af
2 breaks

P2

P f . Hence,

there exists A1 ∈ FP•, so that Af
1 breaks

P1

f , which contradicts Af
1 ∈ FPO. �

Definition 5. A (semi/fully) black-box reduction is said to be a self reduction
if P is a trivial machine, i.e. P f = f (for every f).

Lemma 4. (A) If relative to O there is a secure instance of f ∈ P1, which is
also an insecure instance of P2, then there exist no (fully) black-box self reduc-
tions from P1 to P2. (B) If in addition, O = πf (equality of functions) for a
π ∈ FP•, then there exist no semi black-box self reductions from P1 to P2.

The proof of Lemma 4 is completely analogous to the proof of Lemma 3.

5.2 Non-existence of Fully Black-Box Self Reductions

We define an oracle O, relative to which there exist a collision-resistant hash
function H: {0, 1}2k → {0, 1}k (chosen randomly from a set F of functions) that
is not chain-resistant. The oracle O responds to the following queries:

– H-queries that given as input (x1, x2) ∈ {0, 1}2k return H(x1, x2) ∈ {0, 1}k.
– A1-queries that given as input 1k return the root rk of a Merkle tree [11]

Mk, the leaves of which are all k-bit strings in lexicographic order (Fig. 2).
– A2-queries that given as input a bit string x ∈ {0, 1}k find z ∈ ({0, 1}k)k,

based on Mk, so that FH(x;x; z) = rk and output a pair (x, z).

On Provably Secure Time-Stamping Schemes 509

000 001 010 011 100 101 110 111

000,001)H(

3r

H(010,)011

Leaf sibling pair

Second layer pair

Third layer pair

Fig. 2. Computations performed by A1(1k) in case k = 3

We assume that O-queries are of unitary cost and hence H is not chain-
resistant relative to O. We define F so that O is insufficient for finding collisions
for H.

Let F be the set of all functions H, such that for all k: (1) all non-leaf vertices
in Mk contain different elements of {0, 1}k and (2) all sibling-pairs (including
the leaves) are different. Hence, the argument-value pairs in Mk do not comprise
collisions and A1- and A2-queries do not help in finding collisions for H.

Lemma 5. Every collision finding adversary AO for H that makes p(k) = kO(1)

oracle calls, has success probability k−ω(1).

Proof. Let S ⊆ {0, 1}2k denote the set of all pairs in the tree Mk. There are
exactly 2k−1 of such pairs. Hence, there are 22k−2k +1 pairs in the complement
S = {0, 1}2k\S. The restriction of H to S behaves like a uniformly random
function while the restriction of H to S is injective. Hence, if AO finds a collision
(p1, p2) for H, then one or both of the pairs p1, p2 belong to S.

Let K ⊂ {0, 1}2k be the set of all pairs for which the value of H is released.
If p1, p2 ∈ S, then the probability of finding collisions does not exceed |K∩S|2

2k+1 ≤
p2(k)
2k+1 = k−ω(1), because the values of H|S can only be obtained via H-queries.

If p1 ∈ S and p2 ∈ S, then the probability of finding a collision does not
exceed |K∩S|·|K∩S|

2k ≤ mk·(p(k)−m)
2k , where m is the number of A2-queries, each of

which releases no more than k values of H. The maximum of the last function
is achieved if m ≈ p(k)

2 , and hence the success is k·p(k)2

2k+2 = k−ω(1). �

Corollary 1. Fully black-box self reductions cannot prove that collision-resis-
tance of h implies chain-resistance of h.

5.3 Non-existence of Semi Black-Box Self Reductions

The oracle O defined above does not yet prove the non-existence of semi-black
box self reductions because H does not provide full access to O, i.e. O �= πH .
Hence, we have to ”embed” O into H. We define a new hash function (oracle)
O: {0, 1}2n → {0, 1}n recursively for all n > 0, assuming that the values of it are
already defined for smaller indices.

510 A. Buldas and M. Saarepera

Let Mn be a complete Merkle tree, the leaves of which are all n-bit strings
in the lexicographic order. Each internal vertex v in Mn is computed as a hash
On(vL, vR) of the child vertices vL, vR of v. Note that as we have not yet defined
On: {0, 1}2n → {0, 1}n, the tree Mn is not yet defined either. We divide the
domain {0, 1}2n = {(y1, y2): y1, y2 ∈ {0, 1}n}) into two non-intersecting parts:

– The set S of all sibling pairs in Mn that occur as inputs to O during the
computation of Mn. It contains leaf-sibling pairs of the form (y0, y1), where
y ∈ {0, 1}n−1, second-layer pairs of the form (O(t00, t01),O(t10, t11)), where
t ∈ {0, 1}n−2 etc. (Fig. 2)

– The set P of all other pairs.

Hence, to define On, we have to define two functions: OS
n :S → {0, 1}n and

OP
n :P → {0, 1}n. The function OS

n is defined in a deterministic way and is
injective (no collisions can be found inside S), while OP

n is a random oracle
(obviously collision-resistant!). In addition, if n = 4k, then we embed a chain-
finding adversary for Ok into OS

n , which means that O can find chains for itself
and is thereby not chain-resistant.

First of all, we define (for n = 4k) an oracle An: {0, 1}2n → {0, 1}n that
can be used to find chains for Ok. The oracle An allows input pairs of the form
(02kx0k−m1m, 0k1kx0k−m1m), where x ∈ {0, 1}k and m ∈ {0, . . . , k}. The set D
of all such pairs has exactly (k+1)2k elements. Let rk be the root of Mk (which
has been already defined). On input of such form, the oracle An finds (based on
Mk) z ∈ ({0, 1}k)k, such that FO(x;x; z) = rk. We define An as follows:

An(02kx0k−m1m, 0k1kx0k−m1m) =
{

1kx0k−m1mx if m = 0 ,
1kx0k−m1mzm if m ∈ {1, . . . , k} .

Obviously, An is injective and its values never coincide with the allowed
inputs.

Now we are ready to define OS
n . We begin with the case n �= 4k, which is

considerably easier, because there is no need to embed An into OS
n . To define OS

n

as an injection, it is sufficient to assign different n-bit strings to all 2n−1 internal
vertices of Mn. However, care must be taken that no sibling pairs (including the
leaf sibling pairs) coincide with other pairs, because otherwise we may have a
contradictory definition – different values are assigned to the same input pair.
Such contraditions can be easily avoided if, as opposed to the leaf sibling pairs,
the elements of internal sibling pairs are in the decreasing order.

If n = 4k, then we have to embed An as a function into OS
n . There are

2n−2 = 24k−2 second layer pairs in Mn and (k+1)2k arguments of An (elements
of D). As (k+1)2k ≤ 24k−2 for any k > 0, there is an injection e:D → {0, 1}n−2

and we can embed D into the set of second layer pairs of Mn, so that for each
x ∈ {0, 1}k and m ∈ {0, . . . , k} there is t = e(x,m) ∈ {0, 1}n−2, such that
O(t00, t01) = 02kx0k−m1m and O(t10, t11) = 0k1kx0k−m1m. Now we apply
An to the second layer pairs in e(D) and store the values into Mn as third
layer vertices. Note that if k > 1, then there are still some second layer pairs
for which the value of O has not yet been defined. Note also that all non-leaf

On Provably Secure Time-Stamping Schemes 511

vertices defined thus far are different and hence to conclude the definition of OS
n ,

we define (in arbitrary way) the values of other vertices (not yet defined) so that
all non-leaf vertices are different and hence OS

n is injective.
As said above, for every n we choose OP

n uniformly at random from the set
of all functions P → {0, 1}n. Now we can do it because P is fixed after the
procedure above. Like in Lemma 5, we can show in a similar fashion that O is
collision resistant but not chain-resistant, because O4k can be used to find chains
for Ok (for any k > 0) and therefore also a time-stamping scheme that uses O
as a hash function (and (1) for verification) is insecure.

Corollary 2. Semi black-box self reductions cannot prove that collision-resis-
tance of h implies chain-resistance of h.

6 Discussion and Open Problems

More Efficient Reductions. The reduction established in the proof of Theo-
rem 1 does not give sufficient security guarantees for practical time-stamping
schemes. To show this, assume that k = 160 (output size of SHA-1) and that
there is an adversary A = (A1,A2) with running time T (k) = 216 and with
success probability δ(k) = 2−16 ≈ 1/65000. Hence, the time-success ratio is
T (k)/δ(k) = 232. If the time unit denotes the time elapsed for one hash oper-
ation and a computer performs 10,000 hash operations per second, then T (k)
is about six seconds. For practical time-stamping schemes, an attack with such
ratio is considered very serious. Now let us examine the consequences of The-
orem 1. Assume that the collision-finding adversary A′ is implemented very ef-
ficiently, so that T ′(k) = 2T (k). By Lemma 2, the time-success ratio of A′ is
T ′(k)
δ′(k) ≈

2×T (k)
δ2(k)
T2(k)

−2H2(D)
≥ 2T 3(k)

δ2(k) = 281, which is close to the birthday barrier and

says nothing essential about security – any 160-bit hash function can be broken
with that amount (281) of computational resources. Hence, even the highest se-
curity of h does not exclude the attacks with ratio 232. The reduction gives prac-
tical security guarantees only in case k > 400, which is much larger than used in
the existing schemes. Therefore, it would be very desirable to find more efficient
reductions, say the linear-preserving ones [10], in which T ′(k)

δ′(k) = kO(1) · T (k)
δ(k) .

Constructions of Chain-Resistant Hash Functions. We leave open the existence
of efficient constructions of chain-resistant hash functions, possibly as atomic
primitives. While we proved that collision-resistance does not imply chain-
resistance, it is still unknown whether there exist more general black-box
constructions (g = Ph) of chain-resistant hash functions (g) based on a collision-
resistant one (h). In case such constructions exist, it would be sufficient to just
replace the hash functions in the existing schemes.

Another interesting research topic is attempts at the opposite: to prove that
there exist no general black-box constructions of chain-resistant hash-functions
based on collision-resistant ones. It would be sufficient to find an oracleO relative

512 A. Buldas and M. Saarepera

to which there exist collision-resistant hash functions while no function is chain-
resistant. Inspired by the work of Simon [13] it may seem tempting to define an
oracle O capable of finding chains to any computable f : {0, 1}2k → {0, 1}k, the
description of which is given to O as an argument. However, there seem to be no
obvious ways of doing this. For example, if O is able to compute the root of the
complete Merkle tree Mf

k for any (computable) hash function f , then one can
show that such O can also be “abused” to find collisions for any hash function.

At the same time, it seems very likely that the oracle used by Simon [13] (to
prove that collision-resistant hash functions are not black-box constructible from
one-way functions) is also sufficient for showing that collision-resistant hash-
functions cannot be constructed from the chain-resistant ones.

Stronger Security Conditions. The chain-resistance condition is still too sim-
plistic, considering some scenarios that are very likely to happen in practical
implementations of time-stamping schemes. Instead of having unconditional un-
certainty about x, it is possible that A1 has some partial knowledge y = f(x)
about x (e.g. ciphertexts or signatures). This suggests a stronger condition:

Definition 6. A function h is universally chain-resistant if for any (proba-
bilistic) function f and for any poly-time adversary A = (A1,A2) with success
δ = Pr[x← D, (R, a)← A1(f(x)), (n, z)← A2(x, a):Fh(x;n; z) ∈ R] = k−O(1)

there is a poly-time A′ with success Pr[x← D, x′ ← A′(f(x)):x′ = x] = k−O(1).

Loosely speaking, if x can be time-stamped based on y = f(x), then x can
be efficiently computed based on y, and hence the time stamp is “legitimate”.
This condition implies chain-resistance if we define f(x) ≡ 1k.

Though the universal chain resistance condition seems natural, it is probably
not achievable. To see this, assume that h is one-way even if one of the arguments
is revealed to the adversary, i.e. every A′ ∈ FP has success

δ′(k) = Pr[(x, z)← U2k, x
′ ← A′(h(x, z), z):x = x′] = k−ω(1) . (6)

This assumption is intuitively assumed to hold in the case of conventional
hash functions. Let f be a probabilistic function such that (h(x, z), z) ← f(x),
where z ← Uk; and let A = (A1,A2) be defined as follows: ({y}, z) ← A1(y, z),
and (0, z) ← A2(x, z). Clearly, the success of A (in the sense of universal chain
resistance) is δ = 1, while no adversary A′ can efficiently invert f . Therefore,
no functions that are one-way in the sense of (6) are universally chain resistant,
which means that this is a very strong security requirement. Even if h is de-
fined as a random oracle, it is still insufficient for the universal chain-resistance.
Nothing changes if the set of valid identifiers is polynomially restricted.

Acknowledgements

The authors are grateful to Matthew Franklin, to Peeter Laud, to Berry Schoen-
makers, and to anonymous referees for their valuable remarks and suggestions
that helped to improve the quality and readability of the paper, as well as to
Estonian Science Foundation for supporting the study.

On Provably Secure Time-Stamping Schemes 513

References

1. Dave Bayer, Stuart Haber, and W.-Scott Stornetta. Improving the efficiency and
reliability of digital time-stamping. In Sequences II: Methods in Communication,
Security, and Computer Science, pp.329-334, Springer-Verlag, New York 1993.

2. Josh Benaloh and Michael de Mare. Efficient broadcast time-stamping. Tech. report
1, Clarkson Univ. Dep. of Mathematics and Computer Science, August 1991.

3. Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson. Time-Stamping
with Binary Linking Schemes. In Advances in Cryptology – CRYPTO’98, LNCS
1462, pp. 486-501, 1998.

4. Stuart Haber and W.-Scott Stornetta. How to time-stamp a digital document.
Journal of Cryptology, Vol. 3, No. 2, pp. 99-111 (1991).

5. Stuart Haber and W.-Scott Stornetta. Secure Names for Bit-Strings. In ACM Con-
ference on Computer and Communications Security, pp. 28–35, 1997.

6. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The relationship between public key encryption and oblivious trans-
fer. In FOCS 2000, 41st IEEE Symposium on the Foundations of Computer Sci-
ence, pp. 325–335, 2000.

7. Susan Rae Hohenberger. The Cryptographic Impact of Groups with Infeasible
Inversion. Master Thesis. Massachusetts Institute of Technology. May 2003.

8. Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. Proceedings of 21st Annual ACM Symposium on the Theory
of Computing, 1989, pp. 44 – 61.

9. ISO IEC 18014-3,Time-stamping services – Part 3: Mechanisms producing linked
tokens.

10. Michael Luby. Pseudorandomness and cryptographic applications. Princeton Uni-
versity Press, 1996.

11. Ralph C. Merkle. Protocols for public-key cryptosystems. Proceedings of the 1980
IEEE Symposium on Security and Privacy, pp.122-134, 1980.

12. Alexander Russell. Necessary and sufficient conditions for collision-free hashing.
Journal of Cryptology (1995) 8: 87–99.

13. Daniel Simon. Finding collisions on a one-way street: can secure hash functions
be based on general assumptions? In Advances in Cryptology – EUROCRYPT’98,
LNCS 1403, pp.334–345. Springer-Verlag, 1998.

A Proof of Lemma 2

Let Pr[R,N, a] = Pr[(R,N, a)← A1(1k): R = R, N = N, a = a] and

Pr[Brk | R,N, a] = Pr[X←D, (n, z)←A2(X, a):Fh(H(X);n; z)∈R, n∈N] .

By definition, Pr[Brk |R,N, a] is the conditional success of (A1,A2), assuming
that A1 outputs (R,N, a). Thus, δ(k) =

∑
R,N,aPr[R,N,a] ·Pr[Brk |R,N,a], where

the sum is computed over all possible outputs of A1(1k). Let

Pr[Brk(ρ,n) |R,N,a]=Pr[X←D,(n,z)←A2(X,a):Fh(H(X);n;z)=ρ∈R, n=n∈N]

be the conditional probability of success with additional condition that the iden-
tifier (output by A2) is n and the result of the hash chain is ρ ∈ R. Now assume
that A′ has finished and hence the following computations have been performed:

514 A. Buldas and M. Saarepera

(R,N, a)← A1(1k),
X ← D
X ′ ← D ,

(n, z)← A2(X, a)
(n′, z′)← A2(X ′, a) ,

ρ = Fh(H(X);n; z)
ρ′ = Fh(H(X ′);n′; z′) .

Let Coll denote the event that A′ finds a collision and let Coll′ denote the event
that A′ finds a collision so that ρ = ρ′ ∈ R, n = n′. By Lemma 1, the event Coll
is a superset of Coll′ ∩ (H(X) �= H(X ′)). Hence, the success δ′(k) = Pr[Coll′] of
A′ satisfies

δ′(k) ≥ Pr[Coll′ ∩ (H(X) �= H(X ′))] = 1− Pr[(¬Coll′) ∪ (H(X) = H(X ′))]
≥ 1− (1− Pr[Coll′])− Pr[H(X) = H(X ′)] = Pr[Coll′]− PC(D) .

Therefore, it remains to estimate Pr[Coll′]. Let Coll′(n, ρ) denote the product
event Coll′∩ (n = n′ = n)∩ (ρ = ρ′ = ρ). From the independence of the two runs
of A2 it follows that Pr[Coll′(n, ρ) | R,N, a] = Pr2[Brk(n, ρ) | R,N, a] and hence,

Pr[Coll′ | R,N, a] =
∑
n,ρ

Pr[Coll′(n, ρ) | R,N, a] =
∑
n,ρ

Pr2[Brk(n, ρ) | R,N, a]

=
∑
n,ρ

Pr2[Brk|R,N,a]·Pr2[n,ρ|R,N,a,Brk]=Pr2[Brk|R,N,a]·
∑
n,ρ

Pr2[n,ρ|R,N,a,Brk]

≥ Pr2[Brk | R,N, a] · 1
|R| · |N| ≥ Pr2[Brk | R,N, a] · 1

T 2(k)
,

where the first inequality holds because
∑

n,ρ Pr[n, ρ | R,N,Brk, a] = 1 and

for any probability space X , we have
∑

x∈X
2
Pr[x] ≥ 1

|X| . The second inequality
follows from the observation that R and N are produced by the adversary and
hence their size cannot exceed the running time. Therefore,

Pr[Coll′]=

∑
R,N,a

Pr[R,N,a]·Pr2[Brk |R,N,a]

T 2(k)
≥(Pr[R,N,a]·Pr[Brk |R,N,a])2

T 2(k)
=

δ2(k)
T 2(k)

,

which follows from the Jensen inequality. �

Strong Conditional Oblivious Transfer and
Computing on Intervals

Ian F. Blake1 and Vladimir Kolesnikov2

1 Dept. Elec. and Comp. Eng, University of Toronto, Toronto,
ON, M5S 3G4, Canada

ifblake@comm.utoronto.ca
2 Dept. Comp. Sci., University of Toronto, Toronto, ON, M5S 3G4, Canada

vlad@cs.utoronto.ca

Abstract. We consider the problem of securely computing the Greater
Than (GT) predicate and its generalization – securely determining mem-
bership in a union of intervals. We approach these problems from the
point of view of Q-Conditional Oblivious Transfer (Q-COT), introduced
by Di Crescenzo, Ostrovsky and Rajagopalan [4]. Q-COT is an oblivi-
ous transfer that occurs iff predicate Q evaluates to true on the parties’
inputs. We are working in the semi-honest model with computationally
unbounded receiver.

In this paper, we propose: (i) a stronger, simple and intuitive definition
of COT, which we call strong COT, or Q-SCOT. (ii) A simpler and
more efficient one-round protocol for securely computing GT and GT-
SCOT. (iii) A simple and efficient modular construction reducing SCOT
based on membership in a union of intervals (UI-SCOT) to GT-SCOT,
producing an efficient one-round UI-SCOT.

1 Introduction

This work falls into the area of constructing efficient secure multi-party protocols
for interesting functionalities. The more basic the functionality, the more com-
mon is its use, and the more significant is the value of any improvement of the
corresponding protocol. We start with presenting the problems we investigate
and their motivation.

The base functionality we consider - Greater Than (GT) - is one of the
most basic and commonly used. Secure evaluation of GT is also one of the most
famous and well-researched problems in cryptography. There exist a vast number
of applications relying on it, such as auction systems or price negotiations.

Another typical example would be secure distributed database mining. The
setting is as follows: several parties, each having a private database, wish to
determine some properties of, or perform computations on, their joint database.
Many interesting properties and computations, such as transaction classification
or rule mining, involve evaluating a large number of instances of GT [12, 14]. Be-
cause of the large size of the databases, even a minor efficiency gain in computing
GT results in significant performance improvements.

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 515–529, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

516 I.F. Blake, and V. Kolesnikov

Other functionalities – memberships in a set of intervals and their conjunc-
tions and disjunctions – are less studied, but nevertheless are very useful. Their
immediate uses lie in appointment scheduling, flexible timestamp verification,
expression evaluation, in the areas of computational geometry, biometrics, and
many others. Certain kinds of set membership problems, as studied by Freedman,
Nissim and Pinkas [7], can be represented succinctly as instances of problems
we consider. For example, the problem of membership in a set consisting of all
even integers on a large interval (y, z) can be represented as a conjunction of
two small instances of interval memberships (S = {x|x0 < 1∧x ∈ (y, z)}, where
x0 is the low bit of x). In such cases, using our solutions may have significant
advantages over the general set intersection solution of [7].

The setting with computationally unbounded receiver (Alice) is very appeal-
ing, both for oblivious transfer and general computations. Numerous papers
consider unconditional security against one or more parties, in particular, the
receiver, e.g. [2, 3, 5, 11, 17]. Practical one-round computation with unbounded
first party (Alice) currently seems to be hard to achieve. The best known gen-
eral approach [21] offers only polynomial efficiency and only for computing NC1

circuits. At the same time, if Alice is bounded, we could use very efficient Yao’s
garbled circuit approach ([15, 17, 20, 22]) at the cost linear with the size of the
circuit. We solve the posed problems in the difficult setting (unbounded Alice),
while achieving performance only slightly worse than the best known approach
in the easier (bounded Alice) setting.

1.1 Our Contributions and Outline of the Work

After presenting preliminary definitions and constructions in Sect. 1.2, we start
with a discussion of Conditional Oblivious Transfer (COT) (Sect. 2). We wish to
strengthen the current definition of [4] in several respects. Firstly, we observe that
the definition of [4] does not require the privacy of the sender’s private input.
Secondly, we propose and justify the “1-out-of-2” Q-COT, where the receiver
obtains one of two possible secret messages depending on Q, but without learning
the value of Q. This is opposed to the “all-or-nothing” approach of [4] where the
receiver receives either a message or nothing, which necessarily reveals the value
of Q. Our approach significantly adds to the flexibility of COT functionalities
and allows for more powerful compositions of COT protocols. We propose a
definition of strong conditional oblivious transfer (SCOT) that incorporates the
above observations and some other (minor) points.

Then, in Sect. 3, we discuss previous work on the GT problem and present
our main tool – an efficient protocol for computing GT-SCOT built from a
homomorphic encryption scheme. We exploit the structure of the GT predicate
in a novel way to arrive at a solution that is more efficient and flexible than
the best previously known (of Fischlin [6]) for our model with unbounded Alice.
Additionally, our construction is the first to offer transfer of c-bit secrets, with
c ≈ 1000 for practical applications, at no extra cost, with one invocation of the
protocol, as opposed to the necessary c invocations of Fischlin’s protocol. This
results in additional significant efficiency gains.

Strong Conditional Oblivious Transfer and Computing on Intervals 517

Then, in Sect. 4, we show how to use the bandwidth of our GT-COT solu-
tion and present protocols for efficiently computing SCOT based on the interval
membership (I-SCOT) and SCOT based on the membership in a union of k
intervals (k-UI-SCOT). Because of their modularity, these protocols can also be
constructed based on Fischlin’s solution at the efficiency loss described in the
previous paragraph. Because they leak the private inputs of the sender, we do
not know of an efficient way to extend solutions of [4] to compute these func-
tionalities. We remark on how to use UI-SCOT to compute the conjunction or
disjunction of the memberships in unions of intervals. Finally, we compare and
summarize resource requirements of schemes of Fischlin, Di Crescenzo et al., and
ours in the Table in Sect. 4.2.

1.2 Definitions and Preliminaries

We start by introducing the necessary terminology and notation, and refer the
reader to Goldreich [9] for in-depth discussion. We are working in a setting
with two semi-honest participants, who use randomness in their computation.
By a two-party functionality we mean a possibly random process that maps
two inputs to two outputs. We denote the view (i.e. its randomness, input and
messages received) of a party P executing a protocol Π with a party R on
respective inputs x and y by VIEWΠ

P (x, y). We note that VIEWΠ
P (x, y) is a

random variable over the random coins of P and R.
We stress that although our constructions and analysis are presented for

a fixed security and correctness1 parameters ν and λ, we have in mind their
asymptotic notions. Therefore, for example, when talking about a view of a
party VIEWΠ

P (x, y), we mean an ensemble {VIEWΠ
P (x, y)}ν,λ of views.

We denote statistical closeness of ensembles of random variables X and Y
by X

s≡ Y and their computational indistinguishability by X
c≡ Y . We say

a function μ : N �→ R is negligible if for every positive polynomial p(·) there
exists an N , such that for all n > N, μ(n) < 1/p(n). We say a probability is
overwhelming if it is negligibly different from 1.

Homomorphic Encryption. Our constructions use semantically secure pub-
lic key probabilistic additive homomorphic encryption. Informally, a scheme is
probabilistic (or randomized), if its encryption function uses randomness to en-
crypt a plaintext as one of many possible ciphertexts. It allows re-randomization
if a random encryption of a plaintext can be computed from its ciphertext and
the public key. In our work, we will rely on the unlinkability of encryptions
of the same message. An encryption scheme (G,E,D) is homomorphic, if for
some operations ⊕ and ⊗ (defined on possibly different domains), it holds that
D(E(x⊕ y)) = D(E(x)⊗E(y)). A scheme is called additively (multiplicatively)
homomorphic if it is homomorphic with respect to the corresponding operation
(e.g. additive scheme allows to compute E(x + y) from E(x) and E(y)). Many
of the commonly used schemes are homomorphic. For example, the ElGamal
scheme is multiplicatively homomorphic, and Goldwasser-Micali [10] and Pail-

1 Correctness parameter specifies the allowed probability of error in the protocols.

518 I.F. Blake, and V. Kolesnikov

lier [18] schemes are additively homomorphic. Unfortunately, it is not known
whether there exists a scheme that is algebraically (i.e. both additively and mul-
tiplicatively) homomorphic. We note that an additively homomorphic scheme
allows multiplication by a known constant, i.e. computing E(cx) from E(x) and
c, via repeated addition.

The Paillier Cryptosystem. Our protocols require an additional property of
the encryption scheme: the large plaintext size, or bandwidth. The Paillier scheme
[18] satisfies all our requirements, and we will instantiate all our protocols with
it. We present it for completeness, but omit the number-theoretic justification.

Key generation: Let N be an RSA modulus N = pq, where p, q are large
primes. Let g be an integer of order Nα modulo N2, for some integer α. The
public key pk = (N, g) and the secret key sk = λ(N) = lcm((p − 1), (q − 1)),
where λ(N) is the Carmichael’s lambda function.

Encryption: to encrypt m ∈ ZZN , compute Enc(m) = gmrN mod N2, where
r ∈R ZZ∗

N .

Decryption: to decrypt a ciphertext c, compute m = L(cλ(N) mod N2)
L(gλ(N) mod N2) mod N ,

where L(u) = u−1
N takes as input an element from the set SN = {u < N2|u = 1

mod N}.
Re-randomization: to re-randomize a ciphertext c, multiply it by a random

encryption of 0, i.e. compute crN mod N2, for r ∈R ZZ∗
N .

The underlying security assumption is that the so-called composite residuos-
ity class problem is intractable (called the CCRA assumption). It it potentially
stronger than the RSA assumption, as well as the quadratic residuosity assump-
tion, used in [6]. We refer the interested reader to [18] for further details.

2 Strong Conditional Oblivious Transfer

The notion of COT was introduced by Di Crescenzo, Ostrovsky and Rajagopalan
[4] in the context of timed-release encryption. It is a variant of Oblivious Transfer
(OT) introduced by Rabin [19]. Intuitively, in COT, the two participants, a
receiver R and a sender S, have private inputs x and y respectively, and share
a public predicate Q(·, ·). S has a secret s he wishes (obliviously to himself) to
transfer to R iff Q(x, y) = 1. If Q(x, y) = 0, no information about s is transferred
to R. R’s private input and the value of the predicate remain computationally
hidden from S.

2.1 Our Definitions

We start by describing several ways of strengthening the existing definition with
the goal of increasing modularity and widening the applicability of SCOT pro-
tocols. Our own construction for UI-SCOT, for example, requires its building
blocks to have the proposed features.

Strong Conditional Oblivious Transfer and Computing on Intervals 519

First, while sufficient for the proposed timed-release encryption scheme, the
definition of [4] lacks the requirement of secrecy of the sender’s private input.
We would like the new definition to include this requirement.

Secondly, we prefer the “1-out-of-2” approach. In our proposed setting, the
sender possesses two secrets s0 and s1, and wishes (obliviously to himself) to send
s1 if Q(x, y) = 1, and to send s0 otherwise. Unlike the COT “all-or-nothing” def-
inition, this allows SCOT protocols to have the property of not revealing Q(x, y)
to the receiver. This proposal strengthens the definition since while a SCOT
protocol can be trivially modified to satisfy COT definitions of [4], the opposite
does not (efficiently) hold2. Further, note that it follows from our requirements
that a Q-SCOT protocol can be trivially modified into a (¬Q)-SCOT protocol.
This also does not hold for COT. We will use this important property in our
constructions later in the paper.

Finally, as a minor point, we only require statistical, as opposed to perfect,
correctness and security against R, to allow for easier analysis of the protocols
and wider applicability of the SCOT notion.

We now present our definition. Let sender S and receiver R be the partic-
ipants of the protocol. Let ν be the security parameter and λ be the correct-
ness parameter, upperbounding error probability by O(2−λ). Let DI and DS

be the respective domains of parties’ private inputs and sender’s secrets. Let
dI = |DI | and dS = |DS |. We assume that both domains are known to both
parties. Let R have input x ∈ DI , and S has input (y ∈ DI , s0, s1 ∈ DS). Let
Q : DI ×DI �→ {0, 1} be a predicate. Consider the SCOT functionality:

Functionality 1

fQ−SCOT(x, (y, s0, s1)) =

{
(s1, empty string) if Q(x, y) = 1,
(s0, empty string) otherwise

(1)

There are many models in which we can consider computing this functionality.
Each of the two parties may be malicious or semi-honest and each party may or
may not be computationally limited3. We wish to give one definition that refers
to all possible models and rely on existing definitions of secure computations in
these models. We refer the reader to Goldreich [9] for in-depth presentations of
definitions of security in many interesting models.

Definition 1. (Q-Strong Conditional Oblivious Transfer)
We say that a protocol Π is a Q-strong conditional oblivious transfer protocol

with respect to a given model, if it securely implements functionality fQ−SCOT
(1) in the given model.

We note that this general definition covers the case when Q is probabilistic.

2 Clearly, because secure multi-party computation can be based on OT (Kilian [13]),
COT implies SCOT. This solution, however, is inefficient.

3 Of course, in some of the combinations it is not possible to have nontrivial secure
SCOT protocols, such as when both parties are computationally unlimited.

520 I.F. Blake, and V. Kolesnikov

One of the more practical and interesting settings is the model with the semi-
honest unlimited receiver, semi-honest polytime sender and deterministic Q. We
discuss our constructions in this model, and thus wish to explicate the definition
for this setting.

Definition 2. Let receiver R, sender S, their inputs x and y, secrets s1 and
s0, unary parameters ν and λ, and predicate Q be as discussed above. We say
that Π is a strong conditional oblivious transfer protocol for predicate Q in the
semi-honest model with computationally unlimited receiver and polytime sender
if

– Transfer Validity. With overwhelming probability in λ: If Q(x, y) = 1, R
obtains s1, otherwise R obtains s0.

– Security against R. (R obtains essentially no information other than the
transferred secret) There exists a simulator SimR, such that for any x, y, s, s′

from appropriate domains:

if Q(x, y) then {SimR(x, s)}ν
s≡ {VIEWΠ

R (x, (y, s′, s))}ν
if ¬Q(x, y) then {SimR(x, s)}ν

s≡ {VIEWΠ
R (x, (y, s, s′))}ν

– Security against S. (S gets no efficiently computable information about x)
There exists an efficient simulator SimS, such that for any x, (y, s0, s1) from
appropriate domains:

{SimS(y, s0, s1)}ν
c≡ {VIEWΠ

S (x, (y, s0, s1))}ν .

As further justification, we wish to point out an interesting use of Q-SCOT
protocols. When sufficiently long secrets are chosen randomly by S, upon com-
pletion of a Q-SCOT protocol, R does not know either the value of Q, or the
non-transferred secret. Thus this can be viewed as a convenient way to share the
value of Q among R and S. Further, the secret that R received may serve as a
proof to S of the value of Q. This is not possible with COT, as R is only able
to provide such proof if Q(x, y) = 1.

3 The GT-SCOT Protocol

Research specifically addressing the GT problem is quite extensive. It was con-
sidered (as a special case) in the context of general secure multi-party com-
putation [1, 15, 17, 20, 23, 22], whose solution is now well-known and celebrated.
This general approach is impractical. However, because the circuit for comput-
ing GT is quite small, it is the best currently known one-round solution in the
model with the computationally bounded Alice. As people searched for efficient
solutions to special classes of problems in different models, more efficient GT so-
lutions implicitly appeared. Naor and Nissim [16] presented a general approach
to securely computing functions with low communication overhead. While the
application of their solution to GT is quite efficient in the message length, it
needs at least O(logn + log 1

ε) 1-out-of-O(n) oblivious transfers and the same

Strong Conditional Oblivious Transfer and Computing on Intervals 521

number of rounds, where ε is the tolerated probability of error. Sander, Young
and Yung [21] showed that all functionalities in NC1 (including GT) can be
computed by a one-round polytime protocol. Their solution is secure against
unbounded Alice. Unfortunately, when used with the natural shallow GT cir-
cuit4 (which seems to be optimal for their approach), it requires at least n4

modular multiplications and n4 log N communication (where n is the input size,
and N is the GM modulus used).

Finally, in 2001, Fischlin [6] proposed a solution that significantly reduced
the number of modular multiplications, while also reducing the message size
and maintaining the minimal one-round efficiency. This is the best previously
known solution to the GT problem in the model with unbounded Alice. The
number of modular multiplications required to complete his protocol is 8nλ,
where 2−λ is the allowed error probability. The message complexity (in bits) is
n log N(λ+ 1). Fischlin also extends this protocol (at the cost of approximately
doubling the communication and computation costs) to satisfy our definition of
GT-SCOT, with the exception of leaking the value of the predicate. We remark
that this extension can be further extended to fully satisfy our definitions at the
expense of further approximately doubling the communication and computation
costs.

3.1 Our Construction

Our constructions use semantically secure additively homomorphic encryption
schemes with large message domains. For the ease and clarity of presentation
and to enable resource analysis, we “instantiate” our protocols with the original
Paillier scheme. We remark that the Paillier scheme has received much attention
in the literature recently, and several variants, including an elliptic curve version
[8], have appeared. Using more efficient implementations may further improve
our results.

Let (Gen,Enc,Dec) be the instance generation, encryption and decryption
algorithms, respectively, of such a scheme. As in Definition 2, let R and S be the
receiver and the sender with inputs x and y respectively and common parameters
ν and λ. Let x, y ∈ DI and s0, s1 ∈ DS . Let dS = |DS | and, without loss of
generality, dI = |DI | = 2n.

Throughout this section, we will work with numbers which we will need
to represent as binary vectors. For x ∈ IN, unless specified otherwise, xi will
denote the ith most significant bit in the n-bit binary representation of x, in-
cluding leading zeros, if applicable. Where it is clear from the context, by x
we may mean the vector < x1, x2, ..., xn >, and by Enc(x) we mean a vec-
tor < Enc(x1),Enc(x2), ...,Enc(xn) >. We will also write Enc(x) instead of
Encpk(x), where pk is clear from the context.

For the clarity of presentation, we describe the setup phase outside of the
protocol. We stress that it is run as part of R’s first move, and in particular,
after the parties’ inputs x, and (y, s0, s1) have been fixed.

4 The circuit based on the formula used by Fischlin’s protocol [6].

522 I.F. Blake, and V. Kolesnikov

Setup Phase. R sets up the Paillier encryption scheme with group size N = pq
by running Gen and generating secret and public keys (sk and pk). He chooses
the number of bits in N to be max{ν, |dS |+ λ}.

We will view DS as a subset of ZZN , and will perform operations on elements
of DS modulo N .

Observation 1. We envision the following practical parameter choices for our
GT protocols. First, choose N and λ to satisfy the security and correctness re-
quirements of the encryption scheme. In practice, log N(≈ 1000)* λ(≈ 40..80),
so we set |dS | = log N − λ > 900 bits of the bandwidth of the encryption scheme
to be used for sending secrets. If DS needs to be much larger than that, it may be
more practical to split it in blocks of size |dS | and run GT-SCOT several times.
Choosing parameters in this manner also simplifies comparison of our results to
others, and we follow this approach in Sect. 4.2.

Observation 2. There is a negligible (in λ) minority of elements of DS in the
group of size N .

For our protocols, we are only interested in binary comparisons, i.e. one of
{>, <,≤,≥}. We can trivially reduce {≥,≤} to {>, <}. Furthermore, we assume
that x �= y. This can be enforced by mapping, for instance, x �→ 2x, y �→ 2y + 1.
The mapping can be done entirely by S. Similarly, we assume that s0 �= s1. The
case when s0 = s1 can be reduced to the s0 �= s1 case by, for example, S setting
y = max{DI} and s1 ∈R DS \ {s0}, ensuring that x < y and s0 is always sent.

We now present the GT-SCOT construction. The intuition behind each step is
presented immediately below, in the proof of the corresponding security theorem.

Construction 1. (Computing Functionality GT-SCOT)

1. R runs the setup phase, then encrypts each bit xi of x with the generated pk
and sends (pk,Enc(x1), ..., Enc(xn)) to S.

2. S computes the following, for each i = 1..n:
(a) an encryption of the difference vector d, where di = xi − yi.
(b) an encryption of the flag vector f , where fi = xi XOR yi = (xi− yi)2 =

xi − 2xiyi + yi.
(c) an encryption of vector γ, where γ0 = 0 and γi = 2γi−1 + fi.
(d) an encryption of vector δ, where δi = di + ri(γi − 1), where ri ∈R ZZN .
(e) a random encryption of vector μ, where μi = s1−s0

2 δi + s1+s0
2

and sends a random permutation π(Enc(μ)) to R.
3. R obtains π(Enc(μ)), decrypts it, and determines the output as follows: if μ

contains a single v ∈ DS, output v, otherwise abort.

Theorem 1. The protocol of Construction 1 is a GT-SCOT protocol in the
semi-honest model, assuming semantic security of the employed encryption
scheme.

Proof. (Sketch): We will now show that the protocol correctly computes the
desired functionality. It is easy to see that the homomorphic properties of the
encryption scheme allow S to perform all necessary operations. In particular,
step 2b is possible because yi are known to S.

Strong Conditional Oblivious Transfer and Computing on Intervals 523

Observe that the flag vector f is a {0, 1}-vector, with the ones in positions
where x and y differ. Furthermore, γ is a vector with the following structure: it
starts with zero or more zeros, then a one, then a sequence of non-ones. Moreover,
with overwhelming probability the non-zero elements (γi − 1) are not multiples
of either p or q, i.e. are in ZZ∗

N . This is because the fraction of multiples of p or
q in ZN is negligible, and p and q are chosen randomly and independently of x
and y.

Let ind1 be the (only) position where γind1 = 1. This position is where x and
y first differ, and thus dind1 determines GT(x, y). The transformation (γ, d)→ δ
of step 2d randomizes all coordinates of δ, while setting δind1 to the value of
dind1 . Because, with overwhelming probability, (γi− 1) ∈ ZZ∗

N , multiplying it by
ri ∈R ZZN randomizes δ perfectly in ZZN .

With overwhelming probability, the transformation (δ, s0, s1) → μ of step
2e is a permutation on ZZN that maps −1 �→ s0, 1 �→ s1. Indeed, it is not
such a permutation only when (s1 − s0) is a multiple of p or q, the event that
occurs with negligible probability, because p and q are are chosen randomly
and independently of s1 and s0. This permutation preserves the randomness
properties of all elements of the vector, and (as is easy to verify) performs the
mapping we are looking for. The random re-encryption step hides the information
that may be contained in the randomness of the encryption. Finally, the random
permutation π(μ) of step 2 hides the index of the determining di.

It easily follows from Observation 2 that the probability that there is not
exactly one element of size |dS | in the decrypted by R vector, is negligible. Thus,
with overwhelming probability, R terminates and outputs the correct value.

Security of R (against the semi-honest S) trivially holds because of the se-
mantic security properties of the employed encryption scheme.

We now prove security of S against an unlimited semi-honest R by construct-
ing a protocol view simulator SimR(x, s), where x is the input, and s is the output
of the protocol. SimR(x, s) has to generate a distribution statistically close to the
view of R in a real execution - VIEWR(x, (y, s0, s1)) = {x, r,Enc(π(μ))}, where
r is the randomness used by R to generate pk and sk (of the setup phase) and
the random encryptions of the first message, and π(μ) is defined in the protocol
construction. SimR(x, s) proceeds as follows. It first generates a random string
r′ of appropriate length (to match r). It uses r′ to compute the keys sk and
pk (including N). It then computes a candidate μ′: for i = 1..n, pick random
μ′

i ∈R ZZN . It then replaces a random element of μ′ with the received s, and
outputs {x, r′,Encpk′(μ′)}, where Encpk′(μ′) is a vector of random encryptions
of coordinates of μ′ under the pk′. Because of the previously presented argu-
ments of the randomness of all elements of π(μ) (other than the one that carries
the secret) and the randomness of re-encryption, it is easy to see that SimR

generates a distribution statistically close to the view of R. We note that the
simulation is not perfect, since the transfer of the other secret is possible during
the real execution, with negligible probability. �

We observe that a GT-SCOT protocol, such as presented above, immediately
implies solution to GT, in the semi-honest model. Indeed, running GT-SCOT

524 I.F. Blake, and V. Kolesnikov

with at least one of the secrets si known to R (say s1 = 1), immediately yields
the desired functionality. Moreover, for GT, the transformation of step 2e is
unnecessary (while the re-randomization of the same step is still required).

3.2 Resource Analysis

We evaluate the message and modular multiplication efficiency of our construc-
tion based on the use of Paillier encryption scheme. We note that we do not
include the relatively small computational cost of key generation, to be consis-
tent with the compared results of [4] and [6]. Let n be the length of inputs x
and y in binary, N -the size of the plaintext domain of the Paillier scheme. Then
message complexity of Construction 1 is l = 2n log(N2) = 4n log N bits.

Let w = w(y) ≤ n be the weight (i.e. the number of ones) of the binary
representation of y. To encrypt each bit, log N multiplications are required.
Observe that it is not necessary to perform expensive randomized encryption in
the intermediate steps of S. This allows us to make do with only w multiplications
for each of the steps 2a, 2b, 2n - for step 2c, and (log N + 2)n - for step 2d, and
(|si| + log N)n ≤ 2n log N - for step 2e of the protocol. We note that if we do
not perform the transformation of step 2e (when, for example, computing GT),
we only need n log N multiplications for the last step.

Decryption takes 2n log N multiplications. Thus, in total, the protocol re-
quires no more than (5n+1) log N +6n modular multiplications ((4n+1) log N +
6n for GT). We stress that transferring up to log N − λ bit secrets requires the
same resources. We observe that the encryption and re-encryption multiplica-
tions can be precomputed once the encryption scheme is initialized.

We now compare the efficiency of our approach to that of Fischlin [6], using
appropriate parameters. We first note that in practice, no known attack on the
Paillier system is better than factoring the modulus N . Clearly, factoring based
attacks would also be effective against the GM scheme with the same modulus
size. Thus, having already assumed CCRA (see Sect. 1), we also assume that
the security of Paillier and GM schemes with the modulus of the same size are
approximately the same.

Compared with [6], our scheme offers a factor of λ/4 improvement in message
complexity: ((4n log N) vs (n log N(λ + 1)) bits). We pay higher cost in the
number of modular multiplications: ((4n+1) log N +6n) vs (6nλ). Additionally,
our multiplications are four times slower, since we are working with modulus
length twice that of the Goldwasser-Micali encryption scheme employed in [6].
These comparisons are summarized in the Table in Sect. 4.2.

4 SCOT for Unions of Intervals

In this section we present new efficient protocols for I-SCOT (SCOT based on
the membership in an interval) and UI-SCOT (SCOT based on the membership
in a union of intervals), both of which are generalizations of GT-SCOT. We build
these protocols on our GT-SCOT solution. While other GT-SCOT approaches
(such as based on Fischlin’s protocol) are also suitable for these constructions,

Strong Conditional Oblivious Transfer and Computing on Intervals 525

our solution is simpler and produces more efficient protocols in terms of both
multiplication and communication complexity. In our constructions, we denote
the instance of the Q-SCOT functionality with the secrets s0, s1 on parties’
inputs x, y by Q-SCOT (s1|s0?Q(x, y)).

In Sect. 4.1 we show how to reduce UI-SCOT to I-SCOT and I-SCOT to
GT-SCOT. In our model, secure reductions provide us with secure protocols
when the underlying oracles are replaced by their secure implementations (see
Goldreich [9] for the composition theorem.) Furthermore, in our model the ora-
cles’ implementations may be run in parallel, which, with our implementations,
provides secure one-round protocols for I-SCOT to UI-SCOT.

4.1 The UI-SCOT Protocol

Without loss of generality, we assume that the domain of secrets DS is an ad-
ditive group5 ZZ+

dS
. All additions of secrets will be done in DS , unless specified

otherwise. In the I-SCOT setting, S’s input x1, x2 ∈ DI represents an interval
I, and s1 (resp. s0) are to be obliviously transferred if x ∈ I (resp. x �∈ I), for
R’s input x ∈ DI . The following diagram illustrates the idea of the reduction of
I-SCOT to GT-SCOT:

a1

b1 b2

a2

s0s0 s1
x2x1

Interval I splits DI in three parts, and S wishes to transfer s1 “on the central
part” (I) and s0 “on the side parts” (DI\I). The idea is to represent these secrets
as sums of independently random (i.e. random if taken separately) elements
(a1, a2, b1, b2 ∈ DS) which are to be transferred using GT-SCOT.

Construction 2. (Reducing I-SCOT to GT-SCOT)

1. S randomly chooses a1 ∈ DS and sets b1, a2, b2 ∈ DS to satisfy s0 = a1+b1 =
a2 + b2 and s1 = a2 + b1

2. -Reduction: R and S (in parallel) invoke oracles for GT-SCOT(a1|a2?x <
x1) and GT-SCOT(b1|b2?x < x2).

3. R obtains a′, b′ ∈ DS from GT-SCOT oracle executions and outputs a′ + b′.

Theorem 2. The protocol of Construction 2 securely reduces functionality
I-SCOT to GT-SCOT in the semi-honest model.

Proof. (sketch): The transfer validity property of this reduction trivially holds.
Since S does not receive any messages from R or oracle executions, the reduction
is secure against semi-honest S. We show how to construct SimR, simulating the

5 We stress that we use GT-SCOT as black box, and, in particular, addition in DS is
unrelated to the corresponding operation in the GT-SCOT implementation.

526 I.F. Blake, and V. Kolesnikov

following ensemble (view of R): VIEWR(x, (x1, x2, s0, s1)) = {x, r1, r2}, where
r1, r2 are the sent (via the GT-SCOT oracles) ai, bj . Let s be the transferred se-
cret. Then SimR(x, s) = {x, r′

1, r
′
2}, where r′

i are independently random elements
of DS that sum up to s. Because, by construction, r1, r2 are also independently
random with the same sum, SimR perfectly simulates view of R. �

We now wish to reduce UI-SCOT of polynomially many intervals to I-SCOT.
Here, S’s input represents a set of disjoint intervals {Ii = (xi1, xi2 ∈ DI)},
and the secrets s0, s1 ∈ DS . S wishes to transfer s1 if x ∈

⋃
Ii, and transfer

s0 otherwise. Let k be the number of intervals in the set (to avoid leaking k
to R, S can pad it to a known upper bound by adding empty intervals). We
represent

⋃
Ii as the intersection of one “regular” and k − 1 “cutout” intervals

as illustrated on the following diagram.

sk1

s1s1 s0s0s0 s1s0s1

s10 s10s11

s21 s20 s21

sk0 sk1

The bottom line represents the input set of intervals on the domain, and all
other lines represent the constructed (by S) intervals that together correspond
to this set. The si are the secrets to be transferred by the UI-SCOT construc-
tion, and the sij are the intermediate secrets to be created by UI-SCOT and
transferred by the existing I-SCOT protocol. Because the input intervals are
disjoint, the cut out (thin, on the diagram) parts of the constructed intervals do
not intersect, and thus any x either belongs to all or to all but one constructed
intervals.

To reduce UI-SCOT to I-SCOT, we need to choose sij ∈ DS based on the
given si. Because of the above observation we only need to satisfy the following:
s1 =

∑
i si1 and s0 = (

∑
i �=j si1) + sj0,∀j = 1..k Observe that the second

condition is equivalent to requiring s1 − s0 = sj1 − sj0,∀j = 1..k.

Construction 3. (Reducing UI-SCOT to I-SCOT)

1. S chooses s11, ..., s(k−1)1 ∈R DS and sets sk1 = s1−
∑

i=1..k−1 si1 and si0 =
si1 − (s1 − s0), i = 1..k.

2. -Reduction: S and R (in parallel) invoke oracles for I-SCOT(si1|si0?x ∈ Ii),
for each i = 1..k.

3. R obtains a1, ..., ak ∈ DS from k oracle executions and outputs
∑

i ai.

Theorem 3. The protocol of Construction 3 securely reduces functionality UI-
SCOT to I-SCOT in the semi-honest model.

Proof. (Sketch): The transfer validity property of this reduction trivially holds.
Since S does not receive any messages from R or oracle executions, the reduction
is secure against semi-honest S. We show how to construct SimR simulating the
view of R VIEWR(x, y) = {x, r1, ..., rk}, where r1, ..., rk are the oracle sent

Strong Conditional Oblivious Transfer and Computing on Intervals 527

elements of DS defined by step 1 of the construction. Let s be the transferred
secret. Then SimR(x, s) = {x, r′

1, ..., r
′
k}, where r′

i ∈R DS with the restriction
s =

∑
i ri. SimR perfectly simulates view of R because both ensembles are (k−1)-

wise independent random numbers that sum up to the same value s. �

The (
∧

i Qi(xi, yi))-COT Protocol. We now build
∧

i Qi(xi, yi))-COT (in
the sense of [4]) using oracles for corresponding Qi-SCOT. R now has input
x1, ..., xn, and S has y1, ..., yn. S wishes to send a secret s to R iff

∧
i(Qi(xi, yi)) =

1. The idea is to introduce “specialness” of s like we did for GT-SCOT, by,
for example, extending the domain of secrets DS to group D′

S = ZZ+
d′

S
, where

d′
S = |D′

S | * |DS |, Then S represents s ∈ DS as a sum of random secrets
si ∈R D′

S , and runs Qi-SCOT(si|ri?Qi(xi, yi)), where ri ∈R D′
S . Indeed, if the

conjunction holds, then only the si’s will be transferred, and they will sum up
to s ∈ DS . If any (or any number of) predicates do not hold, one (or more) ri

will be transferred, which will randomize (in D′
S) the sum obtained by R.

Construction 4. (Reducing (
∧

i Qi(xi, yi))-COT to Qi-SCOT)

1. S chooses r1, ..., rn, s1, ..., sn−1 ∈R D′
S and sets (in D′

S) sn = s−
∑

i=1..n−1 si.
2. R and S in parallel invoke oracles for Qi-SCOT(si|ri?Qi(xi, yi)), ∀i = 1..n.
3. R obtains a1, ..., an ∈ D′

S from the Qi-SCOT oracle executions and sets
v =

∑
i ai. R outputs v, if v ∈ DS, and outputs ⊥ otherwise.

Theorem 4. The protocol of Construction 4 securely reduces functionality
(
∧

i Qi(xi, yi))-COT to Qi-SCOT in the semi-honest model.

Proof: The simple proof is very similar to the previous ones and is omitted. �

Corollary 1. There exists (via construction 4 and DeMorgan laws) efficient
one-round protocols for computing conjunction and disjunction of memberships
in sets of intervals, secure against computationally unlimited R.

4.2 Resource Analysis

We continue and expand the resource analysis of Sect. 3.2. Recall that λ and ν
are the correctness and security parameters. As discussed in Observation 1, we
choose ν = log N and λ as in [6]. This determines the secrets domain DS to be
of size 2ν−λ. As noted in Sect. 3.2, we do not include the cost of key generation
in any of the compared solutions.

It is easy to see that Construction 3 makes 2k calls to the underlying λ-bit
GT-COT oracle. Thus, when using our implementation of GT-SCOT, UI-SCOT
requires sending 8kn log N bits and performing about 40kn log N multiplications
in group of size N . Using λ-bit GT-SCOT oracle implementation based on Fis-
chlin’s GT results in almost full factor of 2k blowup in communication since
server sends most of the traffic. The 2k factor blowup in the computation also
seems necessary when using this scheme.

The following table summarizes the cost of comparable modular multiplica-
tions and communication of our protocol in relation to others.

528 I.F. Blake, and V. Kolesnikov

Protocol GT predicate c-bit GT-SCOT, c<ν-λ k-UI-SCOT
mod. mult. comm. mod. mult. comm. mod. mult. comm.

of [6] 8nλ λn log N 32ncλ 4ncλ log N 64knλ2 8knλ2 log N
of [4] 8n 4n log N N/A N/A N/A N/A

our work 16n log N 4n log N 20n log N 4n log N 40kn log N 8kn log N

We see no obvious way to transform the schemes of [4] to GT-SCOT, and
thus do not include the corresponding resource calculations.

5 Conclusions and Future Work

We presented simple, intuitive and stronger definitions for Q-SCOT. We pre-
sented a flexible and efficient scheme for securely computing the GT predicate
and GT-SCOT, in the semi-honest setting with unbounded receiver. We then
showed simple modular reductions from UI-SCOT to GT-SCOT. In addition to
the presented results, we noticed that natural efficient variants of our protocols
are resilient to several natural attacks by malicious receivers. Devising versions
of our protocols secure in the malicious model is an interesting aspect of further
consideration.

Acknowledgments. The second author would like to thank Travis Gagie, Steven
Myers, and especially Charles Rackoff for many insightful discussions. He also
thanks Marc Fischlin and Pascal Paillier for useful comments relating to their
schemes used in this paper.

References

1. D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols.
In Proc. 22nd ACM Symp. on Theory of Computing, pages 503–513, 1990.

2. Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Muller. One-round secure
computation and secure autonomous mobile agents. In Proceedings of the 27th
International Colloquium on Automata, Languages and Programming, 2000.

3. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols. In Proc. CRYPTO 87, pages 462–462. Springer-Verlag, 1988.
Lecture Notes in Computer Science, vol. 293.

4. G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer
and time-released encryption. In Proc. CRYPTO 99, pages 74–89. Springer-Verlag,
1999. Lecture Notes in Computer Science, vol. 1592.

5. Yvo Desmedt. Unconditionally secure authentication schemes and practical and
theoretical consequences. In Proc. CRYPTO 85, pages 42–55. Springer, 1986.
Lecture Notes in Computer Science, vol. 218.

6. Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In RSA Security 2001 Cryptographer’s Track, pages 457–471. Springer-
Verlag, 2001. Lecture Notes in Computer Science, vol. 2020.

Strong Conditional Oblivious Transfer and Computing on Intervals 529

7. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Proc. EUROCRYPT 2004, pages 1–19. Springer-Verlag,
2004. Lecture Notes in Computer Science, vol. 3027.

8. Steven D. Galbraith. Elliptic curve paillier schemes. Journal of Cryptology,
15(2):129–138, 2002.

9. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2004.

10. S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In Proc. 14th ACM Symp. on Theory
of Computing, pages 365–377, San Francisco, 1982. ACM.

11. Shai Halevi. Efficient commitment schemes with bounded sender and unbounded
receiver. Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 12(2):77–89, 1999.

12. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of asso-
ciation rules on horizontally partitioned data. In ACM SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery (DMKD’02), 2002.

13. J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th ACM Symp.
on Theory of Computing, pages 20–31, Chicago, 1988. ACM.

14. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proc.
CRYPTO 00, pages 20–24. Springer-Verlag, 2000. Lecture Notes in Computer
Science, vol. 1880.

15. Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure
two-party computation. Cryptology ePrint Archive, Report 2004/175, 2004.
http://eprint.iacr.org/.

16. Moni Naor and Kobbi Nissim. Communication preserving protocols for secure
function evaluation. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 590–599. ACM Press, 2001.

17. Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and
mechanism design. In 1st ACM Conf. on Electronic Commerce, pages 129–139,
1999.

18. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. EUROCRYPT 99, pages 223–238. Springer-Verlag, 1999. Lecture
Notes in Computer Science, vol. 1592.

19. M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

20. Phillip Rogaway. The round complexity of secure protocols. PhD thesis, MIT, 1991.
21. Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for

NC1. In Proceedings 40th IEEE Symposium on Foundations of Computer Science,
pages 554–566, New York, 1999. IEEE.

22. A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symp. on
Foundations of Comp. Science, pages 160–164, Chicago, 1982. IEEE.

23. A. C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symp. on
Foundations of Comp. Science, pages 162–167, Toronto, 1986. IEEE.

Improved Setup Assumptions for
3-Round Resettable Zero Knowledge

Giovanni Di Crescenzo1, Giuseppe Persiano2, and Ivan Visconti3

1 Telcordia Technologies, Piscataway, NJ, USA
giovanni@research.telcordia.com

2 Dip. di Inf. ed Appl., Univ. di Salerno, Baronissi, Italy
giuper@dia.unisa.it

3 Dép. d’Inf., École Normale Supérieure, Paris, France
ivan.visconti@ens.fr

Abstract. In the bare public-key model, introduced by Canetti et al.
[STOC 2000], it is only assumed that each verifier deposits during a set-
up phase a public key in a file accessible by all users at all times. As
pointed out by Micali and Reyzin [Crypto 2001], the notion of soundness
in this model is more subtle and complex than in the classical model. In-
deed Micali and Reyzin have introduced four different notions which are
called (from weaker to stronger): one-time, sequential, concurrent and
resettable soundness. In this paper we introduce the counter public-key
model (the cPK model for short), an augmentation of the bare public-key
model in which each verifier is equipped with a counter and, like in the
original bare public-key model, the key of the verifier can be used for
any polynomial number of interactions with provers. In the cPK model,
we give a three-round concurrently-sound resettable zero-knowledge argu-
ment of membership for NP. Previously similar results were obtained by
Micali and Reyzin [EuroCrypt 2001] and then improved by Zhao et al.
[EuroCrypt 2003] in models in which, roughly speaking, each verifier is
still equipped with a counter, but the key of the verifier could only be
used for a fixed number of interactions.

1 Introduction

The notion of Zero Knowledge, put forth by Goldwasser, Micali and Rackoff [1],
has proved to be a fundamental concept in the area of complexity-based cryptog-
raphy. The original notions of security with respect to malicious provers (formal-
ized by the soundness requirement) and the security with respect to malicious
verifiers (captured by the zero-knowledge requirement) only considered a prover
and a verifier acting in isolation. Recently, the case in which provers and ver-
ifiers are part of a large system (and thus prover-verifier interactions may be
interleaved) has been considered and stronger notions of soundness and zero
knowledge have been proposed. In a sequence of papers the notions of concur-
rent zero knowledge [2] and resettable zero knowledge [3] were introduced and
protocols in the standard model were provided [4, 5, 6, 3].

P.J. Lee (Ed.): ASIACRYPT 2004, LNCS 3329, pp. 530–544, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 531

An important measure of an efficiency of a system is the number of rounds
needed. Lower bounds for the number of rounds for concurrent and resettable
zero knowledge have shown that these strong notions of security cannot be imple-
mented, in the standard model, using a constant number of rounds if black-box
zero knowledge is sought [7]. Canetti et al. [3] were thus motivated to introduce
the bare public-key model (the BPK model for short) in which, during a set-up
stage, each verifier stores in a public file his public key to be used in all sub-
sequent interactions and keeps secret the associated private key. In this model
constant-round concurrent and resettable zero-knowledge arguments for all NP
were shown to exist in [3].

Other models have been proposed in order to achieve similar results by focus-
ing on black-box concurrent zero knowledge, in particular the results of [2, 8, 9]
in the timing model, those of [10, 11] in the common reference string model,
those of [13] in the preprocessing model, and those of [12] in some partially
synchronous model.

Among the different proposed models, the BPK model has the following ad-
vantages: 1) it is not based on any trusted third party; 2) no timing assumption
is made; 3) the set-up stage is non-interactively performed only by the veri-
fiers. Consequently, the public-key model is, from among the currently proposed
models, the one that makes the least set-up assumptions and, in particular, it is
weaker than the widely accepted Public Key Infrastructure model.

Subsequently to the introduction of the BPK model, Micali and Reyzin [14]
noticed that, unlike in the standard model for interactive zero knowledge, dis-
tinct notions of soundness arise depending on whether the verifier’s public key
is used for once (one-time soundness), for polynomially many sequential argu-
ments (sequential soundness), for polynomially many concurrently interleaved
arguments (concurrent soundness), or whether the prover is allowed to reset
the verifier to a given state during the interaction (resettable soundness). How-
ever, they showed that resettably sound zero knowledge cannot be achieved in
the black-box model for non-trivial languages. Consequently, for black-box zero
knowledge, the strongest possible notion is that of a concurrently sound reset-
table zero-knowledge argument. In [14], Micali and Reyzin showed that in the
BPK model, concurrent soundness cannot be achieved in less than four rounds.
Moreover they showed that the argument system of Canetti et al. presented
in [3] is only sequentially sound and the same holds for the four-round reset-
table zero-knowledge argument presented in [14]. Recently, the existence of a
constant-round concurrently-sound resettable zero-knowledge argument in the
BPK model has been proved by [15] where a 4-round concurrently-sound reset-
table zero-knowledge argument in the BPK model has been given for all NP
languages.

Prior to the work of [15], augmented variations of the BPK model had been
presented in which constant-round concurrently-sound resettable zero knowledge
could be achieved. These proposals are interesting, even in light of the result of
[15], since they achieve three-round concurrently-sound resettable zero knowl-
edge which is remarkable as no non-trivial (black-box) zero knowledge can be

532 G. Di Crescenzo, G. Persiano, and I. Visconti

achieved in less than three rounds in any variation of the BPK model [14, 16]. In
particular, three-round concurrently sound resettable zero-knowledge arguments
for all NP are possible in the upper-bounded public-key (UPK, for short) model
(see [17]) and in the weak public-key (WPK, for short) model (see [18]). In the
UPK model, each public key can be used for a fixed number of arguments to be
determined during set-up. The verifier is equipped with a counter to keep track
of the number of arguments he has been involved in. In the WPK model, instead,
there is a fixed upper bound on the number of times the verifier can be involved
in sessions regarding the same statement. Thus, also in this model, the verifier
must have a counter (actually, one for each possible statement).

Our Contribution. In this paper we introduce the counter public-key (cPK for
short) model, that is a model weaker than the WPK (and thus of the UPK) model
and only slightly stronger than the BPK model. The cPK model, like the UPK of
Micali and Reyzin and the WPK of Zhao et al., is an extension of the BPK model in
which the verifier is equipped with a counter that, roughly speaking, keeps track
of the number of sessions that she has been involved with. However, unlike the
UPK model and the WPK model, each public key of the verifier can be used any
polynomial number of times exactly like in the original BPK model. Therefore,
our proposed model, although slightly stronger than the original BPK model, can
be considered much weaker than the UPK model and the WPK model. Indeed, in
the cPK model the verifier has no bound on the number of proofs he can engage
with the provers while in both UPK and WPK models once the bound is reached,
soundness is not guaranteed to hold.

We first present a three-round concurrently sound resettable zero-knowledge
argument of membership for NP in the cPK model. This construction improves
the previous works of [17, 18] that achieved the same result but in stronger mod-
els. We notice that, in the BPK model, concurrent soundness requires 4 rounds.
Our protocol is based on the existence of sub-exponentially hard primitives, as
in all previous works for obtaining a constant-round resettable zero-knowledge
argument in any public-key model.

Our second construction is a three-round concurrently sound concurrent zero-
knowledge argument of knowledge for all NP relations in the cPK model under
standard intractability assumptions. We notice that, in the black-box model,
resettable zero-knowledge arguments of knowledge exist only for trivial languages
and thus concurrent zero knowledge is the strongest notion of zero knowledge
that can be achieved when arguments of knowledge are sought.

2 The cPK Model

The cPK model assumes that:

1. there exists a public file F that is a collection of records, each containing a
public key;

2. an (honest) prover is an interactive deterministic polynomial-time algorithm
that takes as input a security parameter 1n, F , an n-bit string x, such that

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 533

x ∈ L and L is an NP-language, an auxiliary input y, a reference to an
entry of F and a random tape;

3. an (honest) verifier V is an interactive deterministic polynomial-time algo-
rithm that works in the following two stages: 1) in a first stage on input a
security parameter 1n and a random tape, V generates a key pair (pk, sk)
and stores pk in one entry of the file F ; 2) in the second stage, V takes
as input the private key sk, a counter value c, a statement “x ∈ L” and a
random string, then V performs an interactive protocol with a prover , and
outputs “accept” or “reject”;

4. interactions between prover and verifier start after all verifiers have com-
pleted their first stage.

Definition 1. Given an NP-language L and its corresponding relation RL, we
say that a pair 〈P, V 〉 is complete for L, if for all n-bit strings x ∈ L and any
witness y such that (x, y) ∈ RL, the probability that V interacting with P on
input y, outputs “reject”is negligible in n.

Malicious Provers in the cPK Model. We will give argument systems that are
sound with respect to s-concurrent malicious provers, for any positive polyno-
mial s. An s-concurrent malicious prover P � for the complete pair 〈P �, V 〉 is a
probabilistic polynomial-time algorithm that takes as input V ’s public key pk,
and, if P � is concurrently running i sessions, for 0 < i ≤ s(n), P � can pick a
new statement xi+1 and a value ci+1 of the counter and start a new session with
V on input xi+1 and ci+1. The only restriction is that, for each value c of the
counter, P � can only start one session with value c. Also, we allow the malicious
prover to schedule his messages in the concurrent sessions in any way he wants
and, for each message of P �, V ’s reply is immediately received.

We stress here that our definition of malicious prover is the same used by L.
Reyzin (see [16]) for the UPK model. Instead, in [18], the value of the counter
is assumed to be private to the verifier and the malicious prover has no way of
manipulating it. Moreover, we stress that in the cPK model there is no bound on
the number of sessions in which the verifier can be involved, thus the model is
weaker than the WPK and UPK models and very close to the standard BPK model.

Given an s-concurrent malicious prover P � and an honest verifier V , a con-
current attack is performed in the following way: 1) the first stage of V is run on
input 1n and a random string so that a pair (pk, sk) is obtained; 2) P � is run on
input 1n and pk; 3) whenever P � starts a new protocol choosing a statement, V
is run on inputs the new statement, a new random string and sk.

Definition 2. Given a complete pair 〈P, V 〉 for an NP-language L in the cPK
model, then 〈P, V 〉 is a concurrently sound interactive argument system in the
cPK model for language L if, for all positive polynomial s, for all s-concurrent
malicious prover P �, for any false statement “x ∈ L” the probability that in
an execution of a concurrent attack V outputs “accept” for such a statement is
negligible in n.

534 G. Di Crescenzo, G. Persiano, and I. Visconti

The strongest notion of zero-knowledge, referred to as resettable zero knowl-
edge, gives to a verifier the ability to reset the prover to a previous state. This
is significantly different from a scenario of multiple interactions between prover
and verifier since after a reset, the prover uses the same random bits. We now
give the formal definition of a black-box resettable zero-knowledge argument
system with concurrent soundness for NP in the counter public-key model.

Definition 3. An interactive argument system 〈P, V 〉 in the cPK model is black-
box resettable zero-knowledge if for any polynomial t(·), and for any probabilistic
adversary V � running in time t(·), there exists a probabilistic polynomial-time
algorithm S such that for any polynomial s(·), for any x1, · · · , xs(n) ∈ L of length
n, the following two distributions are indistinguishable:

1. the output of V � consisting of a public file F with s(n) entries and the tran-
script of a polynomial number of (even concurrent) interactions with each
P (xl, yl, rg, F, i) where yl is a witness for “xl ∈ L”, |xl| = n, rg is a random
tape and i specifies an entry of the public file, for 1 ≤ i, l, g ≤ s(n);

2. the output of S that has black-box access to V � on input x1, . . . , xs(n).

Moreover we define such an adversarial verifier V � as an (s, t)-resetting ma-
licious verifier.

3 Cryptographic Tools

We review the cryptographic tools that we will use in our constructions. We
start from the notions of an η-secure digital signature scheme and of a γ-secure
commitment scheme.

Definition 4. An η-secure digital signature scheme SS is a triple of algorithms
SS = (G, Sig, Ver) such that

1. Correctness: for all messages m ∈ {0, 1}k,

Pr[(pk, sk)← G(1k); m̂← Sig(m, sk) : Ver(m, m̂, pk) = 1] = 1.

2. Unforgeability: for all algorithms A running in time o(2kη

) it holds that

Pr[(pk, sk)←G(1k); (m, m̂)←AO(sk)(pk) :m �∈ Query and Ver(m, m̂, pk)=1]

is negligible in k where O(sk) is a signature oracle that on input a message
returns as output a signature of the message and Query is the set of signature
requests submitted by A to O.

We assume that signatures of k-bit messages produced by using keys with
security parameter k have length k. This is not generally true as for each signa-
ture scheme we have a constant a such that signatures of k-bit messages have
length ka but this has the advantage of not overburdening the notation. It is
understood that all our proofs continue to hold if this assumption is removed.

Standard secure signature schemes exist under the assumption of the exis-
tence of one-way functions [19]. In our case we need the existence of functions
that are one-way with respect to subexponential-time adversaries.

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 535

Definition 5. An γ-secure bit commitment scheme is a pair of algorithms (Com,
Dec) such that

1. Correctness: for all b ∈ {0, 1} and for all k,

Pr[(com, dec)← Com(b, 1k) : Dec(com, dec, b) = 1] = 1;

2. Perfect Binding: for all k, the set of strings com of length k for which there
exist strings dec0, dec1 such that Dec(com, dec0, 0) = 1 and Dec(com, dec1, 1)
= 1 is empty;

3. Computationally Hiding: the ensembles of random variables

{[(com, dec)←Com(0, 1k) :com]}k>0 and {[(com, dec)←Com(1, 1k) :com]}k>0

are indistinguishable with respect to algorithms running in time o(2kγ

);
4. Extractability: there exists an extractor algorithm E running in time 2kγ

such that, for all commitments com computed by a probabilistic polynomial-
time committer adversary A, if A succeeds in decommitting com as b with
non-negligible probability, then E(com) = b with overwhelming probability.

The above definitions can be easily extended to the case in which we wish to
commit to a string (instead of committing to a bit). Such commitment scheme
exists, for instance under the assumption that there exist permutations that are
one-way with respect to polynomial-time adversaries but such that they can be
inverted in subexponential time. In [20], these type of commitment schemes are
used in order to achieve straight-line extractability in superpolynomial time.

Finally, we review the notion of a ZAP[21].

Definition 6. A triple of polynomial-time algorithms (ZG,ZP,ZV) is a ZAP
for the NP-language L with polynomial-time relation RL iff:

1. Completeness: given a witness y for “x ∈ L” and z = ZG(1k) then
ZV (x, z,ZP (x, y, z)) = 1 with probability 1.

2. Soundness: for all x �∈ L, with overwhelming probability over z = ZG(1k),
there exists no z′ such that ZV (x, z, z′) = 1.

3. Witness-Indistinguishability: let y1, y2 such that (x, y1) ∈ RL and (x, y2)
∈ RL. Then ∀z, the distributions on ZP (x, y1, z) and on ZP (x, y2, z) are
computationally indistinguishable.

In [21] a ZAP is presented under the assumption that non-interactive zero-
knowledge proofs exist, thus the existence of ZAPs is implied by the existence
of one-way trapdoor permutations.

Since we will need ZAPs to be secure with respect to subexponentially strong
adversaries, we need subexponentially strong versions of these assumptions.

4 Three-Round Arguments in the cPK Model

In the cPK model we show that there exist three-round arguments of member-
ship for all NP languages that are concurrently sound and black-box resettable

536 G. Di Crescenzo, G. Persiano, and I. Visconti

zero knowledge. We stress that a concurrently sound resettable zero-knowledge
argument in the BPK model requires at least four rounds (see [14]) while the pre-
viously presented three-round protocols require stronger models than the cPK
model (see [17, 18]).

Our construction assumes the existence of η-secure signature schemes, γ-
secure commitment schemes, pseudo-random family of functions (which can be
constructed assuming the existence of one-way functions) and the existence of
ZAPs secure with respect to subexponential-time adversaries. We use subex-
ponentially strong cryptographic primitives since we crucially use complexity
leveraging for our result.

We then show how to obtain three-round arguments of knowledge for all
polynomial-time relations that are concurrently sound and black-box concurrent
zero-knowledge under standard complexity assumptions. We stress that black-
box resettable zero-knowledge arguments of knowledge are not possible [22, 14],
that concurrent soundness needs four rounds in the BPK model, and that three
rounds is optimal for zero-knowledge in any public-key model.

4.1 Three-Round RZK Argument of Membership in the cPK Model

In this section we present our construction for the three-round argument of
membership for all NP in the cPK that is concurrently sound and resettable
zero-knowledge. Throughout the section, L will be a fixed NP language.

Our proof system will follow the FLS paradigm for zero knowledge [23] and
we next define the auxiliary language Λ = Λ(L) that we are going to use.

Definition 7. The 8-tuple τ = (x, c, ã1, ã2, b̃1, b̃2, k, pk) belongs to the language
Λ if

– x ∈ L or
– there exist a1, a2, α1, α2, b1, b2, β1, β2 such that

1. pk is a public key in the output space of G(1k);
2. a1 �= a2;
3. (ã1, α1) = Com(a1, 1k) and (ã2, α2) = Com(a2, 1k);
4. (b̃1, β1) = Com(b1, 1k) and (b̃2, β2) = Com(b2, 1k);
5. Ver(a1 ◦ c, b1, pk) = 1 and Ver(a2 ◦ c, b2, pk) = 1.

Informally speaking, τ = (x, c, ã1, ã2, b̃1, b̃2, k, pk) belongs to Λ if x belongs to
L or if, for i = 1, 2, b̃i is the commitment of a valid signature bi (with respect to
pk) of the concatenation of message ai committed to by ãi concatenated with c.

Assumptions. In our construction we assume the existence of the following cryp-
tographic tools.

1. an η-secure digital signature scheme SS = (G, Sig, Ver);
2. a γ-secure commitment scheme (Com, Dec);
3. a pseudo-random family of functions F ;
4. a ZAP (ZG,ZV,ZP) for the language Λ.

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 537

High-Level Overview. Let k be the security parameter. The public entry of a
verifier contains a public key pk for a secure signature scheme and the first
message z of ZAP for Λ. The actual proof that x ∈ L consists of a first round
where the prover sends a random message m to the verifier. The verifier replies
with the current value c (in unary) of the counter and a signature m̂ of m ◦
c. The prover first verifies that m̂ is a valid signature and then constructs 4
commitments ã1, ã2, b̃1, b̃2 of 0k. Finally the prover computes the second message
of the ZAP in which he proves that x ∈ L or that b̃1 and b̃2 are the commitments
of valid signatures b1, b2 of messages a1 ◦ c and a2 ◦ c such that a1 �= a2 and a1
and a2 are the messages committed in ã1 and ã2.

Let us now informally argue the properties of our construction. For the con-
current soundness we observe that even if the prover opens polynomially many
concurrent sessions with the verifier, he will receive signatures of messages rel-
ative to different values of the counter. In particular, the prover will never see
the signature of two messages with the same value of the counter as suffix. We
will use a γ-secure commitment scheme along with a ZAP in order to show that
a prover that proves false statements can be used by a superpolynomial-time
algorithm in order to break a subexponentially strong assumption. Such a tele-
scopic use of the hardness of different cryptographic assumptions is referred to as
complexity leveraging and its power is gaining interest. The use of an extractable
commitment along with a ZAP is also discussed and used in [20].

For the resettable zero knowledge property, the simulator while interacting
with the verifier V ∗ will try, by rewinding V �, to get signatures for two messages
with the same value of the counter as suffix. More precisely, to simulate the proof
that x ∈ L, the simulator will first ask for the signature of message m ◦ c (where
c is the current value of the counter), then he starts a look-ahead (by rewinding
V �) in order to obtain the signature of a new message m′ ◦ c. Once the signature
is obtained, the look-ahead ends and the simulator goes back to the previous
original execution since it is now able to successfully run the third round.

The crucial observation to show that the simulation ends in expected polyno-
mial time is that the values of the counters cannot be greater than the running
time of the adversarial verifier (since V � sends the value of the counter in unary).
More precisely, each look-ahead starts after the first signature corresponding to
a given counter value and to a given public key has been received by S. Since the
number of public keys is polynomially bounded (the size of the public file does not
change after the preprocessing stage) and the running-time of an (s, t)-resetting
verifier is bounded by the polynomial t, we have that the number of look-aheads
is polynomial. Moreover, each look-ahead starts because a given counter value
has been sent by V � on input a given transcript. Therefore, the expected number
of rewinds that will be needed in order to obtain again the same counter (in the
look-ahead the corresponding signature is asked for a different message) is the
inverse of the probability that V � plays such a value. Finally, by observing that
the simulation between two rewinds can be run by S in polynomial time, we
have that the simulator runs in expected polynomial-time.

538 G. Di Crescenzo, G. Persiano, and I. Visconti

Formal Description. Let k be the security parameter. The verifier runs the key
generator G for the η-secure signature scheme on input 1k obtaining the pair
(pk, sk). Moreover, the verifier runs ZG on input 1k and obtains z that will be
used as the first round of the ZAP for the language Λ. The entry of the verifier
in the public file consists of the pair (pk, z). The private key sk associated with
pk is kept secret by the verifier. Moreover, the verifier initializes her counter c
by setting c = 0. The protocol is found in Figure 1.

Common input: security parameter k, public file F{(pk, z)} and instance x.
P’s private input: a witness y for x ∈ L.
V’s private input: private key sk and a counter c.

P-round-1:

1. randomly pick seed s;
2. compute w = F(s, x ◦ y ◦ pk) and use w as randomness;
3. randomly pick m ← {0, 1}k and sends it to V ;

V-round-2:

1. increment c;
2. compute m̂c = Sig(m ◦ c, sk);
3. send (1c, m̂c) to P ;

P-round-3:

1. verify that Ver(m ◦ c, m̂c, pk) = 1;
2. randomly pick seed s′;
3. compute w′ = F(s′, x ◦ y ◦ pk ◦ m̂c ◦ c) and use w′ as randomness;
4. use a γ-secure commitment function Com to compute commitments

ã1, ã2, b̃1, b̃2 where ãj = Com(0k, 1k1) and b̃j = Com(0k, 1k1) for j = 1, 2;
5. compute Z = ZP ((x, c, ã1, ã2, b̃1, b̃2, k, pk), y, z);
6. send ã1, ã2, b̃1, b̃2 and Z to V ;

V-decision: verify that the ZAP is valid by running ZV on input instance
τ = (x, c, ã1, ã2, b̃1, b̃2, k, pk), initial ZAP-message z and ZAP-reply Z.

Fig. 1. The 3-round concurrently sound rZK argument for NP in the cPK model. The
value k1 is chosen based on η, γ and k (see the proof of concurrent soundness)

Theorem 1. If, for some positive η and γ, there exist an η-secure digital signa-
ture scheme, a γ-secure commitment scheme and sub-exponentially strong ZAPs
for all NP languages then there exists a 3-round concurrently sound resettable
zero-knowledge argument system for any language L ∈ NP in the cPK model.

Proof. Consider the protocol in Figure 1. Completeness follows by inspection.

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 539

Concurrent Soundness. Assume by contradiction that the protocol is not con-
currently sound; then there exists a malicious prover P � that in a concurrent
attack has a non-negligible probability of making verifier V accept x for some
x �∈ L.

We assume we know the session j� of the verifier in which the prover will
succeed in cheating. This assumption will be later removed. In order to obtain
a contradiction we show an algorithm A running in time o(2kη

) that breaks
the η-secure digital signature scheme SS used in the construction. Algorithm A
receives a signature public key pk, obtained by running G on input 1k, has access
to P � and to a signing oracle O for a public key pk and outputs a signature of
a message for which the oracle had not been queried.

We now describe algorithm A. On input challenge public key pk, A performs
the set-up procedure and builds the public entry of the verifier as (pk, z) where
z is the output of algorithm ZG on input 1k. Algorithm A starts the interaction
with the prover P � and, for all sessions j constructs the message to be sent in the
second round of the protocol by following the verifier’s algorithm and by resorting
to the oracle O to compute signatures of messages m◦c, for messages m received
from P �. At the end of session j�, since x �∈ L then, by the soundness of the ZAP
(ZG,ZP,ZV), it must be the case that P � has exhibited commitments ã1, ã2
of two different messages a1, a2 and commitments b̃1, b̃2 of two signatures b1, b2
such that, b1 is a signature of a1 and b2 is a signature of a2. Moreover, messages
a1 and a2 have the value of the counter chosen by P � for the j�-th session as
suffix. Then A in time O(POLY(k1) ·2k1

γ

) breaks the secrecy of the commitments
and obtains the two messages along with their corresponding signatures. Now,
A has queried the oracle for public key pk once for each value of the counter
(we remind the reader that the adversary P �, for each value of the counter, is
allowed to run the verifier at most once) and thus A has not queried the oracle
for at least one of a1 ◦ c or a2 ◦ c. By picking k1 such that kγ

1 < kη, we have that
A runs in time o(2kη

) and we have reached a contradiction.
In our proof we assumed that A knows the value j�. If this is not the case that

A can simply guess the value and the same analysis applies since this decreases
only by a polynomial factor the probability of breaking the digital signature
scheme. Moreover A can also try to break all the commitments of all sessions,
since the running time will still be o(2kη

).

Resettable Zero Knowledge. Let V � be an (s, t)-resetting verifier. We next de-
scribe a probabilistic polynomial-time algorithm S ≡ SV �

that has black-box
access to V � and whose output is computationally indistinguishable from the
view of the interactions between P and V �.

The simulator S receives from V � requests that can be described wlog by
a quadruple (x, i, r, v), where x denotes the input instance for language L, i
denotes the index of the public key with respect to which the interaction has
to be simulated, r is the index of the random tape that must be used in the
simulation, v is the index of the message that S must send (and, for our specific
protocol, v = 1 or v = 3). We remark that the resetting adversary V � is allowed
to reset the prover to any previous state and even request that a different random

540 G. Di Crescenzo, G. Persiano, and I. Visconti

tape has to be used (however, V � is not allowed to feed the prover with a random
tape of its choice).

Simulator S maintains several data structures which will be implicitly used
in its description below and performs all the consistency checks requested by
the protocol (for example, that the signatures received are valid). In addition,
S also builds a table S(i, c) of signatures with entry (i, c) holding signatures of
messages with suffix c computed with respect to the i-th public key.

The interaction between V � and S consists of essentially four types of re-
quests. Indeed, two rounds of the argument system are played by the prover and
we distinguish two cases depending on whether or not the same round has been
requested since the last rewind by the verifier.

1. The request is (x, i, r, 1) and it is the first such request since last rewind.
In this case, S follows exactly the prover’s algorithm using the r-th random
tape as source of randomness.

2. The request is (x, i, r, 1) and such request has already been presented to S
by V � since last rewind.
In this case, S re-plays the same message used in the previous round.

3. The request is (x, i, r, 3) and S has already received such a request since the
last rewind.
In this case, S re-plays the same message used in the previous round.

4. The request is (x, i, r, 3) and S has not received such a request since the last
rewind. Let c be the value of the counter declared by V � in the message just
preceding the request. We have two sub-cases:
(a) S(i, c) contains two (or more) signatures.

In this case S uses two signatures from S(i, c) as witness to compute the
last message of the ZAP.

(b) S(i, c) contains one signature.
S has obtained the signature in the second round played by V � (the case
in which |S(i, c)| = ∅ and S has to play the third round cannot happen).
In this case S needs to obtain a second signature with suffix c in order
to be able to compute the last message of the ZAP. Thus, S starts a
look-ahead for (i, c). More precisely, S rewinds V � to the state just after
he has sent the first request (x, i, r, 1) (notice that since V � is a resetting
adversary, there could be several such requests) and uses a new random
string r′ instead of r. S will repeat such a rewind strategy until a rewind
ends by appending a second entry to (i, c).
As we shall argue, the simulation will halt in expected polynomial-time
as the number of pairs (i, c) (and thus the number of look-aheads) is
bounded by s(n)t(n) which is a polynomial (we are considering by defi-
nition an (s, t)-resetting verifier).

The Views Are Indistinguishable. The first message played by S in each session
has exactly the same distribution of the one played by the prover since S simply
runs the prover’s algorithm. We stress that even though after each rewind S
changes one randomness rg for a given g ∈ {1, . . . , s(n)}, V � is not aware of such
an update since its view does not go back with respect to the last rewind.

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 541

The third round played by S has the following two differences with respect
to the one played by the prover.

1. The prover commits to junk bits (the 0k strings) while the simulator com-
mits to a pair of different messages with the same suffix, along with their
signatures with respect to a given public key. By the computational hiding
of the commitment scheme, V � does not distinguish the commitments of S
from the commitments of the prover. More formally, if V � distinguishes with
non-negligible probability the commitments of S from the commitment of
P , then V � can be used to contradict the hiding of the commitment scheme.

2. The prover uses y such that (x, y) ∈ RL in order to compute the auxiliary
witness for running ZP on input the auxiliary statement “τ ∈ Λ”. Instead,
the simulator uses his knowledge of the different messages with c as suffix
along with their signatures to compute the auxiliary witness for “τ ∈ Λ”.
Both the prover and S follows the honest prover algorithm for the ZAP by
running ZP on a good witness for the auxiliary statement. Therefore, an
adversarial verifier V � that distinguishes the witness used by the simula-
tor from the one used by an honest prover can be used to contradict the
witness-indistinguishability of the ZAP. Note that in our implementation of
the ZAP the prover uses as randomness a pseudorandom string of both z and
the message sent by the verifier. Therefore, as remarked in [21, 22], this imple-
mentation of ZAP preserves witness-indistinguishability even in case of reset
attacks, i.e., the implemented ZAP is a resettable witness-indistinguishable
proof system.

The Simulation Ends in Polynomial Time. S has to compute two messages for
each session. Note that for the first message, S always performs a straight-line
simulation since the first round of a session is played by running the prover
algorithm, and since no witness is needed, it can be computed by S without
rewinding V �.

The analysis is more complicated for the second message. First of all, observe
that the simulator starts a new look-ahead procedure only after receiving a
request (x, i, r, 3). Such a request is immediately preceded by a message from V �

containing one valid signature for a pair (i, c) for which S(i, c) was empty before
the request (for otherwise, no look-ahead procedure would be started since S has
at least 2 valid signatures). In other words, the simulator starts a look-ahead
procedure only after receiving a useful signature. However, observe that both the
number of entries in the public file (and thus the number of possible values of
i) and the number of possible values of the counter are bounded by the running
time of the adversary V � that is assumed to be polynomially bounded. Next, we
argue that the contribution of each entry to the expected work of the simulator
is also polynomially bounded. Roughly speaking, the contribution of each pair
(i, c) is equal to the probability that counter c appears in a session with public
key pki times the number of rewinds needed to have a new session with the same
public key and the same value of the counter in which we ask for the signature of
a different message. It is easy to see that this quantity is polynomially bounded.

542 G. Di Crescenzo, G. Persiano, and I. Visconti

4.2 Three-Round CZK Argument of Knowledge in the cPK Model

In this section we present a three-round concurrently-sound concurrent zero-
knowledge argument of knowledge in cPK for any language L ∈ NP under stan-
dard intractability assumptions.

The argument of knowledge that we present is derived from the argument
of membership of the previous section by replacing the ZAP with a 3-round
witness-indistinguishable proof system to prove a statement of the form “α∨β”
where α is known at the beginning of the protocol while β is known only in
the last round. Additionally, we need witness extraction with respect to α. An
implementation of this primitive can be given by using a variation of the protocol
presented in [25] (this is also used in [26]).

To prove the properties of our construction, we assume the existence of sig-
nature and commitment schemes secure with respect to polynomial-time ad-
versaries, and the existence of the mentioned 3-round witness-indistinguishable
proof system of membership π for any NP language (which can, in turn, be based
on the existence of one-way permutations). We use this proof system as a black
box and denote the messages computed in it as (wi1, wi2, wi3), where wi1 is sent
by the prover, wi2 is sent be the verifier and wi3 is sent by the prover again.
Note that in order to prove that x ∈ L, for some NP language L, the message
wi1 can be computed in polynomial time given only the length value |x| (that
is, neither x nor a witness for it is necessary).

The Public File. Let k be the security parameter. The i-th entry of the public
file F consists of a randomly generated public key pk with security parameter
k for the secure signature scheme SS and of the first round of a two-round
computationally-binding perfectly-hiding commitment scheme.

Private Inputs. For the statements “x ∈ L”, the private input of the prover
consists of a witness y for x ∈ L. The private input of the verifier consists of the
private key sk corresponding to the public key pk and a counter c.

The Protocol. Suppose that the prover wants to prove that x ∈ L and that the
verifier knows the private key sk of the i-th public key pk of the public file F .

In the first round P randomly picks string m of length k, computes wi1
according to the proof system π, and sends the pair (m,π) to V . Then V in-
crements c and uses the private key sk to compute a digital signature m̂c of
m ◦ c, computes message wi2 and sends the triplet (1c, m̂c, wi2) to P . In the
last round P verifies that m̂c is a valid signature of m ◦ c with pk and computes
the commitments ã1, ã2, b̃1, b̃2 of 0k. Then P computes message wi3 according
to proof system π by using instance (x, c, ã1, ã2, b̃1, b̃2, k, pk) and string y as the
input and witness for π, respectively. P sends wi3, ã1, ã2, b̃1, b̃2 to V . Finally, V
verifies that (wi1, wi2, wi3) is valid by running the verifier’s accepting predicate
in proof system π, using as input the instance (x, c, ã1, ã2, b̃1, b̃2, k, pk).

Improved Setup Assumptions for 3-Round Resettable Zero Knowledge 543

Theorem 2. If there exist one-way permutations, then there exists a three-
round concurrently-sound concurrent zero-knowledge argument of knowledge for
NP in the cPK model.

The proof of Theorem 2 is omitted from this extended abstract.

5 Conclusion

In this paper we have presented a 3-round concurrently-sound resettable zero-
knowledge argument system in the cPK model that improves the previous works
of Micali and Reyzin [17] and Zhao et al. [18]. The cPK model is only a slight
variation of the BPK model, and we have shown that it can be used to go beyond
the barrier of four rounds needed for concurrent soundness in the BPK model. Our
result makes a big step for closing the gap between a public-key model that ad-
mits three-round concurrently-sound resettable zero-knowledge arguments and
the BPK model. Moreover, we have shown a 3-round concurrently-sound concur-
rent zero-knowledge argument of knowledge in the cPK model under standard
intractability assumptions.

References

1. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems. SIAM J. on Computing 18 (1989) 186–208

2. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: Proceedings of
the 30th ACM Symposium on Theory of Computing (STOC ’98), ACM (1998)
409–418

3. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable Zero-Knowledge.
In: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC
’00), ACM (2000) 235–244

4. Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge
Proofs. In: Advances in Cryptology – Eurocrypt ’99. Volume 1592 of LNCS, (1999)
415–431

5. Kilian, J., Petrank, E.: Concurrent and Resettable Zero-Knowledge in Poly-
Logarithmic Rounds. In: Proceedings of the 33rd ACM Symposium on Theory
of Computing (STOC ’01), ACM (2001) 560–569

6. Kilian, J., Petrank, E., Rackoff, C.: Lower Bounds for Zero Knowledge on the
Internet. In: Proceedings of the 39th Symposium on Foundations of Computer
Science, (FOCS ’98). (1998) 484–492

7. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-
Knowledge Requires ω(log n) Rounds. In: Proceedings of the 33st ACM Symposium
on Theory of Computing (STOC ’01), ACM (2001) 570–579

8. Dwork, C., Sahai, A.: Concurrent Zero-Knowledge: Reducing the Need for Timing
Constraints. In Krawczyk, H., ed.: Advances in Cryptology – Crypto ’98. Volume
1462 of LNCS, (1998) 442–457

9. Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. In: Proceed-
ings of the 34th ACM Symposium on Theory of Computing (STOC ’02), ACM
(2002) 332–340

544 G. Di Crescenzo, G. Persiano, and I. Visconti

10. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge.
SIAM J. on Computing 20 (1991) 1084–1118

11. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model.
In: Advances in Cryptology – Eurocrypt ’00. Volume 1807 of LNCS, (2000) 418–430

12. Di Crescenzo, G., Removing Complexity Assumptions from Concurrent Zero-
Knowledge Proofs, In: Proc. of Cocoon 2000. LNCS (2000).

13. Di Crescenzo, G., Ostrovsky, R., On Concurrent Zero-Knowledge with Pre-
processing, In: Advances in Cryptology – Crypto ’99. Volume 1666 of LNCS, (1999)

14. Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Advances in Cryp-
tology – Crypto ’01. Volume 2139 of LNCS, (2001) 542–565

15. Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero
Knowledge with Concurrent Soundness in the Bare Public-Key Model. In: Ad-
vances in Cryptology – Crypto ’04. Volume 3152 of LNCS, (2004) 237–253

16. Reyzin, L.: Zero-Knowledge with Public Keys, Ph.D. Thesis. MIT (2001)
17. Micali, S., Reyzin, L.: Min-Round Resettable Zero-Knowledge in the Public-key

Model. In: Advances in Cryptology – Eurocrypt ’01. Volume 2045 of LNCS, (2001)
373–393

18. Zhao, Y., Deng, X., Lee, C., Zhu, H.: ResettableZero-Knowledge in the Weak
Public-Key Model. In: Advances in Cryptology – Eurocrypt ’03. Volume 2045 of
LNCS, (2003) 123–139

19. Rompel, J.: One-Way Functions are Necessary and Sufficient for Digital Signa-
tures. In: Proceedings of the 22nd ACM Symposium on Theory of Computing
(STOC ’90). (1990) 12–19

20. Pass, R.: Simulation in Quasi-Polynomial Time and Its Applications to Protocol
Composition. In: Advances in Cryptology – Eurocrypt ’03. Volume 2045 of LNCS,
(2003) 160–176

21. Dwork, C., Naor, M.: Zaps and their applications. In: IEEE Symposium on Foun-
dations of Computer Science. (2000) 283–293

22. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably-Sound Zero-
Znowledge and its Applications. In: Proceeding of the 42nd Symposium on Foun-
dations of Computer Science, (FOCS ’01), (2001) 116–125

23. Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge
Proofs Under General Assumptions. SIAM J. on Computing 29 (1999) 1–28

24. De Santis, A., Persiano, G.: Zero-Knowledge Proofs of Knowledge Without In-
teraction. In: Proceedings of the 33rd Symposium on Foundations of Computer
Science, (FOCS ’92). (1992) 427–436

25. Lapidot, D., Shamir, A.: Publicly Verifiable Non-Interactive Zero-Knowledge
Proofs. In: Advances in Cryptology – Crypto ’90. Volume 537 of LNCS, (1991)
353–365

26. Katz, J., Ostrovsky, R.: Round-Optimal Secure Two-Party Computation. In:
Advances in Cryptology – Crypto ’04. Volume 3152 of LNCS, (2004).

Author Index

Aoki, Kazumaro 92
Ars, Gwénolé 338

Baek, Yoo-Jin 387
Baignères, Thomas 432
Bao, Feng 417
Bellare, Mihir 48
Blake, Ian F. 515
Bläser, Markus 137
Breveglieri, Luca 79
Buldas, Ahto 500

Castelluccia, Claude 293
Cherubini, Alessandra 79

Di Crescenzo, Giovanni 530
Diem, Claus 323

Faugère, Jean-Charles 338
Furukawa, Jun 308

Gennaro, Rosario 276
Gentry, Craig 32

Hong, Deukjo 201

Imai, Hideki 260, 338

Jakoby, Andreas 137
Jarecki, Stanis�law 293
Junod, Pascal 432

Kawazoe, Mitsuru 338
Kiayias, Aggelos 401
Kim, Hyun-Jeong 245
Kim, Woo-Hwan 387
Kolesnikov, Vladimir 515
Kunz-Jacques, Sébastien 451
Kwak, Nam-Seok 387
Kwon, Daesung 387

Lee, Dong Hoon 245
Lee, Eonkyung 103
Lee, In-Sok 387

Lee, Sangjin 201
Lee, Su-Mi 245
Leigh, Darren 276
Lískiewicz, Maciej 137
Lu, Yi 483

Macchetti, Marco 79
Manthey, Bodo 137
Matsushita, Tatsuyuki 260
Mitra, Joydip 468
Monnerat, Jean 354
Muller, Frédéric 214, 451

Nahm, Sangil 387
Nguyen, Lan 372

Palacio, Adriana 48
Persiano, Giuseppe 530
Phan, Duong Hieu 63
Pieprzyk, Josef 170
Pointcheval, David 63
Preneel, Bart 1, 201
Przydatek, Bartosz 152

Ramzan, Zulfikar 32
Rogaway, Phillip 16

Saarepera, Märt 500
Safavi-Naini, Rei 372
Sako, Kazue 308
Sarkar, Palash 187, 468
Schoenmakers, Berry 119
Shamir, Adi 77
Shirai, Taizo 1
Steinfeld, Ron 170
Strobl, Reto 152
Sugita, Makoto 338
Suk, Ho-Ick 430
Sundaram, Ravi 276

Teranishi, Isamu 308
Tsudik, Gene 293
Tuyls, Pim 119

Ueda, Hiroki 92

546 Author Index

Valette, Frédéric 451
Vaudenay, Serge 354, 432, 483
Visconti, Ivan 530

Wang, Huaxiong 170

Yerazunis, William 276
Yung, Moti 401

Zhang, Muxiang 230

	Frontmatter
	Block Ciphers
	On Feistel Ciphers Using Optimal Diffusion Mappings Across Multiple Rounds
	Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC
	Eliminating Random Permutation Oracles in the Even-Mansour Cipher

	Public Key Encryption
	Towards Plaintext-Aware Public-Key Encryption Without Random Oracles
	OAEP 3-Round:A Generic and Secure Asymmetric Encryption Padding

	Invited Talk I
	Stream Ciphers: Dead or Alive?

	Number Theory and Algebra
	On the Generalized Linear Equivalence of Functions Over Finite Fields
	Sieving Using Bucket Sort
	Right-Invariance: A Property for Probabilistic Analysis of Cryptography Based on Infinite Groups

	Secure Computation
	Practical Two-Party Computation Based on the Conditional Gate
	Privacy in Non-private Environments
	Asynchronous Proactive Cryptosystems Without Agreement
	Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes

	Hash Functions
	Masking Based Domain Extenders for UOWHFs: Bounds and Constructions
	Higher Order Universal One-Way Hash Functions
	The MD2 Hash Function Is Not One-Way

	Key Management
	New Approaches to Password Authenticated Key Exchange Based on RSA
	Constant-Round Authenticated Group Key Exchange for Dynamic Groups
	A Public-Key Black-Box Traitor Tracing Scheme with Sublinear Ciphertext Size Against Self-Defensive Pirates

	Identification
	Batching Schnorr Identification Scheme with Applications to Privacy-Preserving Authorization and Low-Bandwidth Communication Devices
	Secret Handshakes from CA-Oblivious Encryption
	{\itshape k}-Times Anonymous Authentication (Extended Abstract)

	XL-Algorithms
	The XL-Algorithm and a Conjecture from Commutative Algebra
	Comparison Between XL and Gr\"{o}bner Basis Algorithms

	Digital Signatures
	Generic Homomorphic Undeniable Signatures
	Efficient and Provably Secure Trapdoor-Free Group Signature Schemes from Bilinear Pairings

	Public Key Cryptanalysis
	On the Security of MOR Public Key Cryptosystem
	Cryptanalyzing the Polynomial-Reconstruction Based Public-Key System Under Optimal Parameter Choice
	Colluding Attacks to a Payment Protocol and Two Signature Exchange Schemes

	Invited Talk II
	Information Security in Korea IT839 Strategy

	Symmetric Key Cryptanalysis
	How Far Can We Go Beyond Linear Cryptanalysis?
	The Davies-Murphy Power Attack
	Time-Memory Trade-Off Attacks on Multiplications and {\itshape T}-Functions
	Cryptanalysis of Bluetooth Keystream Generator Two-Level E0

	Protocols
	On Provably Secure Time-Stamping Schemes
	Strong Conditional Oblivious Transfer and Computing on Intervals
	Improved Setup Assumptions for 3-Round Resettable Zero Knowledge

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

